Skip to main content

Intracellular Ca2+ Transients in Response to Step Length Changes in Aequorin-Injected Ferret Papillary Muscles

  • Chapter
Pathophysiology of Heart Failure

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 168))

  • 164 Accesses

Abstract

Ca2+ binding to troponin-C, a regulatory protein of muscle contraction, is an important step for the initiation of cardiac muscle contraction [1]. Therefore, the change in the intracellular Ca2+ concentration ([Ca2+]i) and the affinity of troponin-C for Ca2+ are intimately related to cardiac muscle contraction. In mammalian cardiac muscles, intracellular Ca2+, which initiates contraction, is mainly delivered by the sarcoplasmic reticulum (SR) [2]. Therefore, the factors that influence Ca2+ release from SR are considered to cause the alteration in contraction. In addition, the factors that alter Ca2+ uptake by SR also influence the magnitude and the time course of intracellular Ca2+ transients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ebashi S, Endo M. 1968. Calcium ion and muscle contraction. Prog Biophys Mol Biol 18:123–183.

    Article  PubMed  CAS  Google Scholar 

  2. Bers DM. 1991. Excitation-Contraction Coupling and Cardiac Contractile Force. Kluwer Academic Publishers: Dordrecht.

    Google Scholar 

  3. Allen DG, Kurihara S. 1982. The effects of muscle length on intracellular calcium transients in mammalian cardiac muscle. J Physiol 327:79–94.

    PubMed  CAS  Google Scholar 

  4. Allen DG, Kentish JC. 1988. Calcium concentration in the myoplasm of skinned ferret ventricular muscle following changes in muscle length. J Physiol 407:489–503.

    PubMed  CAS  Google Scholar 

  5. Pan B-S, Solaro RJ. 1987. Calcium-binding properties of troponin C in detergent-skinned heart muscle fibers. J Biol Chem 262:7839–7849.

    PubMed  CAS  Google Scholar 

  6. Hofmann PA, Fuchs F. 1987. Evidence for a force-dependent component of calcium binding to cardiac troponin C. Am J Physiol 253.C541–C546.

    PubMed  CAS  Google Scholar 

  7. Blinks JR, Wier WG, Hess P, Prendergast FG. 1982. Measurement of Ca2+ concentrations in living cells. Prog Biophys Mol Biol 40:1–114.

    Article  PubMed  CAS  Google Scholar 

  8. Robertson SP, Johnson JD, Potter JD. 1981. The time course of Ca2+ exchange with calmodulin, troponin, parvalbumin, and myosin in response to transient increase in Ca2+. Biophys J 34:559–569.

    Article  PubMed  CAS  Google Scholar 

  9. Allen DG, Kentish JC. 1985. The cellular basis of the length-tension relation in cardiac muscle. J Mol Cell Cardiol 17:821–840.

    Article  PubMed  CAS  Google Scholar 

  10. Backx PH, Ter Keurs HEDJ. 1993. Fluorescent properties of rat trabeculae microinjected with fura-2 salt. Am J Physiol 264:H1098–H1110.

    PubMed  CAS  Google Scholar 

  11. Housmans PR, Lee NKM, Blinks JR. 1983. Active shortening retards the decline of the intracellular calcium transient in mammalian heart muscle. Science 221:159–161.

    Article  PubMed  CAS  Google Scholar 

  12. Kurihara S, Saeki Y, Hongo K, Tanaka E, Suda N. 1990. Effects of length change on intracellular Ca2+ transients in ferret ventricular muscle treated with 2,3-butanedione monoxime (BDM). Jpn J Physiol 40:915–920.

    Article  PubMed  CAS  Google Scholar 

  13. Gwathmey JK, Hajjar RJ, Solaro RJ. 1991. Contractile deactivation and uncoupling of crossbridges: Effects of 2,3-butanedione monoxime on mammalian myocardium. Circ Res 69:1280–1292.

    PubMed  CAS  Google Scholar 

  14. Saeki Y, Kurihara S, Hongo K, Tanaka E. 1993. Alterations in intracellular calcium and tension of activated ferret papillary muscle in response to step length changes. J Physiol 463:291–306.

    PubMed  CAS  Google Scholar 

  15. Yue DT, Marban E, Wier WG. 1986. Relationship between force and intracellular [Ca2+] in tetanized mammalian heart muscle. J Gen Physiol 87:223–242.

    Article  PubMed  CAS  Google Scholar 

  16. Gordon AM, Ridgway EB. 1990. Stretch of active muscle during the declining phase of the calcium transient produces biphasic changes in calcium binding to the activating sites. J Gen Physiol 96:1013–1035.

    Article  PubMed  CAS  Google Scholar 

  17. Babu A, Sonnenblick E, Gulati J. 1988. Molecular basis for the influence of muscle length on myocardial performance. Science 240:74–76.

    Article  PubMed  CAS  Google Scholar 

  18. Kentish JC, Palmer S. 1993. The influence of pH, phosphate, and ionic strength on contraction in skinned cardiac muscle. In Lee JA, Allen DG (eds.), Modulation of Cardiac Calcium Sensitivity: A New Approach to Increasing the Strength of the Heart. Oxford University Press: New York, pp. 67–88.

    Google Scholar 

  19. Rousseau E, Pinkos J. 1990. pH modulates conducting and gating behaviour of single calcium release channels. Pflugers Arch 415:645–647.

    Article  PubMed  Google Scholar 

  20. Allen DG, Orchard CH. 1983. The effects of changes of pH on intracellular calcium transients in mammalian cardiac muscle. J Physiol 335:555–567.

    PubMed  CAS  Google Scholar 

  21. Kurihara S, Tanaka E, Hongo K, Suda N, Okazaki O, Saeki Y. 1991. Effects of intracellular acidification on Ca2+ transients and contraction in mammalian cardiac muscles. In Nagano M, Dhalla N (eds.), The Diabetic Heart. Raven Press: New York, pp. 515–522.

    Google Scholar 

  22. Grassi de Gende AO. 1988. The effect of pH on the calcium dependence of calcium accumulation in dog cardiac muscle sarcoplasmic reticulum. J Mol Cell Cardiol 20:1087–1093.

    Article  PubMed  CAS  Google Scholar 

  23. Kawai M, Konishi M. 1994. Measurement of sarcoplasmic reticulum calcium content in skinned mammalian cardiac muscle. Cell Calcium 16:123–136.

    Article  PubMed  CAS  Google Scholar 

  24. Orchard CH, Eisner DA, Allen DG. 1983. Oscillations of intracellular Ca2+ in mammalian cardiac muscle. Nature 304:735–738.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Kluwer Academic Publishers

About this chapter

Cite this chapter

Kurihara, S., Komukai, K., Kawai, M., Tanaka, E., Konishi, M. (1996). Intracellular Ca2+ Transients in Response to Step Length Changes in Aequorin-Injected Ferret Papillary Muscles. In: Dhalla, N.S., Singal, P.K., Takeda, N., Beamish, R.E. (eds) Pathophysiology of Heart Failure. Developments in Cardiovascular Medicine, vol 168. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1235-2_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1235-2_16

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8525-0

  • Online ISBN: 978-1-4613-1235-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics