Skip to main content

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 165))

  • 44 Accesses

Abstract

An appropriate oxygen tension is a basic condition for normal cardiac function. Most of the energy needs of the myocyte are met by oxidative processes, and oxygen deficiency results in the metabolic and functional abnormalities associated with ischemic heart disease. Despite the central importance of tissue pO2 in normal and pathophysiological cardiac function, little is known about intracellular pO2 in the human heart. There is also uncertainty about what level of pO2 constitutes tissue hypoxia. Contractile abnormalities occur when coronary sinus pO2 is reduced to 10–15 mmHg, but in vitro normal mitochondrial function is supported at much lower pO2 [1].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kennedy FG, Jones DP. Oxygen dependency of mitochondrial function in isolated rat cardiac myocytes. Am J Physiol 250:C374–C383, 1986.

    PubMed  CAS  Google Scholar 

  2. Bristow JD, Arai AE, Anselone CG, Pantely GA. Response to myocardial ischemia as a regulated process. Circulation 84:2580–2587, 1991.

    PubMed  CAS  Google Scholar 

  3. Chapman JD, Franko AJ, Sharplin J. A marker for hypoxic cells in tumours with potential clinical applicability. Br J Cancer 43:546–550, 1981.

    Article  PubMed  CAS  Google Scholar 

  4. Josephy PD, Mason RP. Nitroimidazoles. Nhung1 In. Anders MW (ed): Bioactivation of Foreign Compounds. New York: Academic Press, 1985.

    Google Scholar 

  5. Franko AJ. Misonidazole and other hypoxia markers: Metabolism and implications. J Radiat Oncol Biol Phys 12:1195–1202, 1986.

    Article  CAS  Google Scholar 

  6. Whitmore GF, Varghese AJ. The biological properties of reduced nitroheterocyclics and possible underlying biochemical mechanisms. Biochem Pharm 35:97–103, 1986.

    Article  PubMed  CAS  Google Scholar 

  7. Franko AJ, Koch CJ, Garrecht BM, SharplinJ, Hughs D. Oxygen dependence of binding of misonidazole to rodent and human tumors in vitro. Cancer Res 47:5367–5376, 1987.

    PubMed  CAS  Google Scholar 

  8. Rasey JS, Grunbaum Z, Krohn KA, Nelson N, Chin L. Comparison of binding of [3H]misonidazole and [14C]misonidazole in multicell spheroids. Radiat Res 101:473–479, 1985.

    Article  PubMed  CAS  Google Scholar 

  9. Hoffman JM, Rasey JS, Spence A, Shaw D, Krohn KA. Binding of the hypoxia tracer [3H]-misonidazole in cerebral ischemia, Stroke 18:168–176, 1987.

    Article  PubMed  CAS  Google Scholar 

  10. Martin GV, Cerqueira MD, Caldwell JH, Rasey JS, Embree L, Krohn KA. Fluoromisonida-zole: A metabolic marker of myocyte hypoxia, Circ Res 67:240–244, 1990.

    PubMed  CAS  Google Scholar 

  11. Shelton ME, Dence CS, Hwang DR, Welch MJ, Bergmann SR. Myocardial kinetics of fluorine-18 misonidazole: A marker of hypoxic myocardium. J Nucl Med 30:351–358, 1989.

    PubMed  CAS  Google Scholar 

  12. Martin GV, Rasey JS, Caldwell JC, Grunbaum Z, Krohn KA. Fluoromisonidazole uptake in ischemic canine myocardium. J Nucl Med 30:194–201, 1989.

    PubMed  CAS  Google Scholar 

  13. Caldwell JH, Revenaugh JR, Martin CV, Rasey JS, Krohn KA. A comparison of 18F fluorodeoxyglucose (FDG) and 3H fluoromisonidazole (FMISO) uptake during low-flow ischemia. J Nucl Med (in press).

    Google Scholar 

  14. Jarabek PA, Dishino DD, Kilbourn MR, et al. Synthesis of a flourine-18 labeled hypoxic cell sensitizer. Nucl Med 25:23, 1984.

    Google Scholar 

  15. Grierson JR, Link J, Mathis CA, Rasey JS, Krohn KA. A radiosynthesis of 18F fluoromisonidazole. J Nucl Med 30:343–350, 1989. (An updated and simplified procedure for this radiosynthesis is available on request).

    PubMed  Google Scholar 

  16. Martin GV, Caldwell JH, Graham MM, Grierson JR, Kroll K, Cowan MJ, Lewellen TK, Rasey JS, Casciari JJ, Krohn KA. Noninvasive detection of hypoxic myocardium using 18F-fluoromisonidazole and positron emission tomography. J Nucl Med 33:2202–2208, 1992.

    PubMed  CAS  Google Scholar 

  17. Shelton ME, Dence CS, Hwang D-R, Herrero P, Welch MJ, Bergmann SR. In vivo delineation of myocardial hypoxia during coronary occlusion using fluorine-18 fluoromisonidazole and positron emission tomography: A potential approach for identification of jeopardized myocardium. J Am Coll Cardiol 16:477–485, 1990.

    Article  PubMed  CAS  Google Scholar 

  18. Schlyer DJ, Bastos M, Wolf AP. Separation of [18F]fluoride from [18O]water using anion exchange resin. Appl Radiât Isot 41:531–533, 1990.

    Article  CAS  Google Scholar 

  19. Revenaugh JR, Caldwell JH, Martin GV, Grierson JL, Krohn KA. Positron emission tomography (PET) imaging of myocardial hypoxia with 18F-fluoromisonidazole (FMISO) in post myocardial infarction patients (abstr). Circulation 84:11424, 1991.

    Google Scholar 

  20. Snyder DL, Politte DG. Image reconstruction from list mode data in an emission tomography system having time-of-flight measurements. IEEE Trans Nucl Sci 20:1843–1849, 1983.

    Article  Google Scholar 

  21. Politte DG, Hoffman GR, Beecher DE, Ficke DC, Holmes TJ, TerPogossian MM. Image reconstruction from super PETT I: A first-generation time-of-flight positron-emission tomograph. Trans Nucl Sci 33:428–434, 1986.

    Article  Google Scholar 

  22. Biskupiak JE, Rasey JS, Martin GV, Caldwell JH, Krohn KA. Synthesis of 4-substituted misonidazole derivatives for imaging hypoxia (abstr). J Nucl Med 34:79P, 1993.

    Google Scholar 

  23. Biskupiak JE, Grierson JR, Rasey JS, Martin GV, Krohn KA. Synthesis of an (iodo-vinyl)misonidazole derivative for hypoxia imaging. J Med Chem 34:2165–2168, 1991.

    Article  PubMed  CAS  Google Scholar 

  24. Martin GV, Biskupiak JE, Caldwell JH, Grierson JR, Krohn KA. Iodovinylmisonidazole: A metabolic marker for myocyte ischemia. J Nucl Med 34:918–924, 1993.

    PubMed  CAS  Google Scholar 

  25. Patel BC, Chan Y-W, Rumsey WL. Effect of graded hypoxia on retention of a novel 99mtechnetium labeled nitroimidazole in isolated perfused rat heart (abstr). Circulation 86: 1706, 1992.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Kluwer Academic Publishers

About this chapter

Cite this chapter

Martin, G.V., Grierson, J.R., Caldwell, J.H. (1996). Imaging Hypoxic Myocardium. In: Schwaiger, M. (eds) Cardiac Positron Emission Tomography. Developments in Cardiovascular Medicine, vol 165. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1233-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1233-8_15

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8524-3

  • Online ISBN: 978-1-4613-1233-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics