Skip to main content

11C-Acetate in the Study of Ischemic Heart Disease

  • Chapter
Cardiac Positron Emission Tomography

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 165))

  • 43 Accesses

Abstract

Nearly 60 years ago, Tennant and Wiggers made the seminal observation that myocardial contraction ceased almost simultaneously with the interruption of coronary blood flow (1). Subsequently, the concept was formulated that myocardial ischemia reflected an imbalance in myocardial oxygen supply (blood flow) and demand [myocardial oxygen consumption (MVO2)], the magnitude of which determined whether an ischemic episode was reversible or myocardial necrosis ensued. Indeed, it was the timely restoration of oxygen supply to reverse this imbalance before myocardial necrosis occurred that formed the basis for the development of thrombolytic therapy in the treatment of patients with acute myocardial infarction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Tennant R, Wiggers CJ. The effect of coronary occlusion on myocardial contraction. AmJ Physiol 112:351–361, 1935.

    Google Scholar 

  2. Liedtke AJ. Alterations of carbohydrate and lipid metabolism in the acutely ischemic heart. Prog Cardiovas Dis 23:321–336, 1981.

    Article  CAS  Google Scholar 

  3. Camici P, Ferrannini E, Opie LH. Myocardial metabolism in ischemic heart disease: Basic principles and application to imaging by positron emission tomography. Prog Cardiovasc Dis 32:217–238, 1989.

    Article  PubMed  CAS  Google Scholar 

  4. Myears DW, Sobel BE, Bergmann SR. Substrate use in ischemic and reperfused canine myocardium: Quantitative considerations. AmJ Physiol 253:H107–H114, 1987.

    CAS  Google Scholar 

  5. Stahl LD, Weiss HR, Becker LC. Myocardial oxygen consumption, oxygen supply/demand heterogeneity, and microvascular patency in regionally stunned myocardium. Circulation 77:865–872, 1988.

    Article  PubMed  CAS  Google Scholar 

  6. Laster SB, Becker LC, Ambrosio G, Jacobus WE: Reduced aerobic metabolic efficiency in globally stunned myocardium. J Mol Cell Cardiol 21:419–426, 1989.

    Article  PubMed  CAS  Google Scholar 

  7. Heyndrickx GR, Wijns W, Vogelaers D, Degrieck Y, Bol A, Vandeplassche G, Melin JA. Recovery of regional contractile function and oxidative metabolism in stunned myocardium induced by 1-hour circumflex coronary artery stenosis in chronically instrumented dogs. Circ Res 72:910–913, 1993.

    Google Scholar 

  8. Taegtmeyer H, Roberts AF, Raine AE. Energy metabolism in reperfused heart muscle: Metabolic correlates to return of function. J Am Coll Cardiol 6:864–870, 1985.

    Article  PubMed  CAS  Google Scholar 

  9. Kobayashi K, NeelyJR. Control of maximum rates of glycolysis in rat cardiac muscle. Circ Res 44:166–175, 1979.

    PubMed  CAS  Google Scholar 

  10. Braunwald E, Rutherford JD. Reversible ischemic left ventricular dysfunction; evidence for the “hibernating myocardium.” J Am Coll Cardiol 6:1467–1470, 1986.

    Article  Google Scholar 

  11. Rahimtoola SH. The hibernating myocardium. Am Heart J 117:211–219, 1989.

    Article  PubMed  CAS  Google Scholar 

  12. Keller AM, Cannon PJ. Effect of garded reductions of coronary pressure and flow on myocardial metabolism and performance: A model of “hibernating” myocardium. J Am Coll Cardiol 17:1661–1667, 1991.

    Article  PubMed  CAS  Google Scholar 

  13. Fedele FA, Gewirtz H, Capone RJ, Sharaf B, Most AS. Metabolic response to prolonged reduction of myocardial blood flow distal to severe coronary artery stenosis. Circulation 78:729–735, 1988.

    Article  PubMed  CAS  Google Scholar 

  14. Kloner RA, Przyklenk K, Patel B. Altered myocardial states: The stunned and hibernating myocardium. Am J Med 68(Suppl lA):14–22, 1989.

    Article  Google Scholar 

  15. Ellis SG, Wynne J, Braunwald E, Henschke CI, Sandor T, Kloner RA. Response of repe-fusion-salvaged, stunned myocardium to inotropic stimulation. Am Heart J 107:13–18, 1984.

    Article  PubMed  CAS  Google Scholar 

  16. Bolli R, Zhu W-X, Myers ML, Hartley CJ, Roberts R. Beta-adrenergic stimulation reverses postischemic myocardial dysfunction without producing subsequent functional deterioration. Am J Cardiol 56:964–968, 1985.

    Article  PubMed  CAS  Google Scholar 

  17. Becker LC, Levine JH, DiPaula AF, Guarnieri T, Aversano T. Reversal of dysfunction in postischemic stunned myocardium by epinephrine and postextrasystolic potentiation. J Am Coll Cardiol 7:580–589, 1986.

    Article  PubMed  CAS  Google Scholar 

  18. Hamby RI, Aintablian A, Wisoff G, Hartstein ML. Response of the left ventricle in coronary artery disease to postextrasystolic potentiation. Circulation 51:428–435, 1975.

    PubMed  CAS  Google Scholar 

  19. Stahl LD, Aversano TR, Becker LC. Selective enhancement of function of stunned myocardium by increased flow. Circulation 74:843–851, 1986.

    Article  PubMed  CAS  Google Scholar 

  20. Brown M, Marshall DR, Sobel BE, Bergmann SR. Delineation of myocardial oxygen utilization with carbon-11-labeled acetate. Circulation 76:687–96, 1987.

    Article  PubMed  CAS  Google Scholar 

  21. Buxton DB, Schwaiger M, Nguyen A, Phelps ME, Schelbert HR. Radiolabeled acetate as a tracer of myocardial tricarboxylic acid cycle flux. Circ Res 63:628–34, 1988.

    PubMed  CAS  Google Scholar 

  22. Brown MA, Myears DW, Bergmann SR. Noninvasive assessment of canine myocardial oxidative metabolism with carbon-11 acetate and positron emission tomography. J Am Coll Cardiol 12:1054–1063, 1988.

    Article  PubMed  CAS  Google Scholar 

  23. Buxton DB, Nienaber CA, Luxen A, Ratib O, Hansen H, Phelps ME, Schelbert HR. Noninvasive quantitation of regional myocardial oxygen consumption in vivo with [1–11C] acetate and dynamic positron emission tomography. Circulation 79:134–42, 1989.

    Article  PubMed  CAS  Google Scholar 

  24. Armbrecht JJ, Buxton DB, Schelbert HR. Validation of [1–11C] acetate as a tracer for noninvasive assessment of oxidative metabolism with positron emission tomography in normal, ischemic, postischemic, and hyperemic canine myocardium. Circulation 81: 1594–1605, 1990.

    Article  PubMed  CAS  Google Scholar 

  25. Bergmann SR, Shelton ME, Weinheimer CJ, Sobel BE, Pérez JE. Persistence of perfusion, metabolic, and functional reserve capacity in stunned myocardium (abstr). J Nucl Med 31:794, 1990.

    Google Scholar 

  26. Buxton DB, Mody FV, Krivokapich J, Phelps ME, Schelbert HR. Quantitative assessment of prolonged metabolic abnormalities in reperfused canine myocardium. Circulation 85: 1842–1856, 1992.

    PubMed  CAS  Google Scholar 

  27. Brown MA, Nohara R, Vered Z, Pérez JE, Bergmann SR. The dependence of recovery of stunned myocardium on restoration of oxidative metabolism (abstr). Circulation 78(Suppl II):II467, 1988.

    Google Scholar 

  28. Walsh M, Geltman E, Brown M, Henes C, Weinheimer C, Sobel B, Bergmann S. Noninvasive estimation of regional myocardial oxygen consumption by positron emission tomography with carbon-11 acetate in patients with myocardial infarction. J Nucl Med 30:1798–1808, 1989.

    PubMed  CAS  Google Scholar 

  29. Henes CG, Bergmann SR, Pérez JE, Sobel BE, Geltman EM. The time course of restoration of nutritive perfusion, myocardial oxyen consumption, and regional function after coronary thrombolysis. Cor Art Dis 1:687–696, 1990.

    Article  Google Scholar 

  30. Kalff V, Hicks RJ, Hutchins G, Topol E, Schwaiger M. Use of carbon-11 acetate and dynamic positron emission tomography to assess regional myocardial oxygen consumption in patients with acute myocardial infarction receiving thrombolysis or coronary angioplasty. Am J Cardiol 71:529–535, 1993.

    Article  PubMed  CAS  Google Scholar 

  31. Gropler RJ, Siegel BA, Sampathkumaran K, Perez JE, Sobel BE, Bergmann SR. Dependence of recovery of contractile function on maintenance of oxidative metabolism after myocardial infarction. J Am Coll Cardiol 19:989–997, 1992.

    Article  PubMed  CAS  Google Scholar 

  32. Pierard LA, De Landsheere CM, Berthe C, Rigo P, Kulbertus HE. Identification of viable myocardium by echocardiography during dobutamine infusion in patients with myocardial infarction after thrombolytic therapy: Comparison with positron emission tomography. J Am Coll Cardiol 15:1021–1031, 1990.

    Article  PubMed  CAS  Google Scholar 

  33. Gropler RJ, Geltman EM, Sampathkumaran KS, et al. Funcitonal recovery after revascularization for chronic coronary artery disease is dependent on maintenance of oxidative metabolism. J Am Coll Cardiol 20:569–577, 1992.

    Article  PubMed  CAS  Google Scholar 

  34. Gropler RJ, Geltman EM, Sampathkumaran KS, Perez JE, Schechtman KB, Conversano A, Sobel BE, Bergmann SR. Comparison of positron emission tomography with 11C acetate and 18F fluorodeoxyglucose for delineating viable myocardium. J Am Coll Cardiol 22: 1587–1597, 1993.

    Article  PubMed  CAS  Google Scholar 

  35. Vanoverschelde JL, Melin JA, Bol A, Vanbutsele R, Cogneau M, Labar D, Robert A, Michel C, Wijns W. Regional oxidative metabolism in patients after recovery from reperfused anterior myocardial infarction. Relation to regional blood flow and glucose uptake. Circulation 85:9–21, 1992.

    PubMed  CAS  Google Scholar 

  36. Conversano A, Herrero P, Geltman EM, Pérez JE, Bergmann SR, Gropler RJ. Differentiation of stunned from hibernating myocardium by positron emission tomography. Circulation 86(Suppl I):I427, 1992.

    Google Scholar 

  37. Weiss HR. Effect of coronary artery occlusion on regional arterial and venous O2 saturation, O2 extraction, blood flow, and O2 consumption in the dog heart. Circ Res 47:400–407, 1980.

    PubMed  CAS  Google Scholar 

  38. Messer JV, Wagman RJ, Levine HJ, Neill WA, Krasnow N, Gorlin R. Patterns of human myocardial oxygen extraction during rest and exercise. J Clin Invest 41:725–742, 1962.

    Article  PubMed  CAS  Google Scholar 

  39. Vanoverschelde JL, Wijns W, Depré C, Essamri B, Heyndrickx GR, Borgers M, Bol A, Melin JA. Mechanisms of chronic regional postischemic dysfunction in humans. New insights from the study of noninfarcted collateral-dependent myocardium. Circulation 87: 1513–1523, 1993.

    PubMed  CAS  Google Scholar 

  40. Walsh JF, Davila-Roman VG, Pérez JE, Geltman EM, Garrison DA, Gropler RJ. Resting regional myocardial oxidative metabolism predicts contractile, metabolic and flow responses to inotropic stimulation (abstr). Circulation 88:1–172, 1993.

    Google Scholar 

  41. Brown MA, Myears DW, Bergmann SR. Validity of estimates of myocardial oxidative metabolism with 11carbon acetate and positron emission tomography despite altered patterns of substrate utilization. J Nucl Med 30:187–193, 1989.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Kluwer Academic Publishers

About this chapter

Cite this chapter

Gropler, R.J. (1996). 11C-Acetate in the Study of Ischemic Heart Disease. In: Schwaiger, M. (eds) Cardiac Positron Emission Tomography. Developments in Cardiovascular Medicine, vol 165. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1233-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1233-8_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8524-3

  • Online ISBN: 978-1-4613-1233-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics