Skip to main content

Role of Tissue and Circulating Substance P in Cardiovascular Injury Associated with Mg-Deficiency

  • Chapter
Pathophysiology of Heart Failure

Abstract

Hypomagnesemia is a common electrolyte deficiency found among hospitalized patients and is particularly prevalent in selected patient populations, such as alcoholics, diabetics, and those receiving diuretics and other magnesium-wasting drugs. Clinical complications as a result of magnesium deficiency were documented in a recent prospective study in which hypomagnesemia, which was present at the time of admission of critically ill patients, was associated with a statistically significant higher mortality rate [1]. Magnesium deficiency has also been associated with adverse cardiovascular conditions, such as sudden death, ventricular and atrial arrhythmias, coronary spasm, and cardiomyopathies. In one study of patients with heart disease, 45% of patients with myocardial infarction were reported to be hypomagnesemic [2].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Rubeiz GJ, Thill-Baharozian M, Hardie D, Carlson RW. 1993. Association of Hypomagnesemia and mortality in acutely ill medical patients. Crit Care Med 21:203–209.

    Article  PubMed  CAS  Google Scholar 

  2. Seelig MS, Heggtveit MPH. 1974. Magnesium interrelationships in ischemic heart disease: a review. Am J Clin Nutr 27:59–79.

    PubMed  CAS  Google Scholar 

  3. Seelig M. 1989. Cardiovascular consequences of magnesium deficiency and loss: pathogenesis, prevalence and manifestations—magnesium and chloride loss in refractory potassium repletion. Am J Cardiol 63.4G–21G.

    Article  PubMed  CAS  Google Scholar 

  4. Weglicki WB, Mak IT, Stafford RE, Dickens BF, Cassidy MM, Phillips TM. 1994. Neurogenic peptides and the cardiomyopathy of Mg-deficiency: effects of substance P-receptor inhibition. Mol Cell Biochem 130:103–109.

    Article  PubMed  CAS  Google Scholar 

  5. Weglicki WB, Mak IT, Phillips TM. 1994. Blockade of cardiac inflammation in Mg-deficiency by substance P receptor inhibition. Circ Res 24:1009–1013.

    Google Scholar 

  6. Viskin S, Belhassen B, Laniado S. 1992. Deterioration of ventricular tachycardia to ventricular fibrillation after rapid intravenous administration of magnesium sulfate. Chest 101:1445–1447.

    Article  PubMed  CAS  Google Scholar 

  7. Phillips TM. 1993. High performance capilliary electrophoresis detection of tissue cytokines. LC*GC Int 6:290–295.

    Google Scholar 

  8. Phillips TM, Kimmel PL. 1994. HPCE analysis of inflammatory cytokines in human biopsies. J Chromatogr Biomed Appl 656:259–266

    Article  CAS  Google Scholar 

  9. Weglicki WB, Phillips TM. 1992. Pathobiology of magnesium deficiency: a cytokine/neurogenic inflammation hypothesis. Am J Physiol 263:R734–R737.

    PubMed  CAS  Google Scholar 

  10. Weglicki WB, Phillips TM, Freedman AM, Cassidy MM, Dickens BF. 1992. Magnesium-deficiency elevates circulating levels of inflammatory cytokines and endothelin. Mol Cell Biochem 110:169–173.

    Article  PubMed  CAS  Google Scholar 

  11. Kramer JH, Misík V, Weglicki WB. 1994. Lipid peroxidation-derived free radical production and post-ischemic myocardial reperfusion injury. Ann NY Acad Sci 723:180–196.

    Article  PubMed  CAS  Google Scholar 

  12. Kramer JH, Misík V, Weglicki WB. 1994. Magnesium-deficiency potentiates free radical production associated with postischemic injury to rat hearts: vitamin E affords protection. Free Radical Biol Med 16(6):713–723.

    Article  CAS  Google Scholar 

  13. Garlick PB, Davies MJ, Hearse DJ, Slater TF. 1987. Direct detection of free radicals in the reperfused rat heart using electron spin resonance spectroscopy. Circ Res 61:757–760.

    PubMed  CAS  Google Scholar 

  14. Bolli R, Patel BS, Jeroudi MO, Lai EK, McCay PB. 1988. Demonstration of free radical generation in “stunned” myocardium of intact dogs with the use of the spin trap alpha-phenyl N-tert butyl nitrone. J Clin Invest 82:476–485.

    Article  PubMed  CAS  Google Scholar 

  15. Mergner GW, Weglicki WB, Kramer JH. 1991. Post-ischemic free radical production in the venous blood of regionally ischemic swine heart. Effect of Deferoxamine. Circulation 84:2079–2090.

    PubMed  CAS  Google Scholar 

  16. Griffith OW. 1980. Determination of glutathione and glutathione disulfide using glutathione reductase and 2-vinylpyridine. Anal Biochem 106:207–210.

    Article  PubMed  CAS  Google Scholar 

  17. Mak IT, Boehme P, Weglicki WB. 1992. Antioxidant effects of calcium channel blockers against free radical injury in endothelial cells. Correlation or protection with preservation of glutathione levels. Circ Res 70:1099–1103.

    PubMed  CAS  Google Scholar 

  18. Mak IT, Kramer JH, Freedman AM, Tse SYH, Weglicki WB. 1990. Oxygen free radical-mediated injury of myocytes-protection by propranolol. J Mol Cell Cardiol 22:687–695.

    Article  PubMed  CAS  Google Scholar 

  19. Stafford RE, Mak IT, Kramer JH, Weglicki WB. 1993. Protein oxidation in magnesium-deficient rat brains and kidneys. Biochem Biophys Res Commun 28:569–600.

    Google Scholar 

  20. Freedman AM, Atrakchi AH, Cassidy MM, Weglicki WB. 1990. Magnesium deficiency-induced cardiomyopathy: protection by vitamin E. Biochem Biophys Res Commun 170: 1102–1106.

    Article  CAS  Google Scholar 

  21. Freedman AM, Cassidy MM, Weglicki WB. 1991. Magnesium-deficient myocardium demonstrates an increased susceptibility to an in vivo oxidative stress. Magnesium Res 4:185–189.

    CAS  Google Scholar 

  22. Atrakchi AH, Bloom S, Dickens BF, Mak IT, Weglicki WB. 1992. Hypomagnesemia and isoproterenol cardiomyopathies: protection by probucol. J Cardiovas Pathol 1:155–160.

    Article  CAS  Google Scholar 

  23. Freedman AM, Cassidy MM, Weglicki WB. 1992. Propranolol reduces cardiomyopathic injury induced by magnesium deficiency. Magnesium Trace Elem 10:348–354.

    CAS  Google Scholar 

  24. Weglicki WB, Freedman AM, Bloom S, Atrakchi AH, Cassidy MM, Dickens BF, Mak IT. 1992. Antioxidants and the cardiomyopathy of Mg-deficiency. Am J Cardiovasc Pathol 4:210–215.

    PubMed  CAS  Google Scholar 

  25. Günther T, Höllriegl V, Vormann J, Disch G, Classen HG. 1992. Effects of Fe loading on vitamin E and malondialdehyde of liver, heart and kidney from rats fed diets containing various amounts of magnesium and vitamin E. Magnesium Bull 14:88–93.

    Google Scholar 

  26. Günther T, Vormann J, Hollriegl V, Disch G, Classen H-G. 1992. Role of lipid peroxidation and vitamin E in magnesium deficiency. Magnesium Bull 14:57–66.

    Google Scholar 

  27. Rayssiguier Y, Gueux E, Bussière J, Durlach J, Mazur A. 1993. Dietary magnesium affects susceptibility of lipoproteins and tissues to peroxidation in rats. J Am Coll Nutr 12:133–137.

    PubMed  CAS  Google Scholar 

  28. Freedman AM, Mak IT, Stafford RE, Dickens BF, Cassidy MM, Muesing RA, Weglicki WB. 1992. Erythrocytes from magnesium-deficient hamsters display an enhanced susceptibility to oxidative stress. Am J Physiol Cell Physiol 262:C1371–C1375.

    CAS  Google Scholar 

  29. Mills BJ, Lindeman RD, Lang CA. 1986. Magnesium deficiency inhibits biosynthesis of blood glutathione and tumor growth in the rat. Proc Soc Exp Biol Med 181:326–332.

    PubMed  CAS  Google Scholar 

  30. Hsu JM, Smith JC Jr, Yunice AA, Kepford S. 1983. Impairment of ascorbic acid synthesis in liver extracts of magnesium-deficient rats. J Nutr 113:2041–2047.

    PubMed  CAS  Google Scholar 

  31. Cavaillon J-M, Munoz C, Fitting C, Misset B, Carlet J. 1992. Circulating cytokines: the tip of the iceberg? Circulatory Shock 38:145–152.

    PubMed  CAS  Google Scholar 

  32. Crivellato E, Daminai D, Mallardi F, Travan L. 1991. Suggestive evidence for a microana-tomical relationship between mast cells and nerve fibres containing substance P, calcitonin gene related peptide, vasoactive intestinal polypeptide, and somatostatin in the rat mesentery. Acta Anat (Basel) 141:127–131.

    Article  CAS  Google Scholar 

  33. Mulderry PK, Ghatei MA, Rodrigo J, Allen JM, Rosenfield MG, Polak JM, Bloom SR. 1985. Calcitonin gene-related peptide in cardiovascular tissues of the rat. Neuroscience 14:947–954.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Kluwer Academic Publishers

About this chapter

Cite this chapter

Weglicki, W.B. et al. (1996). Role of Tissue and Circulating Substance P in Cardiovascular Injury Associated with Mg-Deficiency. In: Dhalla, N.S., Singal, P.K., Takeda, N., Beamish, R.E. (eds) Pathophysiology of Heart Failure. Developments in Cardiovascular Medicine, vol 168. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1235-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1235-2_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8525-0

  • Online ISBN: 978-1-4613-1235-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics