Skip to main content

Assessment of Myocardial Viability Using 15O-Water

  • Chapter
Cardiac Positron Emission Tomography

Abstract

It has become apparent that successful coronary reperfusion by thrombolysis, angioplasty, or bypass graft surgery is often associated with improvement of function in patients with coronary artery disease. This suggests the presence of dysfunctional but viable myocardium within the area of abnormal wall motion. Myocardial tissue necrosis is a complex pathophysiological process that is dependent upon several factors, such as myocardial metabolism [1,2] and the duration and severity of the blood flow reduction [3–5]. Therefore, in the clinical setting this process can result in asynergic segments containing an admixture of both necrotic and reversibly injured myocardium. Clinically, the identification of such functionally recoverable myocardium in regions of ventricular dysfunction has become an increasingly relevant issue, especially in the management of patients with severely impaired ventricular function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Farber JL, Chien KR, Mittnacht S Jr. The pathogenesis of irreversible cell injury in ischemia. Am J Pathol 241:271–281, 1981.

    Google Scholar 

  2. Neely JR, Feuvray D. Metabolic products and myocardial ischemia. Am J Pathol 241:282–291, 1981.

    Google Scholar 

  3. Reimer KA, Lowe JE, Rasmussen EM, Jennings RB. The wavefront phenomenon of myocardial ischemic cell death: I. Myocardial infarct size versus duration of coronary occlusion in dogs. Circulation 56:786–794, 1977.

    PubMed  CAS  Google Scholar 

  4. Jennings RB, Ganote CE, Reimer KA. Ischemic tissue injury. Am J Pathol 179–198, 1975.

    Google Scholar 

  5. Reimer KA, Jennings RB. The wavefront phenomenon of myocardial ischemic cell death: II. Transmural progression within the framework of ischemic bed size (myocardium at risk) and collateral flow. Lab Invest 40:633–644, 1979.

    PubMed  CAS  Google Scholar 

  6. Dilsizian V, Rocco P, Freedman NMT, Leon MB, Bonow RO. Enhanced detection of ischemic but viable myocardium by the reinjection of thallium after stress-redistribution imaging. N Engl J Med 323:141–146, 1990.

    Article  PubMed  CAS  Google Scholar 

  7. Bonow RO, Dilsizian V, Cuocolo A, Bacharach SL. Identification of viable myocardium in patients with chronic coronary artery disease and left ventricular dysfunction: Comparison of thallium scintigraphy with reinjection and PET imaging with 18F-fluorodeoxyglucose. Circulation 83:26–37, 1991.

    PubMed  CAS  Google Scholar 

  8. Tillisch J, Brunken R, Schwaiger M, Mandelkern M, Phelps M, Schelbert HR. Reversal of cardiac wall motion abnormalities predicted by using positron emission tomography. N Engl J Med 314:884–888, 1985.

    Article  Google Scholar 

  9. Schwaiger M, Brunken R, Grover-McKay M, Krivokapich J, Child J, Tillisch J, Phelps ME, Schelbert HR. Regional myocardial metabolism in patients with acute myocardial infarction assessed by positron emission tomography. J Am Coll Cardiol 8:800–808, 1986.

    Article  PubMed  CAS  Google Scholar 

  10. Iida H, Kanno I, Takahashi A, Miura S, Murakami M, Takahashi K, Ono Y, Shishido F, Inugami A, Tomura N, Higano S, Fujita H, Sasaki H, Nakamichi H, Mizusawa S, Kondo Y, Uemura K. Measurement of absolute myocardial blood flow with H2 15O and dynamic positron emission tomography: Strategy for quantification in relation to the partial-volume effect. Circulation 78:104–115, 1988.

    Article  PubMed  CAS  Google Scholar 

  11. Iida H, Rhodes CG, de Silva R, Yamamoto Y, Jones T, Araujo LI. Myocardial tissue fraction—Correction for partial volume effects and measure of tissue viability. J Nucl Med 32:2169–2175, 1991.

    PubMed  CAS  Google Scholar 

  12. Yamamoto Y, de Silva R, Rhodes CG, Araujo LI, Iida H, Rechavia E, Nihoyannopoulos P, Hackett D, Galassi AR, Taylor CJV, Lammertsma AA, Jones T, Maseri A. A new strategy for the assessment of viable myocardium and regional myocardial blood flow using 15O-water and dynamic positron emission tomography. Circulation 86:167–178, 1992.

    PubMed  CAS  Google Scholar 

  13. Wisenberg G, Schelbert HR, Hoffman EJ, Phelps ME, Robinson GD, Selin CE, Child J, Skorton D, Kuhl DE. In vivo quantitation of regional myocardial blood flow by positron-emission computed tomography. Circulation 63:1248–1258, 1981.

    Article  PubMed  CAS  Google Scholar 

  14. Henze E, Huang SC, Ratib O, Hoffman E, Phelps ME, Schelbert HR. Measurement of regional tissue and blood radiotracer concentrations from serial tomographic images of the heart. J Nucl Med 24:987–996, 1983.

    PubMed  CAS  Google Scholar 

  15. Spinks TJ, Araujo LI, Rhodes CG, Hutton BF. Physical aspects of cardiac scanning with a block detector positron tomograph. J Comput Assist Tomogr 15:893–904, 1991.

    Article  PubMed  CAS  Google Scholar 

  16. Kety SS. The theory and applications of exchange of inert gas at the lungs and tissues. Pharmacol Res 3:1–41, 1951.

    CAS  Google Scholar 

  17. Johnson JA, Cavert HM, Lipson N. Kinetics concerned with the distribution of isotopic water in isolated dog heart and skeletal muscle. Am J Physiol 171:687–693, 1952.

    PubMed  CAS  Google Scholar 

  18. Yipintsoi T, Bassingthwaite JB. Circulatory transport of iodoantipyrine and water in the isolated dog heart. Circ Res 7:461–477, 1970.

    Google Scholar 

  19. Araujo LI, Lammertsma A, Rhodes CG, MacFalls EO, Iida H, Rechavia E, Galassi A, de Silva R, Jones T, Maseri A. Non-invasive quantification of regional myocardial blood flow in normal volunteers and patients with coronary artery disease using oxygen-15 labeled water and positron emission tomography. Circulation 83:875–885, 1991.

    PubMed  CAS  Google Scholar 

  20. Lammertsma AA, De Silva R, Araujo LI, Jones T. Measurement of regional myocardial blood flow using C15O2 inhalation and positron emission tomography: Comparison of tracer models. Clin Phys Physiol Meas 13:1–20, 1992.

    Article  PubMed  CAS  Google Scholar 

  21. Bergmann SR, Fox KA, Rand AL, McElvany KD, Welch MJ, Markham J, Sobel BE. Noninvasive quantitation of myocardial blood flow in human subjects with oxygen-15 labeled water and positron emission tomography. J Am Coll Cardiol 14:639–652, 1989.

    Article  PubMed  CAS  Google Scholar 

  22. Iida H, Rhodes CG, de Silva R, Araujo LI, Bloomfield PM, Lammertsma AA, Jones T. Use of the left ventricular time-activity curve as a noninvasive input function in dynamic oxygen-15-water positron emission tomography. J Nucl Med 33:1669–1677, 1992.

    PubMed  CAS  Google Scholar 

  23. West JB, Dollery CL. Uptake of oxygen-15-labeled CO2 compared with carbon-11-labeled CO2 in the lung. J Appl Physiol 17:9–13, 1962.

    PubMed  CAS  Google Scholar 

  24. Bol A, Melin JA, Vanoverschelde J-L, Baudhuin T, Vogelaers D, Pauw MD, Michel C, Luxen A, Labar D, Cogneau M, Robert A, Heyndrickx GR, Wijns W. Direct comparison of [13N]ammonia and [15O]water estimates of perfusion with quantification of regional myocardial blood flow by microspheres. Circulation 87:512–525, 1993.

    PubMed  CAS  Google Scholar 

  25. Rhodes CG, Wollmer P, Fazio F, Jones T. Quantitative measurement of regional extra-vascular lung density using positron emission and transmission tomography. J Comput Assist Tomogr 5:783–791, 1981.

    Article  PubMed  CAS  Google Scholar 

  26. Thews G. Implications to physiology and pathology of oxygen diffusion at the capillary level. In: Schade JP, McMenemey WH (eds): Selective Vulnerability of the Brain. Oxford: Blackwell, 1963, pp 27–40.

    Google Scholar 

  27. Iïda H, Tamura Y, Takahashi A, Bloomfield PM, Agostini D, Ono Y. Perfusable tissue fraction—development of a rapid imaging technique and validation of the concept in chronic myocardial infarction. 1993 Abstract Book of First International Congress of Nuclear Cardiology, Cannes, France, p 2504.

    Google Scholar 

  28. De Silva R, Yamamoto Y, Rhodes CG, Iida H, Nihoyannopoulos P, Davies G, Jones T, Maseri A. Preoperative prediction of the outcome of coronary revascularization using positron emission tomography. Circulation 86:1738–1742, 1992.

    PubMed  Google Scholar 

  29. Vanoverschelde J-LJ, Melin JA, Bol A, Vanbutsele R, Cogneau M, Labar D, Robert A, Michel C, Wijns W. Regional oxidative metabolism in patients after recovery from reper-fused anterior myocardial infarction: Relation to regional blood flow and glucose uptake. Circulation 85:9–21, 1992.

    PubMed  CAS  Google Scholar 

  30. Bonow RO, Berman DS, Gibbons RJ, Johnson LL, Rumberger JA, Schwaiger M, Whackers FJTh. Cardiac positron emission tomography. A report for health officials from the Committee on Advanced Cardiac Imaging and Technology of the Council on Clinical Cardiology, American Heart Association. Circulation 84:447–454, 1991.

    PubMed  CAS  Google Scholar 

  31. Sebree L, Bianco JA, Subramanian R, Wilson MA, Swanson D, Hegge J, Tschudy J, Pyzalski R. Discordance between C-14 deoxyglucose and Tl-201 in reperfused myocardium. J Mol Cell Cardiol 23:603–616, 1991.

    Article  PubMed  CAS  Google Scholar 

  32. Depre C, Melin JA, Essamri B, Grandin C, Wijns W, Borgers M. Ultrastructural correlates of metabolism-flow mismatch pattern on positron emission tomography (abstr). Circulation 84(Suppl II):II-90, 1991.

    Google Scholar 

  33. Maddhi J, DiCarli M, Davidson M, Khanna S, Rokhsar S, Tillisch J, Laks H, Schelbert HR, Phelps ME. Prognostic significance af PET assessment of myocardial viability in patients with left ventricular dysfunction (abstr). J Am Coll Cardiol 19:142A, 1992.

    Google Scholar 

  34. Iida H, Takahashi A, Tamura Y, Ono Y. Comparison of H2 15O-MBF methods: Bolus injection, slow infusion, and C15O2 slow inhalation. 1993 Abstract Book of First International Congress of Nuclear Cardiology, Cannes, France, 4312.

    Google Scholar 

  35. Iida H, Kanno I, Miura S, Murakami M, Takahashi K, Uemura K. A determination of the regional brain/blood partition coefficient of water using dynamic positron emission tomography. J Cereb Blood Flow Metab 9:874–885, 1989.

    Article  PubMed  CAS  Google Scholar 

  36. Crystal GJ, Downey HF, Bashour AHA. Small vessel and total coronary blood volume during intracoronary adenosine. Am J Physiol 241:H194–H201, 1981.

    PubMed  Google Scholar 

  37. Herrero P, Staudenherz A, Walsh JF, Gropler RJ, Bergmann S. Heterogeneity of myocardial perfusion provides the physiological bias of perfusable tissue index. J Nucl Med 36:320–327, 1995.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Kluwer Academic Publishers

About this chapter

Cite this chapter

Iida, H. et al. (1996). Assessment of Myocardial Viability Using 15O-Water. In: Schwaiger, M. (eds) Cardiac Positron Emission Tomography. Developments in Cardiovascular Medicine, vol 165. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1233-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1233-8_13

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8524-3

  • Online ISBN: 978-1-4613-1233-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics