Skip to main content

Comparison of SPECT and PET for Assessment of Tissue Viability

  • Chapter
Cardiac Positron Emission Tomography

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 165))

  • 43 Accesses

Abstract

As interventional cardiology procedures evolve in the 1990s, the identification of viable myocardium by noninvasive imaging techniques will play an increasingly important role in determining which patients with coronary artery disease and left ventricular dysfunction are suitable candidates for myocardial revascularization. It is now apparent that regionally ischemic or hibernating myocardium, rather than irreversibly infarcted myocardium, contributes substantially to impaired left ventricular function in a large subset of such patients and that revascularization procedures in these patients may result in a clinically relevant improvement in regional and global left ventricular function [1–5]. The percentage of patients manifesting reversal of ventricular dysfunction after revascularization varies among reported series and is probably related to revascularization techniques and patient selection factors. It has been estimated that up to one third of patients (Figure 11-1) with chronic coronary artery disease and left ventricular dysfunction have the potential for significant improvement in ventricular function [6].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Rahimtoola SH. Coronary bypass surgery for chronic angina—1981: A perspective. Circulation 65:225–241, 1982.

    CAS  Google Scholar 

  2. Braunwald E, Rutherford JD. Reversible ischemic left ventricular dysfunction: Evidence for “hibernating” myocardium. J Am Coll Cardiol 8:1467–1470, 1986.

    Article  PubMed  Google Scholar 

  3. Rahimtoola SH. The hibernating myocardium. Am Heart J 117:211–213, 1989.

    Article  PubMed  CAS  Google Scholar 

  4. Ross J Jr. Myocardial perfusion-contraction matching: Implications for coronary artery disease and hibernation. Circulation 83:1076–1083, 1991.

    PubMed  Google Scholar 

  5. Dilsizian V, Bonow RO. Current diagnostic techniques of assessing myocardial viability in hibernating and stunned myocardium. Circulation 87:1–20, 1993.

    PubMed  CAS  Google Scholar 

  6. Bonow RO, Dilsizian V. Thallium-201 for assessing myocardial viability. Semin Nucl Med 21:230–241, 1991.

    Article  PubMed  CAS  Google Scholar 

  7. Scheiben HR, Phelps ME, Hoffman E, Huang SC, Kuhl DE. Regional myocardial blood flow, metabolism, and function assessed noninvasively with positron emission tomography. Am J Cardiol 80:1269–1277, 1980.

    Google Scholar 

  8. Marshall RC, Tillisch JH, Phelps ME, Huang SC, Carson R, Henze E, Schelbert HR. Identification and differentiation of resting myocardial ischemia and infarction in man with positron computed tomography, 18F-labeled fluorodeoxyglucose and N-13 ammonia. Circulation 67:766–778, 1983.

    Article  PubMed  CAS  Google Scholar 

  9. Tillisch JH, Brunken R, Marshall R, Schwaiger M, Mandelkorn M, Phelps M, Scheiben H. Reversibility of cardiac wall-motion abnormalities predicted by positron tomography. N Engl J Med 314:884–888, 1986.

    Article  PubMed  CAS  Google Scholar 

  10. Brunken R, Tillisch J, Schwaiger M, Child JS, Marshall R, Mandelkorn M, Phelps ME, Schelbert HR. Regional perfusion, glucose metabolism, and wall motion in patients with chronic electrocardiographic Q wave infarctions: Evidence for persistence of viable tissue in some infarct regions by positron emission tomography. Circulation 73:951–963, 1986.

    Article  PubMed  Google Scholar 

  11. Schelbert HR, Buxton D. Insights into coronary artery disease gained from metabolic imaging. Circulation 78:496–505, 1988.

    Article  PubMed  CAS  Google Scholar 

  12. Fudo T, Kambara H, Hashimoto T, Hayashi M, Nohara R, Tamaki N, Yonekura Y, Senda M, Konishi J, Kawai C. F-18 deoxyglucose and stress N-13 ammonia positron emission tomography in anterior wall healed myocardial infarction. Am J Cardiol 61: 1191–1197, 1988.

    Article  PubMed  CAS  Google Scholar 

  13. Tamaki N, Yonekura Y, Yamashita K, Saji H, Magata Y, Senda M, Konishi Y, Hirata K, Ban T, Konishi J. Positron emission tomography using fluorine-18 deoxyglucose in evaluation of coronary artery bypass grafting. Am J Cardiol 64:860–865, 1989.

    Article  PubMed  CAS  Google Scholar 

  14. Gropler RJ, Geltman EM, Sampathkumaran K, Perez JE, Moerlein SM, Sobel BE, Bergmann SR, Siegel BA. Functional recovery after coronary revascularization for chronic coronary artery disease is dependent on maintenance of oxidative metabolism. J Am Coll Cardiol 20:569–577, 1992.

    Article  PubMed  CAS  Google Scholar 

  15. Yamamoto Y, de Silva R, Rhodes CG, Araujo LI, Iida H, Rechavia E, Nihoyannolpoulos P, Hackett D, Galassi AR, Taylor CJV, Lammertsma AA, Jones T, Maseri A. A new strategy for the assessment of viable myocardium and regional myocardial blood flow using lsO-water and dynamic positron emission tomography. Circulation 86:167–178, 1992.

    PubMed  CAS  Google Scholar 

  16. de Silva R, Yamamoto Y, Rhodes CG, Iida H, Nihoyannolpoulos P, Davies GJ, Lammertsma A A, Jones T, Maseri A. Preoperative prediction of the outcome of coronary revascularization using positron emission tomography. Circulation 86:1738–1742, 1992.

    PubMed  Google Scholar 

  17. Gould KL, Haynie M, Hess MJ, Yoshida K, Mullani N, Smalling RW. Myocardial metabolism of fluorodeoxyglucose compared to cell membrane integrity for the potassium analogue Rb-82 for assessing infarct size in man by PET. J Nucl Med 32:1–9, 1991.

    PubMed  CAS  Google Scholar 

  18. Lucignani G, Paolini G, Landoni C, et al. Presurgical identification of hibernating myocardium by combined use of technetium-99m hexakis 2-methoxyisobutylisonitrile single photon emission tomography and fluorine-18 fluoro-2-deoxy-D-glucose positron emission tomography in patients with coronary artery disease. Eur J Nucl Med 19:874–881, 1992.

    Article  PubMed  CAS  Google Scholar 

  19. Carrel T, Jenni R, Haubold-Reuter S, Von Schulthess G, Pasic M, Turina M. Improvement in severely reduced left ventricular function after surgical revascularization in patients with preoperative myocardial infarction. Eur J Cardiothorac Surg 6:479–484, 1992.

    Article  PubMed  CAS  Google Scholar 

  20. vom Dahl J, Altehoefer C, Sheehan FH, Beilin I, Uebis R, Kleinhans E, Messmer BJ, Hanrath P, Buell U. Recovery of myocardial function following coronary revascularization: impact of viability and long-term vessel patency as assessed by preoperative F-18 FDG PET and serial angiography (abstr). J Nucl Med 34:23P, 1993.

    Google Scholar 

  21. Opie LH. Effects of regional ischemia on metabolism of glucose and fatty acids: Relative rates of aerobic and anaerobic energy production during myocardial infarction and comparison with effects of anoxia. Circ Res 38(Suppl 1):I52–I74, 1976.

    PubMed  CAS  Google Scholar 

  22. Camici P, Ferrannini E, Opie LH. Myocardial metabolism in ischemic heart disease: Basic principles and application to imaging by positron emission tomography. Prog Cardiovasc Dis 32:217–238, 1989.

    Article  PubMed  CAS  Google Scholar 

  23. Bessozi Mc, Brown MD, Hubner KF, Smith GT, Bond HW, Goodman MM, Buonocore E. Retrospective post-therapy evaluation of cardiac function in 208 coronary artery disease patients evaluated by positron emission tomography (abstr). J Nucl Med 33:885, 1992.

    Google Scholar 

  24. Neinaber CA, Brunken RC, Sherman CT, Yeatman LA, Gambhir SS, Krivokapitch J, Demer LL, Ratib O, Child JS, Phelps ME, Schelbert HR. Metabolic and functional recovery of ischemic human myocardium after coronary angioplasty. J Am Coll Cardiol 18:966–978, 1991.

    Article  Google Scholar 

  25. Bruschke AVG, Proudfit WL, Sones FM. Progress study of 590 consecutive nonsurgical cases of coronary artery diseased followed 5–9 years. II. Ventriculographic and other correlations. Circulation 47:1154–1163, 1973.

    PubMed  CAS  Google Scholar 

  26. Hammermeister KE, DeRouen TA, Dodge HT. Variables predictive of survival in patients with coronary disease: Selection by univariate and multivariate analysis from the clinical, electrocardiographic, exercise, arteriographic, and quantitative angiographic evaluations. Circulation 59:421–430, 1979.

    PubMed  CAS  Google Scholar 

  27. Harris PJ, Harrel FE, Lee KL, Behar VS, Rosati RA. Survival in medically treated coronary artery disease. Circulation 60:1259–1269, 1979.

    PubMed  CAS  Google Scholar 

  28. Mock MB, Ringqvist I, Fisher LD, Davis KB, Chaitman BR, Kouchoukos NT, Kaiser GC, Alderman E, Ryan TJ, Russell RO Jr. Mullin S, Fray D, Killip T III, and participants in the Coronary Artery Surgery Study. Survival of medically treated patients in the Coronary Artery Surgery Study (CASS) registry. Circulation 66:562–568, 1982.

    Google Scholar 

  29. Eitzman D, AI-Aouar Z, Kanter HL, vom Dahl J, Kirsh M, Deeb GM, Schwaiger M. Clinical outcome of patients with advanced coronary artery disease after viability studies with positron emission tomography. J Am Coll Cardiol 20:559–565, 1992.

    Article  PubMed  CAS  Google Scholar 

  30. Maddahi J, DiCarli M, Davidson M, Khanna S, Rokhsar S, Tillisch J, Laks H, Scheiben H, Phelps M. Prognostic significance on PET assessment of myocardial viability in patients with left ventricular dysfunction (abstr). J Am Coll Cardiol 19:142A, 1992.

    Google Scholar 

  31. DiCarli M, Khanna S, Davidson M, Harris G, Brunken R, Czernin J, Mody F, Höh C, Stevenson L, Laks H, Hawkins R, Phelps M, Scheiben HR, Maddahi J. The value of PET for predicting improvement in heart failure symptoms in patients with coronary artery disease and severe left ventricular dysfunction (abstr). J Am Coll Cardiol 21:129A, 1993.

    Google Scholar 

  32. Gibson RS, Watson DD, Taylor GJ, Crosby IK, Wellons HL, Holt ND, Beller GA. Prospective assessment of regional myocardial perfusion before and after coronary revascularization surgery by quantitative thallium-201 scintigraphy. J Am Coll Cardiol 1: 804–815, 1983.

    Article  PubMed  CAS  Google Scholar 

  33. Liu P, Kiess MC, Okada RD, Block PC, Strauss HW, Pohost GM, Boucher CA. The persistent defect on exercise thallium imaging and its fate after myocardial revascularization: Does it represent scar or ischemia? Am Heart J 110:996–1001, 1985.

    Article  PubMed  CAS  Google Scholar 

  34. Manyari DE, Knudtson M, Kloiber R, Roth D. Sequential thallium-201 myocardial perfusion studies after successful percutaneous transluminal coronary artery angioplasty: Delayed resolution of exercise induced scintigraphic abnormalities. Circulation 77:86–95, 1988.

    Article  PubMed  CAS  Google Scholar 

  35. Cloninger KG, DePuey EG, Garcia EV, Roubin GS, Robbins WL, Nody A, DePasquale EE, Berger HJ. Incomplete redistribution in delayed thallium-201 single photon emission computed tomographic (SPECT) images: An overestimation of myocardial scarring. J Am Coll Cardiol 12:955–963, 1988.

    Article  PubMed  CAS  Google Scholar 

  36. Ohtani H, Tamaki N, Yonekura Y, Mohiuddin IH, Hirata K, Ban T, Konishi J. Value of thallium-201 reinjection after delayed SPECT imaging for predicting reversible ischemia after coronary artery bypass grafting. Am J Cardiol 66:394–399, 1990.

    Article  PubMed  CAS  Google Scholar 

  37. Brunken R, Schwaiger M, Grover-McKay M, Phelps ME, Tillisch J, Schelbert HR. Positron emission tomography detects tissue metabolic activity in myocardial segments with persistent thallium perfusion defects. J Am Coll Cardiol 10:557–567, 1987.

    Article  PubMed  CAS  Google Scholar 

  38. Tamaki N, Yonekura Y, Yamashita K, Senda M, Saji H, Hashimoto T, Fudo T, Kambara H, Kawai C, Ban T, Konishi J. Relation of left ventricular perfusion and wall motion with metabolic activity in persistent defects on thallium-201 tomography in healed myocardial infarction. Am J Cardiol 62:202–208, 1988.

    Article  PubMed  CAS  Google Scholar 

  39. Brunken RC, Kottou S, Nienaber CA, Schwaiger M, Ratib OM, Phelps ME, Schelbert HR. PET detection of viable tissue in myocardial segments with persistent defects at Tl-201 SPECT. Radiology 65:65–73, 1989.

    Google Scholar 

  40. Tamaki N, Yonekura Y, Yamashita K, Mukai T, Magata Y, Hashimoto T, Fudo T, Kambara H, Kawai C, Hirata K, Ban T, Konishi J. SPECT thallium-201 tomography and positron tomography using N-13 ammonia and F-18 fluorodeoxyglucose in coronary artery disease. Am J Cardiac Imaging 3:3–9, 1989.

    Google Scholar 

  41. Gutman J, Berman DS, Freeman M, Rozanski A, Maddahi J, Waxman A, Swan HJC. Time to completed redistribution of thallium-201 in exercise myocardial scintigraphy: Relationship to the degree of coronary artery stenosis. Am Heart J 106:989–995, 1983.

    Article  PubMed  CAS  Google Scholar 

  42. Kiat H, Berman DS, Maddahi J, Yang LD, Van Train K, Rozanski A, Friedman J. Late reversibility of tomographic myocardial thallium-201 defects: An accurate marker of myocardial viability. J Am Coll Cardiol 12:1456–1463, 1988.

    Article  PubMed  CAS  Google Scholar 

  43. Yang LD, Berman DS, Kiat H, Resser KJ, Friedman JD, Rozanski A, Maddahi J. The frequency of late reversibility in SPECT thallium-201 stress-redistribution studies. J Am Coll Cardiol 15:334–340, 1990.

    Article  PubMed  CAS  Google Scholar 

  44. Brunken RC, Mody FV, Hawkins RA, Neinaber C, Phelps ME, Scheiben HR. Positron emission tomography detects metabolic activity in myocardium with persistent 24-hour single photon emission computed tomography 201Tl defects. Circulation 86: 1357–1369, 1992.

    PubMed  CAS  Google Scholar 

  45. Dilsizian V, Rocco TP, Freedman NMT, Leon MB, Bonow RO. Enhanced detection of ischemic but viable myocardium by the reinjection of thallium after stress-redistribution imaging. N Engl J Med 323:141–146, 1990.

    Article  PubMed  CAS  Google Scholar 

  46. Rocco TP, Dilsizian V, McKusick KA, Fischman AJ, Boucher CA, Strauss HW. Comparison of thallium redistribution with rest “reinjection” imaging for detection of viable myocardium. Am J Cardiol 66:158–163, 1990.

    Article  PubMed  CAS  Google Scholar 

  47. Tamaki N, Ohtani H, Yonekura Y, Nohara R, Kambara H, Kawai C, Hirata K, Ban T, Konishi J. Significance of fill-in after thallium-201 reinjection following delayed imaging: Comparison with regional wall motion and angiographic findings. J Nucl Med 31: 1617–1623, 1990.

    PubMed  CAS  Google Scholar 

  48. Bonow RO, Dilsizian V, Cuocolo A, Bacharach SL. Identification of viable myocardium in patients with chronic coronary artery disease and left ventricular dysfunction: Comparison of thallium-201 with reinjection and PET imaging with 18F-fluorodeoxyglucose. Circulation 83:26–37, 1991.

    PubMed  CAS  Google Scholar 

  49. Dilsizian V, Smeltzer WR, Freedman NMT, Dextras R, Bacharach SL, Bonow Ro. Thallium reinjection after stress-redistribution imaging: Does 24 hour delayed imaging following reinjection enhance detection of viable myocardium? Circulation 83:1247–1255, 1991.

    PubMed  CAS  Google Scholar 

  50. Kayden DS, Sigal S, Soufer R Mattera J, Zaret BL, Wackers FThJ. Thallium-201 for assessment of myocardial viability: Quantitative comparison of 24-hour redistribution imaging with imaging after reinjection at rest. J Am Coll Cardiol 18:1480–1486, 1991.

    Article  PubMed  CAS  Google Scholar 

  51. Tamaki N, Ohtani H, Yamashita K, Magata Y, Yonekura Y, Nohara R, Kambara H, Kawai C, Hirata K, Ban T, Konishi J. Metabolic activity in the areas of new fill-in after thallium-201 reinjection: Comparison with positron emission tomography using fluorine-18-deoxyglucose. J Nucl Med 32:673–678, 1991.

    PubMed  CAS  Google Scholar 

  52. Perrone-Filardi P, Bacharach SL, Dilsizian V, Maurea S, Frank JA, Bonow RO: Regional left ventricular wall thickening: Relation to regional uptake of 18F-fluorodeoxyglucose and thallium-201 in patients with chronic coronary artery disease and left ventricular dysfunction. Circulation 86:1125–1137, 1992.

    PubMed  CAS  Google Scholar 

  53. Neinaber CA, de la Roche J, Camarius H, Montz R. Impact of 201thallium reinjection imaging to identify myocardial viability after vasodilation-redistribution SPECT (abstr). J Am Coll Cardiol 21:283A, 1993.

    Google Scholar 

  54. Berger BC, Watson DD, Burwell LR, Crosby IK, Wellons HA, Teates CD, Beller GA. Redistribution of thallium at rest in patients with stable and unstable angina and the effect of coronary artery bypass surgery. Circulation 60:1114–1125, 1979.

    PubMed  CAS  Google Scholar 

  55. Iskandrian AS, Hakki A, Kane SA, Goel IP, Mundth ED, Hakki A, Segal BL. Rest and redistribution thallium-201 myocardial scintigraphy to predict improvement in left ventricular function after coronary artery bypass grafting. Am J Cardiol 51:1312–1316, 1983.

    Article  PubMed  CAS  Google Scholar 

  56. Mori T, Minamiji K, Kurogane H, Ogawa K, Yoshida Y. Rest-injected thallium-201 imaging for assessing viability of severe asynergic regions. J Nucl Med 32:1718–1724, 1991.

    PubMed  CAS  Google Scholar 

  57. Dilsizian V, Perrone-Filardi P, Arrighi JA, Bacharach SL, Quyyumi AA, Freedman NMT, Bonow RO: Concordance and discordance between stress-redistribution-reinjection and rest-redistribution thallium imaging for assessing viable myocardium. Circulation 88: 941–952, 1993.

    PubMed  CAS  Google Scholar 

  58. Ragosta M, Beller GA, Watson DD, Kaul S, Gimple LW. Can resting thallium-201 imaging predict improvement after revascluarization in patients with severly reduced left ventricular function (abstr)? Circulation 84(Suppl II):II-89, 1991.

    Google Scholar 

  59. Perrone-Filardi P, Pace L, Prestaro M, Piscione F, Betocchi S, Squame F, Soricelli A, Salvatore M, Chiariello M. Rest-redistribution 201thallium tomography identifies viable dysfunctional myocardium in patients with coronary artery disease (abstr). J Am Coll Cardiol 23:423A, 1994.

    Google Scholar 

  60. Freeman I, Grunwald AM, Hoory S, Bodenheimer MM. Effect of coronary occlusion and myocardial viability on myocardial activity of technetium-99m-sestamibi. J Nucl Med 32:292–298, 1991.

    PubMed  CAS  Google Scholar 

  61. Sinusas AJ, Watson DD, Cannon JM, Beller GA. Effect of ischemia and postischemic dysfunction on myocardial uptake of technetium-99m-labeled methoxyisobutyl isonitrile and thallium-201. J Am Coll Cardiol 14:1785–1793, 1989.

    Article  PubMed  CAS  Google Scholar 

  62. Beanlands RSB, Dawood F, Wen WH, McLaughlin PR, Butany J, D’Amati G, Liu PP. Are the kinetics of technetium-99m methoxyisobutyl isonitrile affected by cell metabolism and viability? Circulation 82:1802–1814, 1990.

    Article  PubMed  CAS  Google Scholar 

  63. Edwards NC, Ruiz M, Watson DD, Beller GA. Does Tc-99m sestamibi given immediately after coronary reperfusion reflect viability (abstr)? Circulation 82:III542, 1990.

    Google Scholar 

  64. Li QS, Matsumura K, Dannais R, Becker LC. Radionuclide markers of viability in reperfused myocardium: Comparison between 18F-2-deoxyglucose. 201T1, and 99mTc-sestamibi (abstr). Circulation 82:III–542, 1990.

    Article  Google Scholar 

  65. Christian TF, Behrenbeck T, Pellikka PA, et al. Mismatches of left ventricular function and perfusion with Tc-99m-isonitrile following reperfusion therapy for acute myocarial infarctions: Identification of myocardial stunning and hyperkinesia. J Am Coll Cardiol 16:1632–1638, 1990.

    Article  PubMed  CAS  Google Scholar 

  66. Bonow RO, Dilsizian V: Thallium-201 and technetium-99m-sestamibi for assessing viable myocardium. J Nucl Med 33:815–818, 1992.

    PubMed  CAS  Google Scholar 

  67. Cuocolo A, Pace L, Ricciardelli B, Chiariello M, Trimarco B, Salvatore M. Identification of viable myocardium in patients with chronic coronary artery disease: Comparison of thallium-201 scintigraphy with reinjection and technetium-99m methoxyisobutyl isonitrile. J Nucl Med 33:505–511, 1992.

    PubMed  CAS  Google Scholar 

  68. Marzullo P, Sambuceti G, Parodi O. The role of sestamibi scintigraphy in the radioisotopic assessment of myocardial viability. J Nucl Med 33:1925–30, 1992.

    PubMed  CAS  Google Scholar 

  69. Marzullo P, Parodi O, Reisenhofer B, Sambeceti G, Picano E, Distante A, Gimelli A, L’Abbate A. Value of rest thallium-201/technetium-99m sestamibi scans and dobutamine echocardiography for detecting myocardial viability. Am J Cardiol 71:166–172, 1993.

    Article  PubMed  CAS  Google Scholar 

  70. Sawada SG, Allman KC, Muzik O, Beanlands RSB, Wolfe ER Jr, Gross M, Fig L, Schwaiger M. Positron emission tomography detects evidence of viability in rest technetium-99m sestamibi defects. J Am Coll Cardiol 23:92–98, 1994.

    Article  PubMed  CAS  Google Scholar 

  71. Dilsizian V, Arrighi JA, Diodati JG, Quyyumi AA, Bacharach SL, Marin-Neto JA, Uddin S, Bonow RO. Myocardial viability in patients with chronic ischemic left ventricular dysfunction: Comparison of 201thallium. 99mTc-sestamibi, and 18F-fluorodeoxyglucose. Circulation 89, 1994, in press.

    Google Scholar 

  72. Udelson JE, Coleman PS, Matherall JA, Pandian NG, Gomes AR, Griffith JL, Shea NL, Oates E, Konstam MA. Predicting recovery of severe regional ventricular dysfunction: Comparison of resting scintigraphy with thallium-201 and technetium-99m sestamibi. Circulation, in press.

    Google Scholar 

  73. Ellis SG, Wynne J, Braunwauld E, Henschke CI, Sandor T, Kloner RA. Response of reperfusion-salvaged stunned myocardium to intropic stimulation. Am Heart J 107: 13–19, 1984.

    Article  PubMed  CAS  Google Scholar 

  74. Pierard LA, De Lansheere CM, Berthe C, Rigo P, Kulbertus HA. Identification of viable myocardium by echocardiography during dobutamine infusion in patients with myocardial infarction after thrombolytic therapy: Comparison with positron emission tomography. J Am Coll Cardiol 15:1021–1031, 1990.

    Article  PubMed  CAS  Google Scholar 

  75. Barilla F, Gheorghiade M, Alam M, Khaja F, Goldstein S: Low-dose dobutamine in patients with acute myocardial infarction identifies viable but not contractile myocardium and predicts the magnitude of improvement in wall motion abnormalities in response to coronary revascularization. Am Heart J 122:1522–1531, 1991.

    Article  PubMed  CAS  Google Scholar 

  76. Smart SC, Sawada S, Ryan T, Segar D, Atherton L, Berkowitz K, Bourdillon PDV, Feigenbaum H. Low-dose dobutamine echocardiography detects reversible dysfunction after thrombolytic therapy of acute myocardial infarction. Circulation 88:405–415, 1993.

    PubMed  CAS  Google Scholar 

  77. Cigarroa CG, deFilippi CR, Brickner E, Alvarez LG, Wait MA, Grayburn PA. Dobutamine stress echocardiography identifies hibernating myocardium and predicts recovery of left ventricular function after coronary revascularization. Circulation 88:430–436, 1993.

    PubMed  CAS  Google Scholar 

  78. La Canna G, Alfieri O, Giubbini R, Gargano M, Ferrari R, Visioli O. Echocardiography during infusion of dobutamine for identification of reversible dysfunction in patients with chronic coronary artery disease. J Am Coll Cardiol 23:617–626, 1994.

    Article  PubMed  Google Scholar 

  79. Perrone-Filardi P, Prastaro M, Pace L, Piscione F, Betocchi S, Soricelli A, Salvatore M, Chiariello M. Dobutamine echocardiography predicts recovery of hypoperfused dysfunctional myocardium in patients with coronary artery disease (abstr). J Am Coll Cardiol 23: 55A, 1994.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Kluwer Academic Publishers

About this chapter

Cite this chapter

Bonow, R.O. (1996). Comparison of SPECT and PET for Assessment of Tissue Viability. In: Schwaiger, M. (eds) Cardiac Positron Emission Tomography. Developments in Cardiovascular Medicine, vol 165. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1233-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1233-8_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8524-3

  • Online ISBN: 978-1-4613-1233-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics