Skip to main content

Multiple Roles for the Membrane-Associated Ca2+/Calmodulin-Dependent Protein Kinase in the Regulation of Sarcoplasmic Reticulum Function in Heart Muscle

  • Chapter
Pathophysiology of Heart Failure

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 168))

Abstract

By regulating the cytosolic Ca2+ concentration, the sarcoplasmic reticulum (SR) plays a central role in the contraction-relaxation cycle of heart muscle. Following excitation, Ca2+ is released from the SR through a Ca2+ release channel (the ryanodine receptor), and the consequent increase in cytoplasmic Ca2+ produces myofilament activation and muscle contraction [1–4]. Subsequently, active sequestration of Ca2+ back into the SR lumen by a Ca2+-pumping ATPase (Ca2+-ATPase) in the SR lowers the cytoplasmic Ca2+, thus promoting muscle relaxation [2,3,5,6]. The Ca2+-pumping function of this ATPase is well known to be regulated by another cardiac SR-specific protein called phospholamban [2,7–9]. Current evidence suggests that nonphosphorylated phospholamban interacts with the ATPase and serves to inhibit the Ca2+ pump and that phosphorylation of phospholamban by cAMP-dependent protein kinase (PKA) or Ca2+/calmodulin-dependent protein kinase (CaM kinase) results in disruption of the ATPase-phospholamban interaction leading to removal of inhibition and consequent activation of the Ca2+ pump [7–14]. In cardiac SR, the Ca2+ channel also undergoes phosphorylation by CaM kinase [15,16], and Ca2+ channel phosphorylation appears to result in stimulation of Ca2+ release from the SR [15].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Fleisher S, Inui M. 1989. Biochemistry and biophysics of excitation-contraction coupling. Annu Rev Biophys Chem 18:333–364.

    Article  Google Scholar 

  2. Lytton J, MacLennan DH. 1992. Sarcoplasmic reticulum. In Fozzard HA (ed.), The Heart and Cardiovascular System. Raven Press: New York, pp. 1203–1222.

    Google Scholar 

  3. Feher JJ, Fabiato A. 1990. Cardiac Sarcoplasmic Reticulum: Calcium uptake and release. In Langer GA (ed.), Calcium and the Heart. Raven Press: New York, pp. 199–268.

    Google Scholar 

  4. Thompson RB, Warber KD, Potter JD. 1990. Calcium at the myofilaments. In Langer GA (ed.), Calcium and the Heart. Raven Press: New York, pp. 127–165.

    Google Scholar 

  5. Inesi G. 1985. Mechanisms of calcium transport. Annu Rev Physiol 47:573–601.

    Article  PubMed  CAS  Google Scholar 

  6. Inesi G, Submilla C, Kirtley ME. 1990. Relationships of molecular structure and function in Ca2+ transport ATPase. Physiol Rev 70:749–760.

    PubMed  CAS  Google Scholar 

  7. Tada M, Katz AM. 1982. Phosphorylation of sarcoplasmic reticulum and sarcolemma. Annu Rev Physiol 44:401–423.

    Article  PubMed  CAS  Google Scholar 

  8. Tada M, Kadoma M, Inui M, Fuji JI. 1988. Regulation of Ca2+-pump from cardiac sarcoplasmic reticulum. Methods Enzymol 157:107–154.

    Article  PubMed  CAS  Google Scholar 

  9. Davis BA, Edes I, Gupta RC, Young EF, Kim HW, Steenart NAE, Szymanska G, Kranias EG. 1990. The role of phospholamban in the regulation of calcium transport by cardiac sarcoplasmic reticulum. Mol Cell Biochem 99:83–88.

    Article  PubMed  CAS  Google Scholar 

  10. Kirchberger MA, Borchman D, Kasinathan C. 1986. Proteolytic activation of the canine cardiac sarcoplasmic reticulum calcium pump. Biochemistry 25:5484–5492.

    Article  PubMed  CAS  Google Scholar 

  11. Suzuki T, Wang JH. 1986. Stimulation of bovine cardiac sarcoplasmic reticulum calcium pump and blocking of phospholamban phosphorylation by a phospholamban monoclonal antibody. J Biol Chem 261:7018–7023.

    PubMed  CAS  Google Scholar 

  12. James P, Inui M, Tada M, Chiesi M, Carafoli E. 1989. Nature and site of phospholamban regulation of the calcium pump of sarcoplasmic reticulum. Nature 342:90–92.

    Article  PubMed  CAS  Google Scholar 

  13. Sasaki T, Inui M, Kimura Y, Kuzuya T, Tada M. 1992. Molecular mechanism of regulation of Ca2+ pump ATPase by phospholamban in cardiac sarcoplasmic reticulum. Effects of synthetic phospholamban peptides on Ca2+ pump ATPase. J Biol Chem 267:1674–1679.

    PubMed  CAS  Google Scholar 

  14. Toyofuku T, Kurzydlowski K, Tada M, MacLennan DH. 1993. Identification of regions in the Ca2+-ATPase of sarcoplasmic reticulum that affect functional association with phospholamban. J Biol Chem 268:2809–2815.

    PubMed  CAS  Google Scholar 

  15. Witcher DR, Kovacs RJ, Schulman H, Cefali DC, Jones LR. 1991. Unique phosphorylation site on the cardiac ryanodine receptor regulates Ca2+ channel activity. J Biol Chem 266: 11144–11152.

    PubMed  CAS  Google Scholar 

  16. Takasago T, Imagawa T, Furukawa K, Ogurusu T, Shigekawa M. 1991. Regulation of the cardiac ryanodine receptor by protein kinase-dependent phosphorylation. J Biochem (Tokyo) 109:163–170.

    CAS  Google Scholar 

  17. Xu A, Hawkins C, Narayanan N. 1993. Phosphorylation and activation of the Ca2+-pumping ATPase of cardiac sarcoplasmic reticulum by a Ca2+/calmodulin-dependent protein kinase. J Biol Chem 268:8394–8397.

    PubMed  CAS  Google Scholar 

  18. Narayanan N, Lee P, Newland M, Khandelwal RL. 1982. Evidence for an endogenous protein inhibitor of sarcoplasmic reticulum calcium pump in heart muscle. Biochem Biophys Res Commun 108:1158–1164.

    Article  PubMed  CAS  Google Scholar 

  19. Narayanan N, Newland M, Neudorf D. 1983. Inhibition of sarcoplasmic reticulum calcium pump by cystosolic protein(s) endogenous to heart and slow skeletal muscle but not fast skeletal muscle. Biochem Biophys Acta 735:53–66.

    Article  PubMed  CAS  Google Scholar 

  20. Narayanan N, Bedard P, Waraich T. 1989. Effects of endogenous calcium transport inhibitor from heart muscle on the active calcium uptake and passive calcium release properties of sarcoplasmic reticulum. Can J Physiol Pharmacol 67:999–1006.

    Article  PubMed  CAS  Google Scholar 

  21. Donat ME, Su N, Narayanan N. 1991. Ontogeny of cystosolic proteins capable of modulating sarcoplasmic reticulum calcium transport in heart muscle. Mol Cell Biochem 106:41–48.

    PubMed  CAS  Google Scholar 

  22. Chiesi M, Geurini D. 1987. Characterization of heart cystosolic proteins capable of modulating calcium uptake by sarcoplasmic reticulum. 1. Isolation of a protein with protective activity and its identification as muscle albumin. Eur J Biochem 162:365–370.

    Article  PubMed  CAS  Google Scholar 

  23. Chiesi M, Schwaller R. 1987. Characterization of heart cystosolic proteins capable of modulating calcium uptake by sarcoplasmic reticulum. 2. Identification of actin isoforms with inhibitory activity. Eur J Biochem 162:371–377.

    Article  PubMed  CAS  Google Scholar 

  24. Xu A, Narayanan N. 1994. Purification, amino-terminal sequence and functional properties of a 64 kDa cytosolic protein from heart muscle capable of modulating calcium transport across the sarcoplasmic reticulum in vitro. Mol Cell Biochem 132:7–14.

    Article  PubMed  CAS  Google Scholar 

  25. LePeuch CJ, Haiech J, Demaille JG. 1979. Concerted regulation of cardiac sarcoplasmic reticulum calcium transport by cyclic adenosine monophosphate-dependent and calcium-calmodulin-dependent phosphorylations. Biochemistry 18:5150–5157.

    Article  CAS  Google Scholar 

  26. Buss JE, Stull JT. 1983. Measurement of chemical phosphate in proteins. Methods Enzymol 99:7–14.

    Article  PubMed  CAS  Google Scholar 

  27. Simmemman HKB, Collins JH, Theibert JL, Wegener AD, Jones LR. 1986. Sequence Analysis of Phospholamban. J Biol Chem 261:13333–13341.

    Google Scholar 

  28. MacLennan DH, Brandl CJ, Korezak B, Green NM. 1985. Amino acid sequence of a Ca2++Mg2+-dependent ATPase from rabbit muscle sarcoplasmic reticulum, deduced from its complementary DNA sequence. Nature 316:696–700.

    Article  PubMed  CAS  Google Scholar 

  29. Brandl CJ, Green NM, Korezak B, MacLennan DH. 1986. Two Ca2+-ATPase genes: homologies and mechanistic implications of deduced amino acid sequences. Cell 44:597–607.

    Article  PubMed  CAS  Google Scholar 

  30. Brandl CJ, deLeon S, Martin DR, MacLennan DH. 1987. Adult forms of the Ca2+-ATPase of sarcoplasmic reticulum: expression in developing skeletal muscle. J Biol Chem 262: 3768–3774.

    PubMed  CAS  Google Scholar 

  31. Zarain-Herzberg A, MacLennan DH, Periasamy M. 1990. Characterization of rabbit sarco(endo)plasmic reticulum Ca2+-ATPase gene. J Biol Chem 265:4670–4677.

    PubMed  CAS  Google Scholar 

  32. MacLennan DH. 1990. Molecular tools to elucidate problems in excitation-contraction coupling. Biophys J 58:1355–1365.

    Article  PubMed  CAS  Google Scholar 

  33. Inesi G, Kirtley ME. 1992. Structural features of cation transport ATPases. J Bioenerg Biomembr 24:271–283.

    PubMed  CAS  Google Scholar 

  34. MacLennan DH, Toyofuku T, Lytton J. 1992. Structure-function relationships of endoplasmic reticulum type Ca2+ pumps. In Scarpa A, Carafoli E, Papa S (eds.), Ion-Motive ATPases: Structure, Function and Regulation, vol. 167. The New York Academy of Sciences: New York, pp. 1–10.

    Google Scholar 

  35. Lytton J, Westlin M, Burk SE, Shull GE, MacLennan DH. 1992. Functional comparisons between isoforms of the sarcoplasmic or endoplasmic reticulum family of calcium pumps. J Biol Chem 267:14483–14489.

    PubMed  CAS  Google Scholar 

  36. Van Winkle WB, Tate CA, Blick RJ, Entman ML. 1981. Nucleotide triphosphate utilization by cardiac and skeletal muscle sarcoplasmic reticulum: evidence for hydrolysis cycle not coupled to intermediate acylphosphate formation and calcium translocation. J Biol Chem 256:2268–2274.

    PubMed  Google Scholar 

  37. Narayanan N, Su N, Bedard P. 1991. Inhibitory and stimulatory effects of fluoride on the calcium pump of cardiac sarcoplasmic reticulum. Biochem Biophys Acta 1070:83–91.

    Article  PubMed  CAS  Google Scholar 

  38. Hawkins C, Xu A, Narayanan N. 1994. Comparison of the effects of fluoride on the calcium pumps of cardiac and fast-twitch skeletal muscle sarcoplasmic reticulum: evidence for tissue-specific qualitative difference in calcium-induced pump conformation. Biochem Biophys Acta 1191:231–243.

    Article  PubMed  CAS  Google Scholar 

  39. Hawkins C, Xu A, Narayanan N. 1994. Sarcoplasmic reticulum calcium pump in cardaic and slow-twitch skeletal muscle but not fast-twitch skeletal muscle undergoes phosphorylation by endogenous and exogenous Ca2+/calmodulin-dependent protein kinase: characterization of optimal conditions for calcium pump phosphorylation. J Biol Chem 269:31198–31206.

    PubMed  CAS  Google Scholar 

  40. Pearson RB, Woodgett JR, Cohen P, Kemp BE. 1985. Substrate specificity of a multifunctional calmodulin-dependent protein kinase. J Biol Chem 260:14471–14476.

    PubMed  CAS  Google Scholar 

  41. Toyofuku T, Kurzydlowski K, Narayanan N, MacLennan DH. 1994. Identification of the site in cardiac sarcoplasmic reticulum Ca2+-ATPase that is phosphorylated by Ca2+/ calmodulin-dependent protein kinase. J Biol Chem 269:26492–26496.

    PubMed  CAS  Google Scholar 

  42. Briggs FN, Lee KF, Wechsler AW, Jones LR. 1992. Phospholamban expressed in slow-twitch and chronically stimulated fast-twitch muscles minimally affects calcium affinity of sarcoplasmic reticulum Ca2+-ATPase. J Biol Chem 267:26056–26061.

    PubMed  CAS  Google Scholar 

  43. Kirchberger MA, Tada M. 1976. Effects of adenosine 3′: 5′-monophosphate-dependent protein kinase on sarcoplasmic reticulum isolated from cardiac and slow and fast contracting skeletal muscles. J Biol Chem 251:725–729.

    PubMed  CAS  Google Scholar 

  44. Morris GL, Cheng HC, Colyer J, Wang JH. 1991. Phospholamban regulation of cardiac sarcoplasmic reticulum (Ca2+-Mg2+)-ATPase: mechanism of regulation and site of monoclonal antibody interaction. J Biol Chem 266:11270–11275.

    PubMed  CAS  Google Scholar 

  45. Toyofuku T, Kurzydlowski K, Lytton J, MacLennan DH. 1994. Amino acids Glu2 to lie18 in the cytoplasmic domain of phospholamban are essential for functional association with the Ca2+-ATPase of sarcoplasmic reticulum. J Biol Chem 269:3088–3094.

    PubMed  CAS  Google Scholar 

  46. Lytton J, Westlin M, Burk SE, Shull GE, MacLennan DH. 1992. Functional comparisons between isoforms of the sarcoplasmic or endoplasmic reticulum family of calcium pumps. J Biol Chem 267:14483–14489.

    PubMed  CAS  Google Scholar 

  47. Nakamura Y, Schwartz A. 1970. Possible role of intracellular calcium metabolism by [H+] in sarcoplasmic reticulum of skeletal and cardiac muscle. Biochem Biophys Res Commun 41:830–836.

    Article  Google Scholar 

  48. Mandel F, Kranias EG, DeGende AG, Sumida M, Schwartz A. 1982. The effect of pH on the transient state kinetics of Ca2+-Mg2+-ATPase of cardiac sarcoplasmic reticulum: a comparison with skeletal muscle sarcoplasmic reticulum. Circ Res 50:310–317.

    PubMed  CAS  Google Scholar 

  49. Fabiato A. 1985. Use of aequorin for the appraisal of the hypothesis of the release of calcium from the sarcoplasmic reticulum induced by a change of pH in skinned cardiac cells. Cell Calcium 6:95–108.

    Article  PubMed  CAS  Google Scholar 

  50. Orchrad CH, Kentish JC. 1990. Effects of changes of pH on the contractile function of cardiac muscle. Am J Physiol 258:C967–C981.

    Google Scholar 

  51. Tada M, Inui M, Yamada M, Kadoma M, Kuzuya T, Abe H, Kakiuchi S. 1983. Effects of phospholamban phosphorylation catalyzed by adenosine 3′: 5′-monophosphate- and calmodulin-dependent protein kinases and calcium transport ATPase of cardiac sarcoplasmic reticulum. J Mol Cell Cardiol 15:335–346.

    Article  PubMed  CAS  Google Scholar 

  52. Wegener AD, Jones LR. 1984. Phosphorylation-induced mobility shift in phospholamban in sodium dodecyl sulfate-polyacrylamide gels. J Biol Chem 259:1834–1841.

    PubMed  CAS  Google Scholar 

  53. Fujii J, Kadoma M, Tada M, Toda H, Sakiyama F. 1986. Characterization of structural unit of phospholamban by amino acid sequencing and electrophoretic analysis. Biochem Biophys Res Commun 138:1044–1050.

    Article  PubMed  CAS  Google Scholar 

  54. Xu A, Narayanan N. 1994. Differential effects of fluoride on Ca2+/calmodulin-dependent phosphorylation in cardiac sarcoplasmic reticulum. FASEB J 8:A162 (abstract).

    Google Scholar 

  55. Murphy AJ, Coll RJ 1992. Fluoride is a slow, tight-binding inhibitor of the Ca2+-ATPase of sarcoplasmic reticulum. J Biol Chem 267:5229–5235.

    PubMed  CAS  Google Scholar 

  56. Troullier A, Girardet JL, Dupont Y. 1992. Fluoraluminate complexes are bifunctional analogues of phosphate in sarcoplasmic reticulum Ca2+-ATPase. J Biol Chem 267: 22821–22829.

    PubMed  CAS  Google Scholar 

  57. Witcher DR, Strifler BA, Jones LR. 1992. Cardiac-specific phosphorylation site for multifunctional Ca2+/calmodulin-dependent protein kinase is conserved in the brain ryanodine receptor. J Biol Chem 267:4963–4967.

    PubMed  CAS  Google Scholar 

  58. MacDougall LK, Jones LR, Cohen P. 1991. Identification of the major protein phosphatases in mammalian cardiac muscle which dephosphorylate phospholamban. Eur J Biochem 196:725–734.

    Article  PubMed  CAS  Google Scholar 

  59. Tokumitsu H, Chijiwar T, Hagiwara M, Mizutani A, Terasawa M, Hidaka H. 1990. KN-62, l-[N,O-bis(l,5-isoquinolinesulfonyl)-N-methyl-L-tyrosyl]-4-phenylpiperazine, a specific inhibitor of Ca2+/calmodulin-dependent protein kinase II. J Biol Chem 265: 4315–4320.

    PubMed  CAS  Google Scholar 

  60. Hawkins CE, Xu A, Narayanan N. 1994. Evidence that the Ca2+/calmodulin-dependent protein kinase intrinsic to cardiac sarcoplasmic reticulum is not CaM kinase II. Mol Cell Cardiol 26:189 (abstract).

    Google Scholar 

  61. Edman CF, Schulman H. 1994. Identification and characterization of -B-CaM kinase and C-CaM kinase from rat heart, two new multifuncional Ca2+/calmodulin-dependent protein kinase isoforms. Biochem Biophys Acta 1221:89–101.

    Article  PubMed  CAS  Google Scholar 

  62. Schworer CM, Rothblum LI, Thekkumkara TJ, Singer HA. 1993. Identification of novel isoforms of ô subunit of Ca2+/calmodulin-dependent protein kinase II. Differential expression in rat brain and aorta. J Biol Chem 268:14443–14449.

    PubMed  CAS  Google Scholar 

  63. Kranias EG. 1985. Regulation of calcium transport by protein phosphatase activity associated with cardiac sarcoplasmic reticulum. J Biol Chem 260:11006–11010.

    PubMed  CAS  Google Scholar 

  64. Steenaart NAE, Ganin JR, DiSalvo J, Kranias EG. 1992. The phospholamban phosphatase associated with cardiac sarcoplasmic reticulum is a type 1 enzyme. Arch Biochem Biophys 293:17–24.

    Article  PubMed  CAS  Google Scholar 

  65. Meissner G, Henderson JS. 1987. Rapid calcium release from cardiac sarcoplasmic reticulum is dependent on Ca2+ and is modulated by Mg2+, adenine nucleotide, and calmodulin. J Biol Chem 262:3065–3073.

    PubMed  CAS  Google Scholar 

  66. Smith JS, Rousseau E, Meissner G. 1989. Calmodulin modulation of single sarcoplasmic reticulum Ca2+-release channels from cardiac and skeletal muscle. Circ Res 64:352–359.

    PubMed  CAS  Google Scholar 

  67. Xiao RP, Cheng H, Lederer WJ, Suzuki T, Lakatta EG. 1994. Dual regulation of Ca2+/ calmodulin-dependent protein kinase II activity by membrane voltage and by calcium influx. Proc Natl Acad Sei USA 91:9659–9663.

    Article  CAS  Google Scholar 

  68. Netticadan TJ, Xu A, Narayanan N. 1994. Ruthenium red inhibits Ca2+/calmodulin-dependent phosphorylation of Ca2+-release channel in cardiac sarcoplasmic reticulum. Can J Cardiol 10:93A (abstract).

    Google Scholar 

  69. Hawkins C, Xu A, Narayanan N. 1993. Divergent effects of a cytosolic protein on Ca2+/ calmodulin-dependent protein kinase (CaM kinase) mediated phosphorylation of calcium pump and calcium channel in cardiac sarcoplasmic reticulum (SR). Proc Can Fed Biol Soc 36:81 (abstract).

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Kluwer Academic Publishers

About this chapter

Cite this chapter

Narayanan, N. (1996). Multiple Roles for the Membrane-Associated Ca2+/Calmodulin-Dependent Protein Kinase in the Regulation of Sarcoplasmic Reticulum Function in Heart Muscle. In: Dhalla, N.S., Singal, P.K., Takeda, N., Beamish, R.E. (eds) Pathophysiology of Heart Failure. Developments in Cardiovascular Medicine, vol 168. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1235-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1235-2_14

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8525-0

  • Online ISBN: 978-1-4613-1235-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics