Skip to main content

The Cytosolic Calcium-Force Relation of Vascular Smooth Muscle during the Contraction and the Relaxation

  • Chapter
Pathophysiology of Heart Failure

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 168))

  • 162 Accesses

Abstract

The contraction of vascular smooth muscle is regulated mainly by changes in the cytosolic calcium concentration ([Ca2+]i), and thus development of force has been regarded as a good indicator of an increase in [Ca2+]i [1]. The contraction is initiated by an increase in [Ca2+]i and the subsequent phosphorylation of the myosin light chain by the complex of Ca2+-calmodulin and myosin light chain kinase [2]. It has been demonstrated that, for a given elevation of [Ca2+]i, the receptor-mediated stimulation by various agonists caused a proportionally greater force development than did the depolarization with high K+ solutions [3–8]. While it is generally accepted that the force development mainly depends on Ca2+-mediated myosin light chain phosphorylation, it has been demonstrated that force development could be maintained under lower levels of [Ca2+]i and myosin light chain phosphorylation through other Ca2+-insensitive mechanisms such as latch bridges [9] or cooperating cycling of cross-bridges [10]. Using receptor-coupled per-meabilized vascular smooth muscle with staphylococcal α-toxin [11] and β-escin [12], it was demonstrated that the Ca2+ sensitivity of the contractile apparatus is modulated by the receptor-G-protein-coupled mechanism. A protein kinase C-mediated mechanism was proposed to explain the agonist-modulated Ca2+ sensitivity of vascular smooth muscle contractility [6–8].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brading AF. 1979. Maintenance of ionic composition. Br Med Bull 35:227–234.

    PubMed  CAS  Google Scholar 

  2. Kamm KE, Stull JT. 1985. The function of myosin and light chain kinase phosphorylation in smooth muscle. Annu Rev Pharmacol Toxicol 25:593–620.

    Article  PubMed  CAS  Google Scholar 

  3. Morgan JP, Morgan KG. 1984. Stimulus-specific patterns of intracellular calcium levels in smooth muscle of ferret portal vein. J Physiol 351:155–167.

    PubMed  CAS  Google Scholar 

  4. Himpens B, Somlyo AP. 1988. Free-calcium and force transients during depolarization and pharmacological coupling in guinea-pig smooth muscle. J Physiol 395:507–530.

    PubMed  CAS  Google Scholar 

  5. Rembold CW, Murphy RA. 1988. Myoplasmic [Ca2+] determines myosin phosphorylation in agonist-stimulated swine arterial smooth muscle. Circ Res 63:593–603.

    PubMed  CAS  Google Scholar 

  6. Kodama M, Kanaide H, Abe S, Hirano K, Kai H, Nakamura M. 1989. Endothelin-induced Ca-independent contraction of the porcine coronary artery. Biochem Biophys Res Commun 160:1302–1308.

    Article  PubMed  CAS  Google Scholar 

  7. Abe S, Kanaide H, Nakamura M. 1990. Front-surface fluorometry with fura-2 and effects of nitroglycerin on cytosolic calcium concentrations and on tension in the coronary artery of the pig. Br J Pharmacol 101:545–552.

    PubMed  CAS  Google Scholar 

  8. Hirano K, Kanaide H, Abe S, Nakamura M. 1990. Effects of diltiazem on calcium concentrations in the cytosol and on force of contractions in porcine coronary arterial strips. Br J Pharmacol 101:273–280.

    PubMed  CAS  Google Scholar 

  9. Chatterjee M, Murphy RA. 1983. Calcium-dependent stress maintenance without myosin phosphorylation in skinned smooth muscle. Science 221:464–466.

    Article  PubMed  CAS  Google Scholar 

  10. Somlyo AV, Goldman YE, Fujimori T, Bond M, Trentham DR, Somlyo AP. 1988. Cross-bridge kinetics, cooperativity, and negatively strained cross-bridges in vertebrate smooth muscle. A laser-flash photolysis study. J Gen Physiol 91:165–192.

    Article  PubMed  CAS  Google Scholar 

  11. Nishimura J, Kolber M, van Breemen C. 1988. Norepinephrine and GTP-γ-S increase myofilament calcium sensitivity in α-toxin permeabilized arterial smooth muscle. Biochem Biophys Res Commun 157:677–683.

    Article  PubMed  CAS  Google Scholar 

  12. Kobayashi S, Kitazawa T, Somlyo AP, Somlyo AY. 1989. Cytosolic heparin inhibits muscarinic and α-adrenergic Ca2+ release in smooth muscle: physiological role of inositol 1,4,5-trisphophate in pharmacomechanical coupling. J Biol Chem 264:17997–18004.

    PubMed  CAS  Google Scholar 

  13. Nishimura J, van Breemen C, 1989. Direct regulation of smooth muscle contractile elements by second messengers. Biochem Biophys Res Commun 163:929–935.

    Article  PubMed  CAS  Google Scholar 

  14. Hirano K, Kanaide H, Abe S, Nakamura M. 1991. Temporal changes in the calcium-force relation during histamine-induced contractions of strips of the coronary artery of the pig. Br J Pharmacol 102:27–34.

    PubMed  CAS  Google Scholar 

  15. Watanabe C, Yamamoto H, Hirano K, Kobayashi S, Kanaide H. 1992. Mechanisms of caffeine-induced contraction and relaxation of rat aortic smooth muscle. J Physiol 456: 193–213.

    PubMed  CAS  Google Scholar 

  16. Ushio-Fukai M, Abe S, Kobayashi S, Nishimura J, Kanaide H. 1993. Effects of isoprenaline on cytosolic calcium concentrations and on tension in the porcine coronary artery. J Physiol 462:679–696.

    PubMed  CAS  Google Scholar 

  17. Kuroiwa M, Aoki H, Kobayashi S, Nishimura J, Kanaide H. 1993. Role of GTP-protein and endothelium in contraction induced by ethanol in pig coronary artery. J Physiol 470: 521–537.

    PubMed  CAS  Google Scholar 

  18. Tsien RY, Pozzan T, Rink TJ. 1982. Calcium homeostasis in intact lymphocytes: cytosolic free calcium monitored with a new, intracellular trapped fluorescent indicator. J Cell Biol 94:325–334.

    Article  PubMed  CAS  Google Scholar 

  19. Rink TJ, Pozzan T. 1985. Using quin2 in cell suspensions. Cell Calcium 6:133–145.

    Article  PubMed  CAS  Google Scholar 

  20. Grynkiewicz G, Poenie M, Tsien RY. 1985. A new generation Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem 260:3440–3450.

    PubMed  CAS  Google Scholar 

  21. Matsumoto T, Kanaide H, Nishimura J, Kuga T, Kobayashi S, Nakamura M. 1989. Histamine-induced calcium transients in vascular smooth muscle cells: effects of verapamil and diltiazem. Am J Physiol 257.H563–H570.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Kluwer Academic Publishers

About this chapter

Cite this chapter

Kanaide, H. (1996). The Cytosolic Calcium-Force Relation of Vascular Smooth Muscle during the Contraction and the Relaxation. In: Dhalla, N.S., Singal, P.K., Takeda, N., Beamish, R.E. (eds) Pathophysiology of Heart Failure. Developments in Cardiovascular Medicine, vol 168. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1235-2_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1235-2_23

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8525-0

  • Online ISBN: 978-1-4613-1235-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics