Skip to main content

Quantification of Myocardial Oxygen Consumption Using 11C-Acetate

  • Chapter
Cardiac Positron Emission Tomography

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 165))

  • 44 Accesses

Abstract

Normal cardiac performance reflects the codependency of myocardial mechanical function, oxygen consumption (MVO2), and blood flow. It is well established that physiological processes directly associated with contraction (e.g., wall stress, shortening, heart rate, and contractility) are major determinants of MVO2. The rapid cessation of MVO2 and systolic function with interruption of blood flow (supply) is equally well known. Because of this close coupling of mechanical function, MVO2, and perfusion, and the primacy of oxidation of substrates for myocardial energy production, most disease processes involving the heart manifest as imbalances in myocardial oxygen supply and demand. For example, it is the imbalance of inadequate myocardial oxygen supply in the face of a given demand that typifies the myocardial manifestations of coronary artery disease. In contrast, in patients with dilated cardiomyopathy, mechanical function is diminished despite adequate oxygen supply.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Mckeever WP, Gregg DE, Canney PC. Oxygen uptake of nonworking left ventricle. Circ Res 6:612–623, 1958.

    PubMed  CAS  Google Scholar 

  2. Wier WG, Yue DT. Intracellular calcium transients underlying the short-term force-interval relationship in ferret ventricular myocardium. J Physiol (Lond) 376:507–530, 1986.

    CAS  Google Scholar 

  3. Klocke FJ, Braunwald E, Ross J Jr. Oxygen cost of electrical activation of the heart. Circ Res 18:357–365, 1966.

    PubMed  CAS  Google Scholar 

  4. Suga H. Ventricular energetics. Physiol Rev 70:247–277, 1990.

    PubMed  CAS  Google Scholar 

  5. Burkhoff D, Sagawa K. Ventricular efficiency predicted by an analytical model. Am J Physiol 250:R1021–R1027, 1986.

    PubMed  CAS  Google Scholar 

  6. Alpert NR, Mulieri LA. Hypertrophic adaptation of the heart to stress: A myothermal analysis. In Zak R (ed): Growth of the Heart in Health and Disease. New York: Raven Press, 1984, pp 363–379.

    Google Scholar 

  7. Holubarsch CH, Hasenfuss G, Blanchard E, Alpert NR, Mulieri LA, Mulieri LA. Myothermal economy of rat myocardium, chronic adaptation versus acute inotropism. Basic Res Cardiol 81:95–102, 1986.

    PubMed  Google Scholar 

  8. Bretschneider H. Die haemodynamischen determinanten des 02-bedarfs des herzmuskels. Arzneim Forsch (Drug Res) 21:1515–17, 1971.

    CAS  Google Scholar 

  9. Baller D, Schenk H, Strauer B, Hellige G. Comparison of myocardial oxygen consumption indices in man. Clin Cardiol 3:116–122, 1980.

    Article  PubMed  CAS  Google Scholar 

  10. Baller D, Bretschneider H, Hellige G. A critical look at currently used indirect indices of myocardial oxygen consumption. Bas Res Cardiol 76:163–181, 1981.

    Article  CAS  Google Scholar 

  11. Bing RJ. Cardiac metabolism. Phys Rev 45:171–213, 1965.

    CAS  Google Scholar 

  12. Liedtke AJ. Alterations of carbohydrate and lipid metabolism in the acutely ischemic heart. Prog Cardiovas Dis 23:321–336, 1981.

    Article  CAS  Google Scholar 

  13. Lindeneg O, Mellemgaard K, Fabricius J, Lundquist F. Myocardial utilization of acetate, lactate and free fatty acids after injection of ethanol. Clin Sci 27:427–435, 1964.

    PubMed  CAS  Google Scholar 

  14. Brown M, Marshall DR, Sobel BE, Bergmann SR. Delineation of myocardial oxygen utilization with carbon-11-labeled acetate. Circulation 76:687–696, 1987.

    Article  PubMed  CAS  Google Scholar 

  15. Buxton DB, Schwaiger M, Nguyen A, Phelps ME, Schelbert HR. Radiolabeled acetate as a tracer of myocardial tricarboxylic acid cycle flux. Circ Res 63:628–634, 1988.

    PubMed  CAS  Google Scholar 

  16. Brown MA, Myears DW, Bergmann SR. Noninvasive assessment of canine myocardial oxidative metabolism with carbon-11 acetate and positron emission tomography. J Am Coll Cardiol 12:1054–1063, 1988.

    Article  PubMed  CAS  Google Scholar 

  17. Buxton DB, Nienaber CA, Luxen A, Ratib O, Hansen H, Phelps ME, Schelbert HR. Noninvasive quantitation of regional myocardial oxygen consumption in vivo with [l-11C] acetate and dynamic positron emission tomography. Circulation 79:134–42, 1989.

    Article  PubMed  CAS  Google Scholar 

  18. Allan RM, Selwyn AP, Pike VW, Eakins, Maseri A. In vivo experimental and clinical studies of normal and ischemic myocardium using 11C-acetate (abstr). Circulation 81: III74, 1980.

    Google Scholar 

  19. Brown MA, Myears DW, Bergmann SR. Validity of estimates of myocardial oxidative metabolism with carbon-11 acetate and positron emission tomography despite altered patterns of substrate utilization. J Nucl Med 30:187–193, 1989.

    PubMed  CAS  Google Scholar 

  20. Armbrecht JJ, Buxton DB, Schelbert HR: Validation of [1-11C] acetate as a tracer for noninvasive assessment of oxidative metabolism with positron emission tomography in normal, ischemic, postischemic, and hyperemic canine myocardium. Circulation 81: 1594–1605, 1990.

    Article  PubMed  CAS  Google Scholar 

  21. Armbrecht JJ, Buxton DB, Brunken RC, Phelps ME, Schelbert HR. Regional myocardial oxygen consumption determined noninvasively in humans with [l-11C] acetate and dynamic positron tomography. Circulation 80:863–72, 1989.

    Article  PubMed  CAS  Google Scholar 

  22. Henes CG, Bergmann SR, Walsh MN, Sobel BE, Geltman EM. Assessment of myocardial oxidative metabolic reserve with positron emission tomography and carbon-11 acetate. J Nucl Med 30:1798–1808, 1989.

    PubMed  Google Scholar 

  23. Gropler RJ, Shelton ME, Herrero P, Walsh JF, Bergmann SR. Measurement of myocardial oxygen consumption using positron emission tomography and C-l1 acetate: Direct validation in human subjects. Circulation (suppl) 88(4) Part 2; I–172, 1993.

    Google Scholar 

  24. Beanlands R, Bach D, Raylman R, Armstrong WF, Wilson V, Monteith M, Moore CK, Bates E, Schwaiger M. The effects of dobutamine on myocardial oxygen consumption and cardiac efficiency determined using C-11 acetate PET. J Am Coll Cardiol 22(5):1389–1398, 1993.

    Article  PubMed  CAS  Google Scholar 

  25. Walsh M, Geltman E, Brown M, Henes C, Weinheimer C, Sobel B, Bergmann S. Noninvasive estimation of regional myocardial oxygen consumption by positron emission tomography with carbon-11 acetate in patients with myocardial infarction. J Nucl Med 30:1798–1808, 1989.

    PubMed  CAS  Google Scholar 

  26. Gropler R, Siegel B, Lee K, Moerlein S, Bergmann S, Geltman E. Nonuniformity in myocardial accumulation of fluorine-18-deoxyglucose in normal fasted humans. J Nucl Med 31:1749–56, 1990.

    PubMed  CAS  Google Scholar 

  27. Kotzerke J, Hicks R, Wolfe E, et al. Three-dimensional assessment of myocardial oxidative metabolism: A new approach for regional determination of PET-derived carbon-11 acetate kinetics. J Nucl Med 31:1876–1893, 1990.

    PubMed  CAS  Google Scholar 

  28. Smapathkumaran KS, Herrero P, Owens SE, et al. Image-analysis software to facilitate the processing of dynamic positron emission tomographic studies of the heart (abstr) J Am Coll Cardiol 19:12A, 1992.

    Google Scholar 

  29. Buck A, Wolpers HG, Hutchins GD, Savas V, Mangner TJ, Nguyen N, Schwaiger M. Effect of C-11-acetate recirculation on estimates of myocardial oxygen consumption by PET. J Nucl Med 32:1950–1957, 1991.

    PubMed  CAS  Google Scholar 

  30. Bergmann SR, Sobel BE. Quantification of regional myocardial oxidative utilization with positron emission tomography. In: Bergmann, Sobel (eds): Positron Emission Tomography of the Heart. Mount Kisco, NY: Futura Publishing, 1992, pp 209–229.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Kluwer Academic Publishers

About this chapter

Cite this chapter

Beanlands, R., Wolpers, H.G., Gropler, R.J. (1996). Quantification of Myocardial Oxygen Consumption Using 11C-Acetate. In: Schwaiger, M. (eds) Cardiac Positron Emission Tomography. Developments in Cardiovascular Medicine, vol 165. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1233-8_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1233-8_16

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8524-3

  • Online ISBN: 978-1-4613-1233-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics