Skip to main content

Assessment of Myocardial Perfusion with 13N-Ammonia or 82RB

  • Chapter
Cardiac Positron Emission Tomography

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 165))

  • 46 Accesses

Abstract

Coronary artery disease remains one of the most prevalent diseases in modern industrialized societies. Recent developments in interventional cardiology and vascular surgery require accurate characterization of disease severity and extent for selection of therapy and determination of prognosis. Historically, symptoms of patients have been used to assess the appropriate therapy and to monitor the effect of interventions. With the availability of electrocardiographic criteria, diagnosis of myocardial ischemia has become more objective. However, this method is neither sensitive for detecting regional ischemia nor does it provide the specificity for exclusion of significant coronary artery stenoses. The ability to measure regional myocardial perfusion and function with noninvasive techniques has provided new avenues for assessing the effect of regional coronary artery disease on perfusion and function under rest and stress conditions [1,2]. Radionuclide ventriculography, echocardiography, and 201T1 perfusion imaging have been successfully employed in the diagnostic and prognostic workup of patients with coronary artery disease and have to be considered the standard techniques for this patient population.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Zaret B, Wackers F. Medical progress: Nuclear cardiology (second of two parts). N Engl J Med 329:855–863, 1993.

    Article  PubMed  CAS  Google Scholar 

  2. Zaret B, Wackers F. Medical progress: Nuclear cardiology (first of two parts). N Engl J Med 329:775, 1993.

    Article  PubMed  CAS  Google Scholar 

  3. Gould KL. Identifying and measuring severity of coronary artery stenosis: Quantitative coronary arteriography and positron emission tomography. Circulation 78:237–245, 1988.

    Article  PubMed  CAS  Google Scholar 

  4. Gould KL. Quantification of coronary artery stenosis in vivo. Circ Res 57:341–353, 1985.

    PubMed  CAS  Google Scholar 

  5. Marcus ML, Wilson RF, White CW. Methods of measurements of myocardial blood flow in patients: A critical review. Circulation 76:245–253, 1987.

    Article  PubMed  CAS  Google Scholar 

  6. White C, Wrigth C, Doty D, et al. Does visual interpretation of the coronary arteriogram predict the physiologic importance of a coronary stenosis? N Engl J Med 310:819–824, 1984.

    Article  PubMed  CAS  Google Scholar 

  7. Gurley JC, Nissen SE, Booth DC, DeMaria AM. Influence of operator- and patient-dependent variables on the suitability of automated quantative coronary arteriography for routine clinical use. J Am Coll Cardiol 19:1237–1243, 1992.

    Article  PubMed  CAS  Google Scholar 

  8. Mancini JGB, Williamson PR, DeBoe SF. Effect of coronary stenosis severity on variability of quantative arteriography and implications for interventional trials. 69:806–807, 1992.

    CAS  Google Scholar 

  9. Heller L, Tresgallo M, Sciacca R, Blood D, Seldin D, Johnson L. Prognostic significance of silent myocardial ischemia on a thallium stress test. Am J Cardiol 65:718–721, 1990.

    Article  PubMed  CAS  Google Scholar 

  10. Winer DA, Ryan TJ, McCabe CH, et al. Value of exercise tesing in determining the risk classification and the response to coronary artery bypass grafting in three-vessel coronary artery disease: A report from the Coronary Artery Study (CASS) Registry. Am J Cardiol 60:262–266, 1987.

    Article  Google Scholar 

  11. Ornish D, Brown SE, Scherwitz LW, Billings JH, Armstrong WT, Ports TA, McLanahan SM, Kirkeeide RL, Brand RJ, Gould KL. Can lifestyle changes reverse coronary heart disease? Lancet 336:129–133, 1990.

    Article  PubMed  CAS  Google Scholar 

  12. Brown BG, Albers JJ, Fisher LD, Schaefer SM, Lin JT, Kaplan C, Zhao XQ, Bisson BD, Fitzpatrick VF, Dodge HT. Regression of coronary artery disease as a result of intensive lipid-lowering therapy in men with high levels of apolipoprotein B. N Engl J Med 323: 1289–1298, 1990.

    Article  PubMed  CAS  Google Scholar 

  13. Watts GF, Lewis B, Brunt JNH, Lewis ES, Coltart DJ, Smith LDR, Mann JI, Swan AV. Effects on coronary artery disease of lipid-lowering diet, or diet plus cholestyramine, in the St. Thomas Atherosclerosis Regression Study (STARS). Lancet 339:563–569, 1992.

    Article  PubMed  CAS  Google Scholar 

  14. Schwartz R, Jackson W, Celio P, Hickman J. Exercise thallium-201 scintigraphy for detecting coronary artery disease in asymptomatic young men. J Am Coll Cardiol 11:80A, 1988.

    Google Scholar 

  15. Scheiben HR, Phelps ME, Hoffman EJ, Huang SC, Selin CE, Kuhl DE. Regional myocardial perfusion assessed with N-13 labeled ammonia and positron emission computerized axial tomography. Am J Cardiol 43:209–218, 1979.

    Article  Google Scholar 

  16. Schelbert HR, Phelps ME, Huang S-C, MacDonald NS, Hansen H, Selin C, Kuhl DE. N-13 ammonia as an indicator of myocardial blood flow. Circulation 63:1259–1272, 1981.

    Article  PubMed  CAS  Google Scholar 

  17. Krivokapich J, Smith G, Huang S, et al. 13N-ammonia myocardial imaging at rest and with exercise in normal volunteers. Quantification of absolute myocardial perfusion with dynamic positron emission tomography. Circulation 80:1328–1337, 1989.

    Article  PubMed  CAS  Google Scholar 

  18. Bergmann ST, Hack S, Tewson T, Welch MJ, Sobel RE. The dependence of accumulation of 13NH3 by myocardium on metabolic factors and its implications for the quantitative assessment or perfusion. Circulation 61:34, 1980.

    PubMed  CAS  Google Scholar 

  19. Krivokapich J, Huang S, Phelps M, et al. Dependence of 13NH3 myocardial extraction and clearance on flow and metabolism. Am J physiol 242:H536–H542, 1982.

    PubMed  CAS  Google Scholar 

  20. Rosenspire K, Schwaiger M, Mangner T, Hutchins G, Sutorik A, Kuhl D. Metabolic fate of 13N-ammonia in human and canine blood. J Nucl Med 31:163–167, 1990.

    PubMed  CAS  Google Scholar 

  21. Hutchins GD, Schwaiger M, Rosenspire KC, Krivokapich J, Schelbert H, Kuhl DE. Noninvasive quantification of regional myocardial blood flow in the human heart using N-13-ammonia and dynamic positron emission tomography imaging. J Am Coll Cardiol 15:1032–1042, 1990.

    Article  PubMed  CAS  Google Scholar 

  22. Shah A, Schelbert H, Schwaiger M, Henze E, Hansen H, Selin C, Huang S. Measurement of regional myocardial blood flow with N-13 ammonia and positron emission tomography in intact dogs. J Am Cardiol 5:92–100, 1985.

    Article  CAS  Google Scholar 

  23. Nienaber C, Ratib O, Gambhir S, Krivokapich J, Huang S, Phelps M, Schelbert H. A quantitative index of regional blood flow in canine myocardium derived noninvasively with N-13 ammonia and dynamic positron emission tomography, Am Coll Cardiol 17:260–269, 1991.

    Article  CAS  Google Scholar 

  24. Bol A, Melin JA, Vanoverschelde J-L, Baudhuin T, Vogelaers D, Depauw M, Michel C, Luxen A, Labar D, cogneau M, Robert A, Heyndrickx GR, Wijns W. Direct comparison of N-13-ammonia and O-15 water estimates of perfusion with quantification of regional myocardial blood flow by microspheres. Circulation 87:512–525, 1993.

    PubMed  CAS  Google Scholar 

  25. Muzik O, Beanlands RSB, Hutchins GD, Mangner TJ, Nguyen N, Schwaiger M. Validation of nitrogen-13-Ammonia Tracer kinetic model for quantification of myocardial blood flow using PET. J Nucl Med 34:83–91, 1993.

    PubMed  CAS  Google Scholar 

  26. Kuhle WG, Porenta G, Huang S-C, Buxton D, Gambhir SS, Hansen H, Phelps ME, Schelbert HR. Quantification of regional myocardial blood flow using N-13 ammonia and reoriented dynamic positron emission tomographic imaging. Circulation 86:1004–1017, 1993.

    Google Scholar 

  27. Muzik O, Beanlands RSB, Wolfe E, Hutchins GD, Schwaiger M. Automated region definition for cardiac nitrogen-13-ammonia PET imaging. J Nucl Med 34:336–344, 1993.

    PubMed  CAS  Google Scholar 

  28. Gould KL, Goldstein RA, Mullani NA, Kirkeeide RL, Wong W-H, Tewson TJ, Berridge MS, Bolomey LA, Hartz RK, Smalling RW, Fuentes F, Nishikawa A. Noninvasive assessment of coronary stenoses by myocardial perfusion imaging during pharmacologic coronary vasodilation. VIII. Clinical feasability of positron cardiac imaging without a cyclotron using generator-produced rubidium-82. Am Coll Cardiol 7:775–789, 1986.

    Article  CAS  Google Scholar 

  29. Gould K. Coronary artery stenosis. New York: Elsevier Science, 1991, pp 197–207.

    Google Scholar 

  30. Neirinckx R, Kronauge J, Gennaro G. Evaluation of inorganic absorbents for rubidium-82 generator: I. Hydrous Sno2. J Nucl Med 24:898–906, 1982.

    Google Scholar 

  31. Yano Y, Cahoon J, Budinger T. Aprecision flow-controlled Rb-82 generator for bolus or constant-infusion studies of the heart and brain. J Nucl Med 22:1006–1010, 1081.

    Google Scholar 

  32. Mullani N, Gould K. First pass regional blood flow measurements with external detectors. J Nucl Med 24:577–581, 1983.

    PubMed  CAS  Google Scholar 

  33. Nishiyama H, Sodd V, Adolph R, Saenger E, Lewis J, Gabel M. intercomparison of myocardial imaging agents: 201T1, 129Cs, 43K, and 81Rb. J Nucl Med 17:880–889, 1976.

    PubMed  CAS  Google Scholar 

  34. Donato L, Bartolomei G, Giordani R. Evaluation of myocardial blood perfusion in man with radioactive potassium or rubidium and precordial counting. Circulation 29:195–203, 1964.

    PubMed  CAS  Google Scholar 

  35. Ziegler H, Goresky C. Kinetics of rubidium uptake in the working dog heart. Circ Res 29:208–220, 1971.

    PubMed  CAS  Google Scholar 

  36. Mullani N, Goldstein R, Gould K, Fisher D, Marani S, O, Brien H. Myocardial perfusion with rubidium-82: I. Measurement of extraction fraction and flow with external detectors. J Nucl Med 24:898–906, 1983.

    PubMed  CAS  Google Scholar 

  37. Coldstein R. et al. Myocardial perfusion with rubidium-82: II, Effects of metabolic and pharmacologic interventions. J Nucl Med 24:907–915, 1983.

    Google Scholar 

  38. Goldstein R, Kinetics of rubidium-82 after coronary occlusion and reperfusion. Assessment of patency and viability in open-chested dogs. J Clin Invest 75:1131–1137, 1985.

    Article  PubMed  CAS  Google Scholar 

  39. Herrero P, et al. Noninvasive quantification of regional myocardial perfusion with rubidium-82 and positron emission tomography. Circulation 82:1377–1386, 1990.

    Article  PubMed  CAS  Google Scholar 

  40. Beanlands R, Muzik O, Hutchins G, Wolfe EJ, Allman K, Schwaiger M. Heterogeneity of regional N-13 ammonia tracer distribution in the normal human heart: Comparison of rubidium-82 and copper-62 PTSM, J Am Coll Cardiol 0:000–000, 1992.

    Google Scholar 

  41. Hutchins G, Beanlands R, Muzik O, Schwaiger M. Quantitative vs semi-quantitative PET myocardial blood flow: Influence of regional ammonia kinetics. Circulation 86:1–710, 1992.

    Google Scholar 

  42. Beanlands R, Muzik O, Melon P, Sutor R, Sawada S, Muller D, Bondie D, Hutchins G, Schwaiger M. Non-invasive quantification of regional coronary perfusion reserve in stenosed and angiographically normal vessels of patients with coronary atherosclerosis. Circulation 1994, in press.

    Google Scholar 

  43. Schwaiger M, Muzik O. Assessment of myocardial perfusion by positron emission tomography. Am J Cardiol 67:35D–43D, 1991.

    Article  PubMed  CAS  Google Scholar 

  44. Gould K, Schelbert H, Phelps M, Hoffman E. Noninvasive assessment of coronary stenoses with myocardial perfusion imaging during pharmacologic coronary vasodilatation. Am J Cardiol 43:200, 1979.

    Article  PubMed  CAS  Google Scholar 

  45. Schelbert H, Wisenberg G, Phelps M, Gould K, Eberhard H, Hoffman E, Gormesm A, Kuhl D. Noninvasive assessment of coronary stenoses by myocardial imaging during pharmacologic coronary vasodilation: VI. Detection of coronary artery disease in man with intravenous 13-NH3 and positron computed tomography. Am J Cardiol 49:1197–1207, 1982.

    Article  PubMed  CAS  Google Scholar 

  46. Chan S, Brunken R, Czernin J, Porenta G, Kuhle W, Krivokapich J, Phelps M, Schelbert H. Comparison of maximal myocardial blood flow during adenosine infusion with that of intravenous dipyridamole in normal men. J Am Coll Cardiol 20:979–985, 1992.

    Article  PubMed  CAS  Google Scholar 

  47. Iskandrian A, Heo J, Nguyen T, et al. Assessment of coronary artery disease using single-photon emission computed tomography with thallium-201 during adenosine-induced coronary hyperemia. Am J Cardiol 67:1190–1194, 1991.

    Article  PubMed  CAS  Google Scholar 

  48. Leppo JA. Myocardial uptake of thallium and rubidium during alterations in perfusion and oxygenation in isolated rabbit hearts. J Nucl Med 28:878–885, 1987.

    PubMed  CAS  Google Scholar 

  49. Verani MS. Adenosine vasodilation in myocardial perfusion imaging. Cardiology 6:36–44, 1991.

    Google Scholar 

  50. Iskandrian A, Verani M, Heo J. Pharmacologic stress testing: mechanism of action, hemodynamic responses, and results in detection of coronary artery disease. J Nucl Cardiol 1:94–111, 1994.

    Article  PubMed  CAS  Google Scholar 

  51. Hicks K, Ganti G, Mullani N, Gould KL. Automated quantitation of three-dimensional cardiac positron emission tomography for routine clinical use. J Nucl Med 30:1787–1797, 1989.

    PubMed  CAS  Google Scholar 

  52. Kotzerke J, Hicks RJ, Wolfe E, Herman WH, Molina E, Kühl DE, Schwaiger M. Three-dimensional assessment of myocardial oxidative metabolism: A new approach for regional determination of PET-derived C-11 acetate kinetics. J Nucl Med 31:1876–1893, 1990.

    PubMed  CAS  Google Scholar 

  53. Laubenbacher C, Rothley J, Sitomer J, Beanlands R, Sawada S, Sutor R, Muller D, Schwaiger M. An automated analysis program for the evaluation of cardiac PET studies: Initial results in the detection and localization of coronary artery disease using nitrogen-13 ammonia. J Nucl Med 34:968–978, 1993.

    PubMed  CAS  Google Scholar 

  54. Bellina C, Parodi O, Camici P, Salvadori P, Taddei L, Fusani L, Guzzardi R, Klassen G, L’Abbate A, Donato L. Simultaneous in vitro and in vivo validation of nitrogen-13-ammonia for the assessment of regional myocardial blood flow. J Nucl Med 31:1335–1343, 1990.

    PubMed  CAS  Google Scholar 

  55. Demer LL, Gould KL, Goldstein RA, Kirkeeide RL, Mullani NA, Smalling RW, Nishikawa A, Merhige ME. Assessment of coronary artery disease severity by positron emission tomography: Comparison with quantitative arteriography in 193 patients. Circulation 79:825–835, 1989.

    Article  PubMed  CAS  Google Scholar 

  56. Go R, Marwick T, Maclntyre W, et al. A prospective comparison of rubidium-82 PET and thallium-201 SPECT myocardial perfusion imaging utilizing a singe dipyridamole stress in the diagnosis of coronary artery disease. J Nucl Med 31:1899–1905, 1990.

    PubMed  CAS  Google Scholar 

  57. Stewart RE, Schwaiger M, Molina E, Popma J, Gacioch GM, Kalus M, Squicciarini S, Al-Aouar ZR, Schork A, Kuhl DE. Comparison of rubidium-82 positron emission tomography and thallium-201 SPECT imaging for detection of coronary artery disease. Am J Cardiol 67:1303–1310, 1991.

    Article  PubMed  CAS  Google Scholar 

  58. Williams B, Jansen D, Wong L, Fiedotin A, Knopf W, Toporoff S. Positron emission tomography for the diagnosis of coronary artery disease: A non-university experience and correlation with coronary angiography (abstr). J Nucl Med 30:845, 1989.

    Google Scholar 

  59. Stewart R, Schwaiger M, Molina E, Popma J, Gacioch G, Kalus M, Squicciarini S, Al-Aouar Z, Schork A, Kuhl D. Comparison of rubidium-82 positron emission tomography and thallium-201 SPECT imaging for detection of coronary artery disease. Am J Cardiol 67:1303–1310, 1991.

    Article  PubMed  CAS  Google Scholar 

  60. Gould KL. Goals, gold standards, and accuracy of noninvasive myocardial perfusion imaging for identifying and assessing severity of coronary artery disease. Curr Opini Cardiol 4:834–844, 1989.

    Article  Google Scholar 

  61. Diamond G. Suspect specifity. J Am Coll Cardiol: p, 1991.

    Google Scholar 

  62. Allman K, Hutchins G, Wolfe E, Allman C, Wieland D, Schwaiger M. C-11 hydroxyephe-drine myocardial retention following acute myocardial infarction (abstr). Circulation 84:423, 1991.

    Google Scholar 

  63. Gould K, Lipscomb K, Hamilton G. Physiologic basis for assessing critical coronary stenosis. Am J Cardiol 33:87–94, 1974.

    Article  PubMed  CAS  Google Scholar 

  64. Houghton J, Frank M, Carr A, von Dohlen T, Prisant M. Relations among impaired coronary flow reserve, left ventricular hypertrophy and thallium perfusion defects in hypertensive patients without obstructive coronary artery. J Am Coll Cardiol 15:43–51, 1990.

    Article  PubMed  CAS  Google Scholar 

  65. Beanlands R, Schwaiger M. Cardiac applications of positron emission tomography. Curr Opini Radiol 3:817–827, 1991.

    CAS  Google Scholar 

  66. Demer LL, Gould KL, Goldstein RA, Kirkeeide RL. Noninvasive assessment of coronary collaterals in man by PET perfusion imaging. J Nucl Med 31:259–270, 1990.

    PubMed  CAS  Google Scholar 

  67. Wilson RF, Marcus ML, White CW. Prediction of the physiologic significance of coronary arterial lesions by quantitative lesion geometry in patients with limited coronary artery disease. Circulation 75:723–732, 1987.

    Article  PubMed  CAS  Google Scholar 

  68. Zeiher A, Drexler H, Wollschläger H, Just H. Endothelial dysfunction of the coronary microvasculature is associated with impaired coronary blood flow regulation in patients with early atherosclerosis. Circulation 84:1984–1991, 1991.

    PubMed  CAS  Google Scholar 

  69. Maseri A, Crea F, Cianflone D. Myocardial ischemia caused by distal coronary vasoconstriction. Am J Cardiol 70:1602–1605, 1992.

    Article  PubMed  CAS  Google Scholar 

  70. Muzik O, Beanlands R, Dayanikli F, Wolfe E, Schwaiger M. quantification of myocardial blood flow reserve using PET and [N-13] ammonia in patients with angiographically documented CAD. J Nucl Med 34:35, 1993.

    Google Scholar 

  71. Dayanikli F, Grambow D, Muzik O, Mosca L, Rubenfire M, Schwaiger M. Evaluation of coronary flow reserve in asymptomatic males with hyperlididemia and family history of coronary artery disease (CAD). J Nucl Med 34:155, 1993.

    Google Scholar 

  72. L’Abbate A, Camici P, Reisenhofer B. Abnormal coronary flow reserve in syndrome X: A critical view of the concept of vasodilator reserve and its relation to ischemia. Cor Art Dis 3:579–585, 1992.

    Article  Google Scholar 

  73. Tomanek R. Response of the coronary vasculature to myocardial hypertrophy. J Am Coll Cardiol 15:528–533, 1990.

    Article  PubMed  CAS  Google Scholar 

  74. Strauer B. Ventricular function and coronary hemodynamics in hypertensive heart disease. Am J Cardiol 44:999–1006, 1979.

    Article  PubMed  CAS  Google Scholar 

  75. Brush J, Cannon R, Schenke W, et al. Angina due to coronary microvascolature disease in hypertensive patients without left ventricular hypertrophy. N Engl J Med 319:1302–1307, 1988.

    Article  PubMed  Google Scholar 

  76. Radvan J, Camici P, Marwick T, Boyd H, Sheridan D. Physiological hypertrophy does not affect coronary flow reserve in man. Circulation 88:I214, 1993.

    Google Scholar 

  77. Parodi O, Neglia D, Palombo C, Sambuceti G, Salvadori P, Marabotti C, Marzullo P, L’Abbate A. Comparative effect of enalapril and verapamil on myocardial blood flow in systemic hypertension. N Engl J Med, 1993.

    Google Scholar 

  78. Camici P, Gistri R, Lorenzoni R, Sorace O, Michelassi C, Bongiorni M, Salvadori P, L’Abbate A. Coronary reserve and exercise ECG in patients with chest pain and normal coronary angiograms. Circulation 86:179–186, 1992.

    PubMed  CAS  Google Scholar 

  79. Geltman E, Henes C, Senneff M, Sobel B, Bergmann S. increased myocardial perfusion at rest and diminished perfusion reserve in patients with angina and angiographically normal coronary arteries. J Am Coll Cardiol 16:586–595, 1990.

    Article  PubMed  CAS  Google Scholar 

  80. Krivokapich J, Stevenson L, Kobashigawa J, Huang S-C, Schelbert H. Quantification of absolute myocardial perfusion at rest and during exercise with positron emission tomography after human cardiac transplantation. J Am Coll Cardiol 18:512–517, 1991.

    Article  PubMed  CAS  Google Scholar 

  81. Rechavia E, Araujo L, DeSilva R, Kushwaha S, Lammertsma A, Jones T, Mitchell A, Maseri A, Yacoub M. Dipyridamole vasodilator response after human orthotopic heart transplantation: Quantification by oxgen-15-labeled water and positron emission tomography. J Am Coll Cardiol 19:100–106, 1992.

    Article  PubMed  CAS  Google Scholar 

  82. Senneff M, Hartman J, Sobel B, Geltman E, Bergmann S. Persistence of coronary vasodilator responsivity after cardiac transplantation. Am J Cardiol 71:333–338, 1993.

    Article  PubMed  CAS  Google Scholar 

  83. Camici P, Chiriatti G, Lorenzoni R, Bellina R, Gistri R, Italiani G, Parodi O, Salvadori P, Nista N, Papi L, L’Abbate A. Coronary vasodilation is impaired in both hypertrophied and nonhypertrophied myocardium of patients with hypertrophic cardiomyopathy: A study with nitrogen-13 ammonia and positron emission tomography. J Am Coll Cardiol 17:879–886, 1991.

    Article  PubMed  CAS  Google Scholar 

  84. Merlet P, Mazoyer B, Hittinger L, Valette H, Saal J, Bendrians B, Crozatier B, Castaigne A, Syrota A, Dubois Randé J. Assessment of coronary reserve in man: comparison between positron emission tomography with oxygen-15 labeled water and intracoronary Doppler-technique. J Nucl Med 34:1–6, 1993.

    Google Scholar 

  85. Govld K, Goldstein R, Mullani N, et al. Noninvasive assessment of coronary stenoses by myocardial perfusion imaging during pharmacologic coronary vasodilation. VIII. Clinical feasibility of positron cardiac imaging without a cyclotron using generator-produced rubidium-82. J Am Coll Card 1986; 7:775–789.

    Article  Google Scholar 

  86. Vonekura Y, Tamaki N, Senda M, et al. Detection of coronary artery disease with 13N-amonia and high resolution positron-emission computed tomography. Am Heart J 1987; 113:645–654.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Kluwer Academic Publishers

About this chapter

Cite this chapter

Schwaiger, M., Muzik, O., Hutchins, G.D. (1996). Assessment of Myocardial Perfusion with 13N-Ammonia or 82RB. In: Schwaiger, M. (eds) Cardiac Positron Emission Tomography. Developments in Cardiovascular Medicine, vol 165. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1233-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1233-8_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8524-3

  • Online ISBN: 978-1-4613-1233-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics