Skip to main content

Myocardial 82 RB Kinetics Identify Cell Membrane Integrity and Tissue Viability

  • Chapter
Cardiac Positron Emission Tomography

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 165))

  • 43 Accesses

Abstract

The clinical application of radionuclides in the assessment of residual tissue viability after myocardial infarction or prolonged ischemia is based on the ability of several radioisotopes to delineate cell function, particularly of cell membrane integrity or cellular substrate metabolism. The rationale for their use is based on the experimentally proven fact that only viable cells with intact sarcolemmal membranes can retain the tracers. In contrast, accelerated tracer leakage or inability to trap the radionuclides inside the cell suggests the presence of irreversible cell damage. It is now widely accepted that tracers of cell membrane integrity or cellular metabolism provide accurate noninvasive detection of preserved tissue viability of dysfunctional myocardium in patients with advanced coronary artery disease [1].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dilsizian V, Bonow R. Current diagnostic techniques of assessing myocardial viability in patients with hibernating and stunned myocardium. Circulation 87:1–20, 1993.

    PubMed  CAS  Google Scholar 

  2. Beller G, Watson D. Myocardial thallium-201 kinetics in ischemia and myocardial infarction. Prog Nucl Med 6:35–55, 1980.

    PubMed  CAS  Google Scholar 

  3. Moore C, et al. Thallium-201 kinetics in stunned myocardium characterized by severe postischemic systolic dysfunction. Circulation 81:1622–1632, 1990.

    Article  PubMed  CAS  Google Scholar 

  4. Donato L, Bartolomei G, Giordani R. Evaluation of myocardial blood perfusion in man with radioactive potassium or rubidium and precordial counting. Circulation 29:195–203, 1964.

    PubMed  CAS  Google Scholar 

  5. Love W, Romney R, Burch G. A comparison of the distribution of potassium and exchangeable rubidium in the organs of the dog, using rubidium-86. Circ Res 2:112, 1954.

    PubMed  CAS  Google Scholar 

  6. Love W. Isotope clearance and myocardial blood flow. Am Heart J 67:579–582, 1964.

    Article  PubMed  CAS  Google Scholar 

  7. Ziegler H, Goresky G. Kinetics of rubidium uptake in the working dog heart. Circ Res 29:208–220, 1971.

    PubMed  CAS  Google Scholar 

  8. Fukuyama T, et al. Reduced flow and diminished uptake of Rb-86 after temporary coronary occlusion. Am J Physiol 234:H724–729, 1978.

    PubMed  CAS  Google Scholar 

  9. Smith J, Sanchez A, Jones A. Comparison of rubidium-86 and potassium-42 fluxes in rat aorta. Blood Vessels 23:297–309, 1986.

    PubMed  CAS  Google Scholar 

  10. Mullani N, Gould K. First-pass measurements of regional blood flow with external detectors. J Nucl Med 24:577–581, 1983.

    PubMed  CAS  Google Scholar 

  11. Mullani N, et al. Measurements of extraction fraction and flow with external detectors. J Nucl Med 24:898–906, 1983.

    PubMed  CAS  Google Scholar 

  12. Mullani N. Theory relating severity of coronary stenosis to perfusion defects. J Nucl Med 25:1190–1196, 1984.

    PubMed  CAS  Google Scholar 

  13. Goldstein R, et al. Myocardial perfusion with rubidium-82: II. Effects of metabolic and pharmacologic interventions. J Nucl Med 24:907–915, 1983.

    PubMed  CAS  Google Scholar 

  14. Goldstein R. Rubidium-82 kinetics after coronary occlusion: Temporal relation of net myocardial accumulation and viability in open-chested dogs. J Nucl Med 27:1456–1461, 1986.

    PubMed  CAS  Google Scholar 

  15. Gould K, et al. Noninvasive assessment of coronary stenoses by myocardial perfusion imaging during pharmacologic coronary vasodilation. VIII. Clinical feasability of positron cardiac imaging without a cyclotron using generator-produced rubidium-82. J Am Cardiol 7:775–789, 1986.

    Article  CAS  Google Scholar 

  16. Gould K. Identifying and measuring severity of coronary artery stenosis: Quantitative coronary arteriography and positron emission tomography. Circulation 78:237–245, 1988.

    Article  PubMed  CAS  Google Scholar 

  17. Gould K. Clinical cardiac PET using generator-produced Rb-82: A review. Cardiovasc Intervent Radiol 12:245–251, 1989.

    Article  PubMed  CAS  Google Scholar 

  18. Huang S, et al. Rabbit myocardial Rb-82 kinetics and a compartmental model for blood flow estimation. Am J Physiol 256:H156–H164, 1989.

    Google Scholar 

  19. Demer L, et al. Assessment of coronary artery disease severity by positron emission tomography. Comparison with quantitative arteriography in 193 patients. Circulation 79: 825–835, 1989.

    Article  PubMed  CAS  Google Scholar 

  20. Gould K. Positron emission tomography and interventional cardiology. Am J Cardiol 66:51F–58F, 1990.

    Article  PubMed  CAS  Google Scholar 

  21. Go R, et al. A prospective comparison of rubidium-82 PET and thallium-201 SPECT myocardial perfusion imaging utilizing a single dipyridamole stress in the diagnosis of coronary artery disease. J Nucl Med 31:1899–1905, 1990.

    PubMed  CAS  Google Scholar 

  22. Demer L, et al. Noninvasive assessment of coronary collaterals in man by PET perfusion imaging. J Nucl Med 31:259–270, 1990.

    PubMed  CAS  Google Scholar 

  23. Stewart R, et al. Comparison of rubidium-82 positron emission tomography and thallium-201 SPECT imaging for detection of coronary artery disease. Am J Cardiol 67:1303–1310, 1991.

    Article  PubMed  CAS  Google Scholar 

  24. Herrero P, et al. Noninvasive quantification of regional myocardial perfusion with rubidium-82 and positron emission tomography. Circulation 82:1377–1386, 1990.

    Article  PubMed  CAS  Google Scholar 

  25. Herrero P, et al. Implementation and evaluation of a two-compartment model for quantification of myocardial perfusion with rubidium-82 and positron emission tomography. Circ Res 70:496–507, 1992.

    PubMed  CAS  Google Scholar 

  26. Grover-McKay M, et al. Detection of coronary artery disease with positron emission tomography and rubidium-82. Am Heart J 123:646–652, 1992.

    Article  PubMed  CAS  Google Scholar 

  27. Conrad G, Rau E, Shine K. Creatine kinase release, potassium-42 content, and mechanical performance in anoxic rabbit myocardium. J Clin Invest 64:155–161, 1979.

    Article  PubMed  CAS  Google Scholar 

  28. Johnson R, Sammel N, Norris R. Depletion of myocardial creatine kinase, lactate dehydrogenase, myoglobin and potassium after coronary artery ligation in dogs. Cardiovasc Res 15:529–537, 1981.

    Article  PubMed  CAS  Google Scholar 

  29. Nakaya H, Kimura S, Kanno M. Intracellular potassium and sodium activities under hypoxia, acidosis and no glucose in dog hearts. Am J Physiol 249:H1078–H1085, 1985.

    PubMed  CAS  Google Scholar 

  30. Hill J, Gettes L. Effect of acute coronary artery occlusion on local myocardial extracellular K+ activity in swine. Circulation 61:768–777, 1980.

    PubMed  CAS  Google Scholar 

  31. Goldstein R. Kinetics of Rubidium-82 after coronary occlusion and reperfusion. Assessment of patency and viability in open-chested dogs. J Clin Invest 75:1131–1137, 1985.

    Article  PubMed  CAS  Google Scholar 

  32. Fishbein M, et al. Early phase acute myocardial infarct size quantification: Validation of the triphenyl tetrazolium chloride tissue enzyme staining technique. Am Heart J 101:593–600, 1981.

    Article  PubMed  CAS  Google Scholar 

  33. Schelbert H, Buxton D. Insights into coronary artery disease gained from metabolic imaging. Circulation 78:496–505, 1988.

    Article  PubMed  CAS  Google Scholar 

  34. Schwaiger M, Hicks R. The clinical role of metabolic imaging of the heart by positron emission tomography. J Nucl Med 32:565–578, 1991.

    PubMed  CAS  Google Scholar 

  35. Jeremy R, Links J, Becker L. Progressive failure of coronary flow during reperfusion of myocardial infarction: Documentation of the no reflow phenomenon using positron emission tomography. J Am Coll Cardiol 16:695–704, 1990.

    Article  PubMed  CAS  Google Scholar 

  36. Williams K, et al. Planar positron imaging of rubidium-82 for myocardial infarction: A comparison with thallium-201 and regional wall motion. Am Heart J 118:601–610, 1989.

    Article  PubMed  CAS  Google Scholar 

  37. Goldstein R, et al. Positron imaging of myocardial infarction with rubidium-82. J Nucl Med 27:1824–1829, 1986.

    PubMed  CAS  Google Scholar 

  38. Gould K, et al. Myocardial metabolism of fluorodeoxyglucose compared to cell membrane integrity for the potassium analogue rubidium-82 for assessing infarct size in man by PET. J Nucl Med 32:1–9, 1991.

    PubMed  CAS  Google Scholar 

  39. Yoshida K, Gould K. Quantitative relation of myocardial infarct size and myocardial viability by positron emission tomography to left ventricular ejection fraction and 3-year mortality with and without revascularization. J Am Coll Cardiol 22:984–997, 1993.

    Article  PubMed  CAS  Google Scholar 

  40. Tillisch J, et al. Reversibility of cardiac wall-motion abnormalities predicted by positron tomography. N Engl J Med 314:884–888, 1986.

    Article  PubMed  CAS  Google Scholar 

  41. Tamaki N, et al. Positron emission tomography using fluorine-18 deoxyglucose in evaluation of coronary artery bypass grafting. Am J Cardiol 64:860–865, 1989.

    Article  PubMed  CAS  Google Scholar 

  42. Marwick T, et al. Metabolic responses of hibernating and infarcted myocardium to revascularization. Circulation 85:1347–1353, 1992.

    PubMed  CAS  Google Scholar 

  43. Carrel T, et al. Improvement of severely reduced left ventricular function after surgical revascularization in patients with preoperative myocardial infarction. Eur J Cardiothorac Surg 6:479–484, 1992.

    Article  PubMed  CAS  Google Scholar 

  44. Lucignani G, et al. Presurgical identification of hibernating myocardium by combined use of technetium-99 hexakis 2-methoxyisobutylisonitrile single photon emission tomography and fluorine-18 fluoro-2-deoxy-D-glucose positron emission tomography in patients with coronary artery disease. Eur J Nucl Med 19:874–881, 1992.

    Article  PubMed  CAS  Google Scholar 

  45. vom Dahl J, et al. Recovery of myocardial function following coronary revascularization: impact of viability and long-term vessel patency as assessed by preoperative F-18 FDG PET and serial angiography (abstr). J Nucl Med 34:23P, 1993.

    Google Scholar 

  46. Borchgrevink P, Ryan M. Effects of magnesium, ouabain and bumetanide on rubidium-86 uptake in a human atrial cell line. Br J Pharmacol 95:614–618, 1988.

    PubMed  CAS  Google Scholar 

  47. Altehoefer C, et al. Fluorine-18 deoxyglucose PET for assessment of viable myocardium in perfusion defects in Tc-m-99 MIBI SPET: A comparative study in patients with coronary artery disease. Eur J Nucl Med 19:334–342, 1992.

    Article  PubMed  CAS  Google Scholar 

  48. Knuuti M, et al. Quantitative analysis of glucose utilization by 18-FDG PET in detecting myocardial viability (abstr). J Nucl Med 34:3P, 1993.

    Google Scholar 

  49. Muzik O, et al. Comparison of regional rubidium-82 kinetics and FDG uptake in patients with previous myocardial infarction (abstr). J Nucl Med 32:1012, 1991.

    Google Scholar 

  50. vom Dahl J, et al. Rubidium-82 kinetics assessed by positron emission tomography for characterization of myocardial viability (abstr). J Am Coll Cardiol 19:142, 1992.

    Article  Google Scholar 

  51. Rahimtoola S. The hibernating myocardium. Am Heart J 117:211–221, 1989.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Kluwer Academic Publishers

About this chapter

Cite this chapter

Vom Dahl, J., Schwaiger, M. (1996). Myocardial 82 RB Kinetics Identify Cell Membrane Integrity and Tissue Viability. In: Schwaiger, M. (eds) Cardiac Positron Emission Tomography. Developments in Cardiovascular Medicine, vol 165. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1233-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1233-8_14

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8524-3

  • Online ISBN: 978-1-4613-1233-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics