Skip to main content

Utility and Limitations of [18F]2-Deoxy-2-Fluoro-D-Glucose for the Assessment of Flux through Metabolic Pathways in Heart Muscle: A Critical Appraisal

  • Chapter

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 165))

Abstract

The celebrated 19th century German chemist, Justus von Liebig, advised a friend in 1841:

Do not give yourself up to any kind of theoretical speculations: They will serve to satisfy only the one person whose views you support, to gain you hundreds of enemies. Facts, particularly new facts, that is the only lasting merit. They speak more loudly, are appreciated by all minds, will bring you friends and win the respect of your adversaries [1].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Grimeaux E, Gerhardt C. In: Charles Gerhardt, sa Vie, son Oeuvre, Sa Correspondence. Paris: Masson, 1900, pp 53–54.

    Google Scholar 

  2. Phelps M, Hoffman E, Selin C, Huang S, Robinson G, Macdonald N, Schelbert H, Kuhl D. Investigation of [18F]2-fluoro-2-deoxyglucose for the measure of myocardial glucose metabolism. J Nucl Med 19:1311–1319, 1978.

    PubMed  CAS  Google Scholar 

  3. Frank O. Zur Dynamik des Herzmuskels. Zeitschr Biol (Munich) 32:370–437, 1895.

    Google Scholar 

  4. Starling E, Visscher M. The regulation of energy output of the heart. J Physiol (Lond) 62:243–261, 1928.

    Google Scholar 

  5. Lipmann F. Metabolic generation and utilization of phosphate bond energy. Adv Enzymol 1:99–165, 1941.

    CAS  Google Scholar 

  6. Bing R. Cardiac metabolism. Physiol Rev 45:171–213, 1965.

    PubMed  CAS  Google Scholar 

  7. Schoenheimer R, Rittenberg D. The study of intermediary metabolism of animals with the aid of isotopes. Physiol Rev 20:218–248, 1940.

    CAS  Google Scholar 

  8. Liedtke A, Renstrom B, Nellis S. Correlation between [5-3H] glucose and [U-14C] deoxy-glucose as markers of glycolysis in reperfused myocardium. Circ Res 71:689–700, 1992.

    PubMed  CAS  Google Scholar 

  9. Delbrück M. A physicist looks at biology. Trans Conn Acad Sci 38:175–191, 1949.

    Google Scholar 

  10. Weiss E, Hoffman E, Phelps M, Welch M, Henry P, Ter-Pogossian M, Sobel B. External detection and visualization of myocardial ischemia with 11C substrates in vitro and in vivo. Circ Res 39:24–32, 1976.

    PubMed  CAS  Google Scholar 

  11. Nguyêñ V, Mossberg K, Tewson T, Wong W, Rowe R, Coleman G, Taegtmeyer H. Temporal analysis of myocardial glucose metabolism by 18F-2-deoxy-2-fluoro-D-glucose. Am J Physiol 259:H1011–H1031, 1990.

    Google Scholar 

  12. Ng C, Holden J, DeGrado T, Raffel D, Kornguth M, Gatley S. Sensitivity of myocardial fluorodeoxyglucose lumped constant to glucose and insulin. Am J Physiol 260:H593–H603, 1991.

    PubMed  CAS  Google Scholar 

  13. Bass L. Heterogeneity within observed regions: Physiologic basis and effects on estimation of rates of biodynamic processes. Circulation 72:47–52, 1985.

    Article  Google Scholar 

  14. Budinger T, Huesman R. Ten precepts for quantitative data acquisition and analysis. Circulation 72:53–62, 1985.

    Article  Google Scholar 

  15. Holden J. Effects of blood flow on the positron-emission tomographic determination of substrate transport rates. Circulation 72:72–76, 1985.

    Article  Google Scholar 

  16. Zierler K. Workshop on cardiovascular metabolic imaging: Kinetics of substrate transport and reaction. Circulation 72:69–71, 1985.

    Google Scholar 

  17. Taegtmeyer H. Cardiac preconditioning does not require myocardial stunning. Ann Thorac Surg 55:400, 1993.

    Article  Google Scholar 

  18. Balaban R. Regulation of oxidative phosphorylation in the mammalian cell. Am J Physiol 258:C377–C389, 1990.

    PubMed  CAS  Google Scholar 

  19. Brown G. Control of respiration and ATP synthesis in mammalian mitochondria and cells. Biochem J 284:1–13, 1992.

    PubMed  CAS  Google Scholar 

  20. Taegtmeyer H. Carbohydrate interconversions and energy production. Circulation 72:1–8, 1985.

    Article  Google Scholar 

  21. Taegtmeyer H. Six blind men explore an elephant: Aspects of fuel metabolism and the control of tricarboxylic acid cycle activity in heart muscle. Basic Res Cardiol 79:322–336, 1984.

    Article  PubMed  CAS  Google Scholar 

  22. Russell R, Taegtmeyer H. Pyruvate carboxylation prevents the decline in contractile function of rat hearts oxidizing acetoacetate. Am J Physiol 261:H1756–HI762, 1991.

    PubMed  CAS  Google Scholar 

  23. Schwaiger M, Schelbert H, Ellison D, Hansen H, Yeatman L, Vinten-Johansen J, Selin C, Barrio J, Phelps M. Sustained regional abnormalities in cardiac metabolism after transient ischemia in the chronic dog model. J Am Coll Cardiol 6:337–347, 1985.

    Google Scholar 

  24. Horn F, Goodner C. Insulin dose-response characteristics among individual muscle and adipose tissues measured in the rat in vivo with (3-H) 2-deoxyglucose. Diabetes 33:153–159, 1984.

    Article  Google Scholar 

  25. Ferré P, Leturque A, Burnol A-F, Pénicaud L, Girard J. A method to quantify glucose utilization in vivo in skeletal muscle and white adipose tissue of the anesthetized rat. Biochem J 228:103–110, 1985.

    PubMed  Google Scholar 

  26. Schelbert H, Schwaiger M. In: Phelps M, Mazziota J, Schelbert H (eds): Positron Emision Tomography and Autoradiography: Principles and Applications for the Brain and the Heart. New York: Raven Press, 1986, pp 581–661.

    Google Scholar 

  27. Patlak C, Blasberg R, Fenstermacher J. Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. J Cereb Blood Flow Metabolism 3:1–7, 1983.

    Article  CAS  Google Scholar 

  28. Schneider C, Taegtmeyer H. Fasting in vivo delays myocardial cell damage after brief periods of ischemia in the isolated working rat heart. Circ Res 68:1045–1050, 1991.

    PubMed  CAS  Google Scholar 

  29. Russell RL, Mrus J, Mommesin J, Taegtmeyer H. Compartmentation of hexokinase in rat heart. A critical factor for tracer kinetic analysis of myocardial glucose metabolism. J Clin Invest 90:1972–1977, 1992.

    Article  PubMed  CAS  Google Scholar 

  30. Ratib O, Phelps M, Huang S, Henze E, Selin C, Schelbert H. Positron tomography with deoxyglucose for estimating local myocardial glucose metabolism. J Nucl Med 23:577–586, 1982.

    PubMed  CAS  Google Scholar 

  31. Sokoloff L, Reivich M, Kennedy C, Des Rosiers M, Patlak C, Pettigrew K, Sakurada O, Shinohara M. The [14C] deoxyglucose method for the measurement of local cerebral glucose utilization: Theory, procedure, and normal values in the conscious and anesthetized albino rat. J Neurochem 28:897–916, 1977.

    Article  PubMed  CAS  Google Scholar 

  32. Choi Y, Brunken R, Hawkins R, Huang S, Buxton D, Hoh C, Phelps M, Schelbert H. Factors affecting myocardial 2-[18F] fluoro-2-deoxy-D-glucose uptake in positron emission tomography studies of normal humans. Eur J Nucl Med 20:308–318, 1993.

    Article  PubMed  CAS  Google Scholar 

  33. Schwaiger M, Neese R, Araujo L, Wyns W, Wisneski J, Sochor H, Swank S, Kulber D, Selin C, Phelps M, Schelbert H, Fishbein M, Gertz E, Hansen H. Sustained nonoxidative glucose utilization and depletion of glycogen in reperfused canine myocardium. J Am Coll Cardiol 13:745–754, 1989.

    Article  PubMed  CAS  Google Scholar 

  34. Renstrom B, Nellis S, Liedtke A. Metabolic oxidation of glucose during early reperfusion. Circ Res 65:1094–1101, 1989.

    PubMed  CAS  Google Scholar 

  35. Buxton D, Schelbert H. Measurement of regional glucose metabolic rates in reperfused myocardium. Am J Physiol 261:H2058–H2068, 1991.

    PubMed  CAS  Google Scholar 

  36. Drake A, Haines J, Noble M. Preferential uptake of lactate by the normal myocardium in dogs. Cardiovasc Res 14:65–72, 1980.

    Article  PubMed  CAS  Google Scholar 

  37. Schneider C, Nguyêñ V, Taegtmeyer H. Feeding and fasting determine postischemic glucose utilization in isolated working rat hearts. Am J Physiol 260:H542–H548, 1991.

    PubMed  CAS  Google Scholar 

  38. Marshall R, Tillisch J, Phelps M, Huang S, Carson R, Henze E, Schelbert H. Identification and differentiation of resting myocardial ischemia and infarction in man with positron computer tomography, 18F-labeled fluoro-deoxyglucose and 13N ammonia. Circulation 67:766–778, 1983.

    Article  PubMed  CAS  Google Scholar 

  39. Merhige M, Ekas R, Mossberg K, Taegtmeyer H, Gould K. Catecholamine stimulation, substrate competition, and myocardial glucose uptake in conscious dogs assessed with positron emission tomography. Circ Res 61:124–129, 1987.

    Google Scholar 

  40. Tillisch J, Brunken R, Marshall R, Schwaiger M, Mandelkern M, Phelps M, Schelbert H. Reversibility of cardiac wall motion abnormalities predicted by positron tomography. N Engl J Med 314:884–888, 1986.

    Article  PubMed  CAS  Google Scholar 

  41. Knuuti M, Nuutila P, Ruotsalainen U, Saraste M, Harkonen R, Ahonen A, Teras M, Haaparant M, Wegelius U, Haapanen A, Hartiala J, Voipio-Pulkki L. Euglycemic hyper-insulinemic clamp and oral glucose load in stimulating myocardial glucose utilization during positron emission tomography. J Nucl Med 33:1255–1262, 1992.

    PubMed  CAS  Google Scholar 

  42. Russell R, Nguyêñ V, Mrus J, Taegtmeyer H. Fasting and lactate unmask insulin responsiveness in the isolated working rat heart. Am J Physiol 263:E556–E561, 1992.

    PubMed  CAS  Google Scholar 

  43. Doenst T, Taegtmeyer H. Metabolic memory in the isolated working rate heart: Tracer kinetic studies on glucose transport and phosphorylation with [18F] 2-deoxy-2-fluoroglucose after feeding and fasting. Clin Res 41:300A, 1993.

    Google Scholar 

  44. Schwaiger M, Hicks R. The clinical role of metabolic imaging of the heart by positron emission tomograpy. J Nucl Med 32:565–578, 1991.

    PubMed  CAS  Google Scholar 

  45. Gambhir S, Schwaiger M, Huang S, Krivokapich J, Schelbert H, Nienaber C, Phelps M. Simple noninvasive quantification method for measuring myocardial glucose utilization in humans employing positron emission tomography and fluorine-18 deoxyglucose. J Nucl Med 30:359–366, 1989.

    PubMed  CAS  Google Scholar 

  46. Raylman R, Caraher J, Hutchins G. Sampling requirements for dynamic cardiac PET studies using image-derived input functions. J Nucl Med 34:440–447, 1983.

    Google Scholar 

  47. Sugden M, Holness M, Palmer T. Fuel selection and carbon flux during the starved-to-fed transition. Biochem J 263:313–323, 1989.

    PubMed  CAS  Google Scholar 

  48. Renstrom B, Liedtke A, Nellis S. Mechanisms of substrate preference for oxidative metabolism during early myocardial reperfusion. Am J Physiol 259:H317–H323, 1990.

    PubMed  CAS  Google Scholar 

  49. Liedtke A, DeMaison L, Eggelston A, Cohen L, Nellis S. Changes in substrate metabolism and effects of excess fatty acids in reperfused myocardium. Circ Res 62:535–542, 1988.

    PubMed  CAS  Google Scholar 

  50. Lopaschuk G, Spafford M, Davies N, Wall S. Glucose and palmitate oxidation in isolated working rat hearts reperfused after a period of transcient global ischemia. Circ Res 66:546–553, 1990.

    PubMed  CAS  Google Scholar 

  51. Nellis S, Liedtke A, Renstrom B. Distribution of carbon flux within fatty acid utilization during myocardial ischemia and reperfusion. Circ Res 69:79–790, 1991.

    Google Scholar 

  52. Gropler R, Siegel B, Sampathkumaran K, Perez J, Sobel B, Bergmann S, Geltman E. Dependence of recovery of contractile function on maintenance of oxidative metabolism after myocardial infarction. J Am Coll Cardiol 19:989–997, 1992.

    Article  PubMed  CAS  Google Scholar 

  53. Weinheimer C, Brown M, Nohara R, Perez J, Bergmann S. Functional recovery after reperfusion is predicated on recovery of oxidative metabolism. Am Heart J 125:939–949, 1993.

    Article  PubMed  CAS  Google Scholar 

  54. Mallet R, Hartman D, Bünger R. Glucose requirement for postischemic recovery of perfused working heart. Eur J Biochem 188:481–493, 1990.

    Article  PubMed  CAS  Google Scholar 

  55. Burton U, Templeton G, Hagler H, Willerson J, Buja L. Effect of glucose availability on functional membrane integrity, ultrastructure, and contractile performance following hypoxia and reoxygenation in isolated feline cardiac muscle. J Mol Cell Cardiol 12:109–133, 1980.

    Article  PubMed  CAS  Google Scholar 

  56. Jeremy R, Ambrosio G, Pike M, Jacobus W, Becker L. The functional recovery of postischemic myocardium requires glycolysis during early reperfusion. J Mol Cell Cardiol 25:261–276, 1993.

    Article  PubMed  CAS  Google Scholar 

  57. Bünger R, Mallet R, Hartman D. Pyruvate-enhanced phosphorylation in normoxic and postischemic isolated working heart. Near-complete prevention of reperfusion contractile failure. Eur J Biochem 180:221–233, 1989.

    Article  PubMed  Google Scholar 

  58. Schwaiger M, Hicks R. Regional heterogeneity of cardiac substrate metabolism? J Nucl Med 32:1757–1760, 1990.

    Google Scholar 

  59. Gropler R, Siegel B, Lee K, Moerlein S, Perry D, Bergmann S, Geltman E. Non-uniformity in myocardial accumulation of fluorine-18-fluorodeoxy glucose in normal fasted humans. J Nucl Med 31:1749–1756, 1990.

    PubMed  CAS  Google Scholar 

  60. Hicks R, Herman W, Kalff V, Mocina E, Wolfe E, Hutchins G, Schwaiger M. Quantitative evaluation of regional substrate metabolism in the human heart by positron emission tomography. J Am Coll Cardiol 18:101–111, 1991.

    Article  PubMed  CAS  Google Scholar 

  61. Randle P, Garland P, Hales C. Newsholme E. The glucose fatty-acid cycle. Its role in insulin sensitivity and the metabolic distrubances of diabetes mellitus. Lancet 1:785–789, 1963.

    Article  PubMed  CAS  Google Scholar 

  62. Li J, Stillman J, Clore J, Blackard W. Skeletal muscle lipids and glycogen mask substrate competition (Randle Cycle). Metabolism 42:451–456, 1993.

    Article  PubMed  CAS  Google Scholar 

  63. Kuschinsky W. Coupling of function, metabolism, and blood flow in the brain. Neurosurg Rev 14:163–168, 1991.

    Article  PubMed  CAS  Google Scholar 

  64. Richards S, Rattigan S, Colquhoun E, Clary M. [32P] Phosphate autoradiography as an indicator of regional myocardial oxygen consumption. J Mol Cell Cardiol 25:289–302, 1993.

    Article  PubMed  CAS  Google Scholar 

  65. Randall W, Armour J, Geis W, Lippincott D. Regional cardiac distribution of the sympathetic nerves. Fed Proc 31:1199–1208, 1972.

    PubMed  CAS  Google Scholar 

  66. Trivella M, Armour J, Vacche M, Paoli C, Porinelli R, Bellazzini R, Pelosi G, Camici P, Taddei L, Klasen G, L’Abbate A. Regional myocardial deoxyglucose uptake following electrical stimulation of canine efferent sympathetic cardiopulmonary nerves. Cardiovasc Res 26:330–336, 1992.

    Article  PubMed  CAS  Google Scholar 

  67. Opie L, Camici P. Myocardial blood flow deoxyglucose uptake and myocyte viability in ischemia. J Nucl Med 33:1313–1355, 1992.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Kluwer Academic Publishers

About this chapter

Cite this chapter

Taegtmeyer, H. (1996). Utility and Limitations of [18F]2-Deoxy-2-Fluoro-D-Glucose for the Assessment of Flux through Metabolic Pathways in Heart Muscle: A Critical Appraisal. In: Schwaiger, M. (eds) Cardiac Positron Emission Tomography. Developments in Cardiovascular Medicine, vol 165. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1233-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1233-8_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8524-3

  • Online ISBN: 978-1-4613-1233-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics