Skip to main content

Antioxidants and the Heart

  • Chapter
  • 163 Accesses

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 168))

Abstract

Free radicals are unstable and highly reactive chemical species that differ from other ions, molecules, and molecular complexes by having an unpaired electron in their outermost orbital. This unpaired electron usually gives a considerable degree of chemical reactivity to the free radical. The latter can be produced in biological systems by various redox reactions occurring during normal metabolism. Molecular oxygen is a life-supporting agent that exists as a diradical wherein the two electrons in its outer orbital have parallel spins and are unpaired. Although a strong oxidant, this unique electronic configuration of oxygen also limits its reactivity to some extent, since inversion of electron spin is required for the oxidation of a two-electron donor. At the same time, this unusual configuration renders oxygen potentially toxic to all biological materials. Univalent reduction of oxygen in vivo gives rise to highly reactive intermediates that have an important role in both health and disease. Thus, oxygen radical reactions in biology are of particular interest.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Freeman BA, Crapo JD. 1982. Biology of disease. Free radicals and tissue injury. Lab Invest 47:412–425.

    PubMed  CAS  Google Scholar 

  2. Thompson JA, Hess ML. 1986. The oxygen free radical system: a fundamental mechanism in the production of myocardial necrosis. Prog Cardiovasc Res 28:449–462.

    CAS  Google Scholar 

  3. Singal PK, Deally CMR, Weinberg LE. 1987. Subcellular effects of adriamycin in the heart: a concise review. J Mol Cell Cardiol 19:817–828.

    PubMed  CAS  Google Scholar 

  4. Singal PK, Dhalla AK, Hill M, Thomas TP. 1993. Endogenous antioxidant changes in the myocardium in response to acute and chronic stress conditions. Mol Cell Biochem 129: 179–186.

    PubMed  Google Scholar 

  5. Kaul N, Siveski-Iliskovic N, Hill M, Slezak J, Singal PK. 1993. Free radicals and the heart. J Pharmacol Toxicol Meth 30:55–67.

    CAS  Google Scholar 

  6. Weiss JJ. 1986. Oxygen ischemia and inflammation. Acta Physiol Scand 548 (Suppl): 9–37.

    CAS  Google Scholar 

  7. Cross CE. 1987. Oxygen radicals and human disease. Davis Conference. Ann Intern Med 107:545–562.

    Google Scholar 

  8. Ferrari R, Ceconi C, Curello S, Cargnoni A, Alfieri O, Pardini A, Marzollo P, Visioli O. 1991. Oxygen free radicals and myocardial damage: protective role of thiol containing agents. Am J Med 91:3C-955–1055.

    Google Scholar 

  9. Gupta M, Singal PK. 1989. Higher antioxidative capacity during a chronic stable heart hypertrophy. Circ Res 64:398–406.

    PubMed  CAS  Google Scholar 

  10. Siveski-Iliskovic N, Kaul N, Singal PK. 1994. Probucol promotes endogenous antioxidants and provides protection against adriamcyin-induced cardiomyopathy in rats. Circulation 89:2829–2835.

    PubMed  CAS  Google Scholar 

  11. Singal PK, Kirshenbaum LA. 1990. A relative deficit in antioxidant reserve may contribute in cardiac failure. Can J Cardiol 6:47–49.

    PubMed  CAS  Google Scholar 

  12. Fridovich I. 1975. Superoxide dismutases. Annu Rev Biochem 44:147–159.

    PubMed  CAS  Google Scholar 

  13. Cotgreave IA, Moldéus P, Orrenius S. 1988. Host biochemical defense mechanisms against prooxidants. Annu Rev Pharmacol Toxicol 28:189–212.

    PubMed  Google Scholar 

  14. Marklund SL. 1984. Extracellular superoxide dismutase in human tissue and human cell lines. J Clin Invest 74:1398–1403.

    PubMed  CAS  Google Scholar 

  15. Chance B, Sies H, Boveris A. 1979. Hydroperoxide metabolism in mammalian organs. Physiol Rev 59:527–605.

    PubMed  CAS  Google Scholar 

  16. Wendel A. 1980. Glutathione peroxidase. In Jakoby WB, Bend JR, Caldwell J, (eds.), Enzymatic Basis of Detoxication. Academic Press: New York pp. 333–348.

    Google Scholar 

  17. Lawrence RA, Burk RE. 1978. Species tissue and subcellular distribution of non selenium dependant glutathione peroxidase activity. J Nutr 108:211–215.

    PubMed  CAS  Google Scholar 

  18. McCay PB, Lai EK, Gibson DD, Poyer JL, Powell SR, Brueggemann G. 1988. Biological systems which suppress lipid peroxidation. In Singal PK (ed.), Oxygen Radicals in the Pathophysiology of Heart Disease. Kluwer Academic Publishers: Boston, pp. 13–24.

    Google Scholar 

  19. Doroshow JH, Locker GY, Myers CE. 1980. Enzymatic defenses of the mouse heart against reactive oxygen metabolites. Alterations produced by doxorubicin. J Clin Invest 65:128–135.

    PubMed  Google Scholar 

  20. van Acker SABE, Koymans LMH, Bast A. 1993. Molecular pharmacology of vitamin E: structural aspects of antioxidant activity. Free Rad Biol Med 15:311–328.

    PubMed  Google Scholar 

  21. Traber MG. 1994. Determinants of plasma vitamin E concentrations. Free Rad Biol Med 16:229–239.

    PubMed  CAS  Google Scholar 

  22. Packer L. 1994. Vitamin E is nature’s master antioxidant. Sci Am Sci Med 1:54–63.

    CAS  Google Scholar 

  23. Lucy JA. 1972. Functional and structural aspects of biological membranes: a suggested structural role of vitamin E in the control of membrane permeability and stability. Ann NY Acad Sci 203:4–11.

    PubMed  CAS  Google Scholar 

  24. McCay PB. 1985. Vitamin E: interactions with free radicals and ascorbate. Annu Rev Nutr 5:323–340.

    PubMed  CAS  Google Scholar 

  25. Sies H, Murphy ME. 1991. Role of tocopherols in the protection of biological systems against oxidative damage. J Photochem Photobiol B Biol 8:211–224.

    CAS  Google Scholar 

  26. Gallo-Torres HE. 1980. Transport and metabolism. In Machlin LJ (ed.), Vitamin E. A Comprehensive Treatise. Marcel Dekker: New York, 169–267.

    Google Scholar 

  27. Behrens WA, Madere R. 1987. Mechanisms of absorption, transport and tissue uptake of RRR-α-tocopherol and d-γ-tocopherol in the white rat. J Nutr 117:1562–1569.

    PubMed  CAS  Google Scholar 

  28. Niki E, Kawakami A, Saito M, Yamamoto Y, Tsuchiya J, Kamiya Y. 1985. Effect of phytyl side chain of vitamin E on its antioxidant activity. J Biol Chem 260(4):2191–2196.

    PubMed  CAS  Google Scholar 

  29. Perly B, Smith ICP, Hughes L, Burton GW, Ingold KU. 1985. Estimation of the location of natural alpha-tocopherol in lipid bilayers by 13C-NMR spectroscopy. Biochim Biophys Acta 819:131–135.

    PubMed  CAS  Google Scholar 

  30. Buttriss JL, Diplock AT. 1988. The relationship between α-tocopherol and phospholipid fatty acids in rat liver subcellular membrane fractions. Biochim Biophys Acta 962:81–90.

    PubMed  CAS  Google Scholar 

  31. Niki E. 1987. Lipid antioxidants: how they may act in biological systems. Br J Cancer (Suppl) 8:153–157.

    CAS  Google Scholar 

  32. Ferrari R, Curello S, Ceconi C, Cargnoni A, Condorelli E, Albertini A. 1988. Alterations of glutathione status during myocardial ischaemia and reperfusion. In Singal PK (ed.), Oxygen Radicals in the Pathophysiology of Heart Disease. Kluwer Academic Publishers: Norwell MA, pp. 145–160.

    Google Scholar 

  33. Dhalla AK, Singal PK. 1994. Antioxidant changes in hypertrophied and failling guinea pig hearts. Am J Physiol 266 (Heart Circ Physiol): H1280–H1285.

    PubMed  CAS  Google Scholar 

  34. Ross D, Norbeck K, Moldeus P. 1985. The generation and subsequent fate of glutathionyl radicals in biological systems. J Biol Chem 260:15028–15032.

    PubMed  CAS  Google Scholar 

  35. Ketterer B. 1986. Detoxification reactions of glutathione and glutathione transferases. Xenobiotica 16:957–973.

    PubMed  CAS  Google Scholar 

  36. Orrenius S, Moldeus P. 1984. The multiple roles of glutathione in drug metabolism. Trends Pharm Sci 5:432– 435.

    CAS  Google Scholar 

  37. Reed DJ, Fariss MW. 1984. Glutathione depletion and susceptibility. Pharmacol Rev 36:25S–33S.

    PubMed  Google Scholar 

  38. Moldeus P, Quanguan J. 1987. Importance of the glutathione cycle in drug metabolism. Pharmacol Ther 333:37–40.

    Google Scholar 

  39. Rose RC, Choi J-L. 1990. Intestinal absorption and metabolism of ascorbic acid in rainbow trout. Am J Physiol 258:R1238–R1241.

    PubMed  CAS  Google Scholar 

  40. Choi J-L, Rose RC, 1989. Regeneration of ascorbic acid by rat colon. Proc Soc Exp Biol Med 190:369–378.

    PubMed  CAS  Google Scholar 

  41. Bianchi J, Rose RC. 1986. Glucose-independent transport of dehydro-ascorbic acid in human erythrocytes. Proc Soc Exp Biol Med 181:333–337.

    PubMed  CAS  Google Scholar 

  42. Pethig R, Gascoyne PRC, McLaughlin JA, Szent-Gyorgyi A. 1985. Enzyme-controlled scavenging of ascorbyl and 2, 6-dimethylsemiquinone free radicals in Ehrlich ascites tumor cells. Proc Natl Acad Sci USA 82:1439–1442.

    PubMed  CAS  Google Scholar 

  43. Dilberto EJ, Dean G, Coster V, Allen PL. 1982. Tissue, subcellular and submitochondrial distributions of semidehydroascorbate reductase: possible role of semidehydroascobate reductase in cofactor regeneration. J Neurochem 39:563–568.

    Google Scholar 

  44. Frei B, Stocker R, England L, Ames BN. 1990. Ascorbate: the most effective antioxidant in human blood plasma. In Emerit I et al. (eds.), Antioxidants in Therapy and Preventive Medicine. Plenum Press: New York, pp. 55–163.

    Google Scholar 

  45. Foote CS, Denny RW. 1968. Chemistry of singlet oxygen. VII. Quenching by βcarotine. J Am Chem Soc 90:6233–6235.

    CAS  Google Scholar 

  46. Ames BN, Cathcart R, Schivears R, Hochstein P. 1981. Uric acid provides an antioxidant defense in humans against oxidant and radical caused aging and cancer. Proc Natl Acad Sci USA 78:6858–6862.

    PubMed  CAS  Google Scholar 

  47. Davies JMS, Horwitz DA, Davies KJA. 1993. Potential roles of hypochlorous acid and N-chloroamines in collagen breakdown by phagocytic cells in synovitis. Free Rad Biol Med 15:637–643.

    PubMed  CAS  Google Scholar 

  48. Davies JM, Horwitz DA, Davies KJ. 1994. Inhibition of collagenase activity by N-chlorotaurine, a product of activated neutrophils. Arthritis Rheum 37(3):424–427.

    PubMed  CAS  Google Scholar 

  49. Singal PK, Petkau A, Gerrard JM, Hrushovotz S, Foerster J. 1988. Free radicals in health and disease. Mol Cell Biochem 84:121–122.

    PubMed  CAS  Google Scholar 

  50. Ferrari R, Ceconi C, Curello S, Guarnieri C, Caldarera CM, Albertini A, Visioli O. 1985. Oxygen-mediated myocardial damage during ischemia and reperfusion: role of the cellular defenses against oxygen toxicity. J Mol Cell Cardiol 17:937–945.

    PubMed  CAS  Google Scholar 

  51. Guarnieri C, Flamigni F, Caldarera CM. 1980. Role of oxygen in cellular damage induced by reoxygenation of hypoxic heart. J Mol Cell Cardiol 12:797–808.

    PubMed  CAS  Google Scholar 

  52. Fox RB, Harada RN, Tate RM, Repine JE, 1983. Prevention of thiouria-induced pulmonary edema by hydroxyl-radical scavengers. J Appl Physiol 55:1456–1459.

    PubMed  CAS  Google Scholar 

  53. Dhaliwal H, Kirshenbaum LA, Randhawa AK, Singal PK. 1991. Correlation between antioxidant changes during hypoxia and recovery upon reoxygenation. Am J Physiol 261:H632–H638.

    PubMed  CAS  Google Scholar 

  54. Fuji H, Kuzuya T, Hoshida S, Yamashita N, Oe H, Taniguchi N, Tada M. 1992. Reoxygenation-induced synthesis of mitochondrial manganese-superoxide dismutase in rat neonatal myocardial cells. J Mol Cell Cardiol 24:S-168.

    Google Scholar 

  55. Brown JM, Grosso MA, Terada LS, Whitman GJR, Banerjee A, White CW, Harken AH, Repine JE. 1989. Endotoxin pretreatment increases endogenous myocardial catalase activity and decreases ischemia-reperfusion injury of isolated rat hearts. Proc Natl Acad Sci USA 86:2516–2520.

    PubMed  CAS  Google Scholar 

  56. Ames B. 1983. Dietary carcinogens and anticarcinogens. Oxygen radicals and degenerative diseases. Science 221:1256–1263.

    PubMed  CAS  Google Scholar 

  57. Farr SB, D’Ari R, Touati D. 1986. Oxygen-dependent muta-genesis in Escherichia coli lacking superoxide dismutase is hypersensitive to oxygen. Proc Natl Acad Sci USA 83:8268–8272.

    PubMed  CAS  Google Scholar 

  58. Carlioz A, Touati D. 1986. Isolation of superoxide dismutase mutants in E. coli: is superoxide dismutase necessary for aerobic life? EMBO J 5:623–630.

    PubMed  CAS  Google Scholar 

  59. Jannison CS, Adler HI. 1987. Mutations in Escherichia coli that effect sensitivity to oxygen. J. Bacteriol 169:5087–5094.

    Google Scholar 

  60. Cand F, Verdetti J. 1989. Superoxide dismutase, glutathione peroxidase, catalase and lipid peroxidation in the major organs of the aging rats. Free Rad Biol Med 7:59–63.

    PubMed  CAS  Google Scholar 

  61. Gupta M, Singal PK. 1989. Time course of structure, function, and metabolic changes due to an exogenous source of oxygen metabolites in rat heart. Can J Physiol Pharmacol 67:1549–1559.

    PubMed  CAS  Google Scholar 

  62. Sohal RS, Arnold LA, Sohal BH. 1990. Age-related changes in antioxidant enzymes and prooxidant generation in tissues of the rat with special reference to parameters in two insect species. Free Rad Biol Med 10:495–500.

    Google Scholar 

  63. Glass GA, Gershon D. 1981. Enzymatic changes in rat erythrocytes with increasing cell and donor age: loss of superoxide dismutase activity associated with increases in catalytically defective forms. Biochem Biophys Res Commun 103:1245–1253.

    PubMed  CAS  Google Scholar 

  64. Reiss U, Gershon D. 1976. Comparison of cytoplasmic superoxide dismutase in liver, heart and brain of aging rats and mice. Biochem Biophys Res Commun 73:255–262.

    PubMed  CAS  Google Scholar 

  65. Im MJ, Hoopes JE. 1984. Age-dependent decreases in superoxide dismutase activity in rat skin. J Invest Dermatol 82:437 (A).

    Google Scholar 

  66. Niwa Y, Iizawa O, Ishimoto K, Akamatsu H, Kauoh T. 1993. Age dependent basal level and induction capacity of copper zinc and manganese superoxide dismutase and other scavenging enzyme activities in leokocytes from young and elderly adults. Am J Pathol 143:312–320.

    PubMed  CAS  Google Scholar 

  67. Davies KJA, Quintanilha T, Brooks GA, Packer L. 1982. Free radicals and tissue damage produced by exercise. Biochem Biophys Res Commun 107:1178–1205.

    Google Scholar 

  68. Kanter MM, Hamlin RL, Unverferth DV, Davis HW, Merola AJ. 1985. Effect of exercise training on antioxidant enzymes and cardiotoxicity of doxorubicin. J Appl Physiol 59: 1298–1303.

    PubMed  CAS  Google Scholar 

  69. Higuchi M, Cartier LJ, Chen M, Holloszy JO. 1985. Superoxide dismutase and catalase in skeletal muscle: adaptive response to exercise. Gerontology 40:281–286.

    CAS  Google Scholar 

  70. Kumar CT, Reddy VK, Prasad M, Thyagaraju K, Reddanna P. 1992. Dietary supplementation of Vitamin E protects heart tissue from exercise induced oxidant stress. Mol Cell Biochem 111:109–115.

    PubMed  CAS  Google Scholar 

  71. Guarnieri C, Muscari C, Caldarera CM. 1985. Oxygen radicals and tissue damage in heart hypertrophy. In Harris P, Poole-Wilson PA (eds.), Advances in Myocardiology, vol. 5. Plenum: New York pp. 191–199.

    Google Scholar 

  72. Kirshenbaum LA, Singal PK, 1992. Antioxidant changes in heart hypertrophy: significance during hypoxia-reoxygenation injury. Can J Physiol Pharmacol 70:1330–1335.

    PubMed  CAS  Google Scholar 

  73. Kirshenbaum LA, Singal PK. 1993. Increase in endogenous antioxidant enzymes protects the heart against reperfusion injury. Am J Physiol 265:H484–H493.

    PubMed  CAS  Google Scholar 

  74. Singal PK, Gupta M, Randhawa AK. 1991. Reduced myocardial injury due to exogenous oxidants in pressure induced heart hypertrophy. Basic Res Cardiol 86:273–282.

    PubMed  CAS  Google Scholar 

  75. Dormandy TL. 1983. An approach to free radicals. Lancet 2:1010–1014.

    PubMed  CAS  Google Scholar 

  76. Gerli GC, Beretta L, Bianchi M, Pellegatta A, Agostini S. 1980. Erythrocyte superoxide dismutase, catalase and glutathione peroxidase activities in Beta-thalassaemia (major and minor). ScandJ Haematol 25:87–92.

    CAS  Google Scholar 

  77. Edes I, Piros G, Forster T, Csanady M. 1987. Alcohol-induced congestive cardiomyopathy in adult turkeys: effects on myocardial antioxidant defense systems. Basic Res Cardiol 82:551–556.

    PubMed  CAS  Google Scholar 

  78. Reddy K, Tappel AL. 1974. Effect of dietary selenium and auto-oxidized lipids on the glutathione peroxidase system of gastro-intestinal tract and other tissues in the rat. J Nutr 104:1069–1078.

    PubMed  CAS  Google Scholar 

  79. Pacht ER, Kaseki H, Mohammed JR, Cornwell DG, Davis WB. 1986. Deficiency of Vitamin E in the alveolar fluid of cigarette smokers, influence on alveolar macrophage cytotoxicity. J Clin Invest 77:789–796.

    PubMed  CAS  Google Scholar 

  80. Michelson AM, Puget K, Durosay P, BonneauJC. 1977. Clinical aspects of the dosage of erythocuprein, superoxide and superoxide dismutases. In Michelson AM, McCord JM, Fridovich I (eds.), Superoxide and Superoxide Dismutases. Academic Press: London, pp. 467–499.

    Google Scholar 

  81. Crapo JD, Tierney DF. 1974. Superoxide dismutase and pulmonary oxygen toxicity. Am J Physiol 226:1401–1407.

    PubMed  CAS  Google Scholar 

  82. Crapo JD, McCord JM. 1976. Oxygen-induced changes in pulmonary superoxide dismutase assayed by antiobody titrations. Am J Physiol 231:1196–1203.

    PubMed  CAS  Google Scholar 

  83. Liu J, Simon LM, Philips JR, Robin ED. 1977. Superoxide dismutase (SOD) activity in hypoxic mammaliam systems. J Appl Physiol Respir Environ Exercise Physiol 42:107–110.

    CAS  Google Scholar 

  84. David M, Daveran M-L, Batut J, Dedieu A, Domergue O, Ghai J, Hertig C, Boistard P, Kahn D. 1988. Cascade regulation of nif gene expression in Rhizobium meliloti. Cell 54:671–683.

    PubMed  CAS  Google Scholar 

  85. Gilles-Gonzalez MA, Ditta GS, Helinski DR. 1991. A hemeprotein with kinase activity encoded by the oxygen sensor of Rhizobium melioti. Nature 350:170–172.

    PubMed  CAS  Google Scholar 

  86. Monson EK, Weinstein M, Ditta GS, Helinski DR. 1992. The FixL protein of Rhizobium melioti can be seperated into a heme-binding oxygen sensing domain and a functional c-terminal kinase domain. Proc Natl Acad Sci USA 89:4280–4284.

    PubMed  CAS  Google Scholar 

  87. Semenza GL, Nejfelt MK, Chi SM, Antonarakis SE. 1991. Hypoxia inducible nuclear factors bind to an enhancer located 3′ to the human erythropoietin gene. Proc Natl Acad Sci USA 88:5680–5684.

    PubMed  CAS  Google Scholar 

  88. Beck I, Ramiez S, Weinmann R, Caro J. 1991. Enhancer element at the 3–flanking region controls transcriptional response to hypoxia in the human erythropoietin gene. J Biol Chem 266:15563–15566.

    PubMed  CAS  Google Scholar 

  89. Blanchard KL, Acquaviva AM, Galson DL, Bunn HF. 1992. Hypoxic induction of the human erythropoietin gene: cooperation between the promoter and enhancer, each of which contains steroid receptor response elements. Mol Cell Biol 12:5373–5385.

    PubMed  CAS  Google Scholar 

  90. Gregory EM, Fridovich I. 1973. Induction of superoxide dismutase by molecular oxygen. J Bacteriol 114:543–548.

    PubMed  CAS  Google Scholar 

  91. Tanaka K, Sugahara K. 1980. Role of superoxide dismutase in defense against SO2 fumigation. Plant Cell Physiol 21:601–611.

    CAS  Google Scholar 

  92. Rabinowitch HD, Clare DA, Crapo JD, Fridovich I. 1983. Positive correlation between superoxide dismutase and resistance to paraquat toxicity in the green alga chlorella sorokiniana. Arch Biochem Biophys 225:640–648.

    PubMed  CAS  Google Scholar 

  93. Niwa Y, Kanoh T, Sakane T, Soh H, Kawai S, Miyachi Y. 1987. The ratio of lipid peroxides to superoxide dismutase activity in the skin lesions of patients with severe skin diseases: an accurate prognostic indicator. Life Sci 40:921–927.

    PubMed  CAS  Google Scholar 

  94. Niwa Y, Kasama T, Kawai S, Komura J, Sakane T, Kanoh T, Miyachi Y. 1988. The effect of aging on cutaneous lipid peroxide levels and superoxide dismutase activitity in guinea pigs and patients with burns. Life Sci 42:351–356.

    PubMed  CAS  Google Scholar 

  95. Fisher HK, Humphries M, Bails R. 1971. Recovery from renal and pulmonary damage. Ann Intern Med 75:731–736.

    PubMed  CAS  Google Scholar 

  96. Grabensee B, Veitmann G, Mürtz R, Borchard F. 1971. Vergiftung durch paraquat. Dtsch Med Wschr 96:498–506.

    PubMed  CAS  Google Scholar 

  97. Niwa Y, Ishimoto K, Kanoh T. 1990. Induction of superoxide dismutase in leukocytes by paraquat: corrrelation with age and possible predictor of longevity. Blood 76:835–841.

    PubMed  CAS  Google Scholar 

  98. Klempner MS, Dinarello CA, Gallin JI. 1978. Human leukocytic pyrogen induces release of specific granule contents from human neutrophils. J Clin Invest 61:1330–1336.

    PubMed  CAS  Google Scholar 

  99. Klempner MS, Dinarello CA. 1979. Stimulation of neutrophil oxygen-dependent metabolism by human leukocytic pyrogen. J Clin Invest 64:996–1002.

    PubMed  CAS  Google Scholar 

  100. Sugiura Y, Suzuki T. 1982. Nucleotide sequence specificity of DNA cleavage by iron-bleomycin: alteration on ethidium bromide-, actinomycin-, and distamycin-intercalated. J Biol Chem 257:10544–10546.

    PubMed  CAS  Google Scholar 

  101. Lefrak EA, Piyha J, Rosenheim S, Gottlieb JA. 1973. A clinicopathologic analysis of adriamycin cardiotoxicity. Cancer 32:302–314.

    PubMed  CAS  Google Scholar 

  102. Goto F, Nakamura S, Goto K, Yoshinaga M. 1984. Production of a lymphocyte proliferation potentiating factor by purified polymorphonuclear leukocytes from mice and rabbits. Immunology 53:683–692.

    PubMed  CAS  Google Scholar 

  103. Visner GA, Dougall WC, Wilson JM, Burr IA, Nick HS. 1990. Regulation of manganese superoxide dismutase by lipopolysaccharide, interukin-1 and tumor necrosis factor. Role in the acute inflammatory response. J Biol Chem 265:2856–2864.

    PubMed  CAS  Google Scholar 

  104. Visner GA, Block ER, Bur IM, Nick HS. 1991. Regulation of manganese superoxide dismutase in porcine pulmonary artery endothelial cells. Am J Physiol 260:L444–L449.

    PubMed  CAS  Google Scholar 

  105. Frank L, Summerville J, Massaro D. 1980. Protection from oxygen toxicity with endotoxin. Role of the endogenous antioxidant enzymes of the lung. J Clin Invest 65:1104–1110.

    PubMed  CAS  Google Scholar 

  106. Shiki Y, Meyrizk BO, Brigham KL, Burr IM. 1987. Endotoxin increases superoxide dismutase in cultured bovine pulmonary endothelial cells. Am J Physiol 252.C436–C440.

    Google Scholar 

  107. Schreck R, Rieber P, Baeuerle PA. 1991. Reactive oxygen intermediates as apparently widely used messengers in the activation of the NF-χB transcription factor and HIV-1. EMBO J 10:2247–2258.

    PubMed  CAS  Google Scholar 

  108. Shull S, Heintz NH, Periasamy M, Manohar M, Janssen YMW, Marsh JP, Mossman BT. 1991. Differential regulation of antioxidant enzymes is response to oxidants. J Bio Chem 266:24398–24403.

    CAS  Google Scholar 

  109. White CW, Nguyen D-DH, Suzuki K, Taniguchi N, Rusakow LS, Avraham KB, Groner Y. 1993. Expression of manganese superoxide dismutase is not altered in transgenic mice with elevated level of copper-zinc superoxide dismutase. Free Rad Biol Med 15:629–636.

    PubMed  CAS  Google Scholar 

  110. Storz G, Tartaglia LA, Farr SB, Ames BN. 1990. Bacterial defenses against oxidative stress. Trends Genet 6:363–368.

    PubMed  CAS  Google Scholar 

  111. Maral J, Puget K, Michelson AM. 1977. Comparative study of superoxide dismutase activity, catalase and glutathione peroxidase levels in erythrocytes of different animals. Biochem Biophys Res Commun 77:1525–1535.

    PubMed  CAS  Google Scholar 

  112. Storz G, Tartaglia LA, Ames BN. 1990. Transcriptional regulator of oxidative stress-inducible genes: direct activation by oxidation. Science 248:189–194.

    PubMed  CAS  Google Scholar 

  113. Sinha BK, Katki AG, Batist G, Cowan KH, Myers CE. 1987. Differential formation of hydroxyl radicals by Adriamycin in sensitive and resistant MCF-7 human breast tumor cells: implications for the mechanism of action. Biochemistry 26:3776–3781.

    PubMed  CAS  Google Scholar 

  114. Mimnaugh EG, Dusne L, Atwell J, Myers CE. 1989. Differential oxygen radical susceptibility of Adriamycin-sensitive and -resistant MCF-7 human breast tumor cells. Cancer Res 49:8–15.

    Google Scholar 

  115. Akman SA, Forrect G, Chu F-F, Esworthy RS, Doroshow JH. 1990. Antioxidant and xenobiotic-metabolizing enzyme gene expression in doxorubicin-resistant MCF-7 breast cancer cells. Cancer Res 50:1397–1402.

    Google Scholar 

  116. Muindi JRF, Sinha BK, Gianni Z, Myers CT. 1984. Hydroxyl radical production and DNA damage induced by anthracycline-iron complex. FEBS Lett 172:226–230.

    PubMed  CAS  Google Scholar 

  117. Kramer RA, Zakher J, Dim G. 1988. Role of the glutathione redox cycle in acquired and de novo multidrug resistance. Science 241:694–697.

    PubMed  CAS  Google Scholar 

  118. Affara N, Fleming J, Goldfarb PS, Black E, Thiele B, Harrison PR. 1985. Analysis of chromatin changes associated with the expression of globin and non-globin genes in cell hybrids between erythroid and other cells. Nucleic Acids Res 13:5629–5644.

    PubMed  CAS  Google Scholar 

  119. Epstein CJ, Avraham KB, Louett M, Smith S, Elroy-Stein O, Rutman G, Bry C, Groner Y. 1987. Transgenic mice with increased Cu/Zn superoxide dismutase activity: animal model of dosage effects in Down syndrome. Proc Natl Acad Sci USA 83:8044–8048.

    Google Scholar 

  120. Rosenfeld W, Evans H, Jhaveri R, Moainie H, Vohra K, Georgatos E, Salazar JD. 1982. Safety and plasma concentrations of bovine superoxide dismutase administered to human premature infants. Dev Pharmacol Ther 5:151–161.

    PubMed  CAS  Google Scholar 

  121. McIlwain H, Silverfield JC, Cheatum DE, Poiley J, Taborn J, Ignaczak T, Multz C. 1989. Intra-articular orgotein in osteoarthritis of the knee: a placebo-controlled efficacy, safety, and dosage comparison. American J Med 87:295–300.

    CAS  Google Scholar 

  122. Werns SW, Lucchesi BR. 1988. The role of the polymorphonuclear leukocyte in mediating myocardial reperfsuion injury. In singal PK (ed.), Oxygen Radicals in the Pathophysiology of Heart Disease. Kluwer Academic Publishers: Boston, pp. 123–144.

    Google Scholar 

  123. Janero DR. 1991 Therapeutic potential of vitamin E against myocardial ischemia-reperfusion injury. Free Rad Biol Med 10:315–324.

    PubMed  CAS  Google Scholar 

  124. Janero DR, Burghardt B. 1989. Oxidative injury to myocardial membranes: direct modulation by endogenous α-tocopherol. J Mol Cell Cardiol 21:1111–1124.

    PubMed  CAS  Google Scholar 

  125. Janero DR. Burghardt B. 1989. Cardiac membrane vitamin E and malondialdehyde levels in heart muscle of normotensive and spontaneously-hypertensive rats. Lipids 24:33–38.

    PubMed  Google Scholar 

  126. Scott JA, Fischman AJ, Khaw BA, Homey CJ, Rabito CA. 1987. Free radical-mediated membrane depolarization in renal and cardiac cells. Biochim Biophys Acta 899:76–82.

    PubMed  CAS  Google Scholar 

  127. Mickle DAG, Li RK, Weisel RD, Birnbaum PL, Wu TW, Jackawski G, Madonik MM, Burton GW, Ingold KU. 1989. Myocardial salvage with Trolox and ascorbic acid for an acute evolving infarction. Ann Thorac Surg 47:553–557.

    PubMed  CAS  Google Scholar 

  128. Massey KD, Burton KP. 1990. Free radical damage in neonatal rat cardiomyocyte cultures: effects of α-tocopherol, Trolox, and phytol. Free Rad Biol Med 8:449–458.

    PubMed  CAS  Google Scholar 

  129. Sterrenberg L, Julicher RH, Bast A, Noordhoek J. 1985. Effect of vitamin E on the balance between pro- and antixidant activity of ascorbic acid in microsomes from rat heart, kidney and liver. Toxicol Lett 25:153–159.

    PubMed  CAS  Google Scholar 

  130. Guaduel Y, Duvelleroy MA. 1984. Role of oxygen radicals in cardiac injury due to reoxygenation. J Mol Cell Cardiol 16:459–470.

    Google Scholar 

  131. Guarnieri C, Ferrari R, Visioli O, Caldarera CM, Nayler WG. 1978. Effect of α-tocopherol on hypoxic-perfused and reoxygenated rabbit heart muscle. J Mol Cell Cardiol 10:893–906.

    PubMed  CAS  Google Scholar 

  132. Ferrari R, Visiolo O, Guarnieri C, Caldarera M. 1983. Vitamin E and the heart: possible role as antioxidant. Acta Vitaminol Enzymol 5:11–22.

    PubMed  CAS  Google Scholar 

  133. Barsacchi R, Coassin M, Majorino M, Pelosi G, Simonelli C, Ursini F. 1989. Increased ultra weak chemiluminescence from rat heart at postischemic reoxygenation: protective role of vitamin E. Free Rad Biol Med 6:573–579.

    PubMed  CAS  Google Scholar 

  134. Massey KD, Burton KP. 1989. Alpha-tocopherol attenuates myocardial membrane-related alterations resulting from ischemia and reperfusion. Am J Physiol 256:H1192–H1199.

    PubMed  CAS  Google Scholar 

  135. Frolov VA, Kapustin VA. 1983. Effect of vitamins A and E on the contractile function of the heart in experimental myocardial infarction. Kardiologiia 23:93–95.

    PubMed  CAS  Google Scholar 

  136. Klein HH, Pich S, Lindert S, Nebandahl K, Niedmann P, Kreuzer H. 1989. Combined treatment with vitamins E and C in experimental myocardial infarction in pigs. Am Heart J 118:661–673.

    Google Scholar 

  137. Fuenmayor AJ, Fuenmayor AM, Lopez T, Winterdaal DM. 1989. Vitamin E and ventricular fibrillation threshold in myocardial ischemia. Jpn Circ J 53:1229–1232.

    PubMed  CAS  Google Scholar 

  138. Dhalla AK, Singal PK, 1994. Vitamin E delays pathogenesis of heart failure due to chronic pressure overload. Can J Cardiol 10(A):72A.

    Google Scholar 

  139. Singal PK, Kapur N, Dhillon KS, Beamish RE, Dhalla NS. 1982. Role of free radicals in catecholamine-induced cardiomyopathy. Can J Physiol Pharmacol 60:1390–1397.

    PubMed  CAS  Google Scholar 

  140. Singal PK, Tong J. 1988. Vitamin E deficiency accentuates adriamcyin-induced cardiomyopathy and cell surface changes. Mol Cell Biochem 84:163–171.

    PubMed  CAS  Google Scholar 

  141. Edes I, Toszegi A, Csanady M, Bozoky B. 1986. Myocardial lipid peroxidation in rats after chronic alcohol ingestion and the effects of different antioxidants. Cardiovasc Res 20: 542–548.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Kluwer Academic Publishers

About this chapter

Cite this chapter

Singal, P.K., Dhalla, A.K., Khaper, N., Hill, M., Thomas, T.P., Seneviratne, C. (1996). Antioxidants and the Heart. In: Dhalla, N.S., Singal, P.K., Takeda, N., Beamish, R.E. (eds) Pathophysiology of Heart Failure. Developments in Cardiovascular Medicine, vol 168. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1235-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1235-2_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8525-0

  • Online ISBN: 978-1-4613-1235-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics