Nutritional properties and applications of erythritol: a unique combination?

  • J. Goossens
  • M. Gonze


In pursuit of well-being food manufacturers try to fulfil our desire for tasty and convenient foods. Modern lifestyle however has changed eating behaviour and advances in medical sciences have extended life expectancy. These two major changes have meant that we have become increasingly vulnerable to so-called ‘civilised world’ diseases such as caries, diabetes, cancers and rheumatoid diseases.


Cocoa Butter Sugar Alcohol Nutritional Property Intense Sweetener Cocoa Mass 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anon (1985) Scientific Consensus Conference on Methods for Assessment of the Cariogenic Potential of Foods. San Antonio, Texas, November 17–21. J. Dent. Res. 65, 1473–1543.Google Scholar
  2. Anon (1987) The energy value of sugar alcohols. Voeding 48(12), 357–365.Google Scholar
  3. Aoli, M. A. Y., Pastore, G.M. and Park, Y.K. (1993) Microbial transformation of sucrose and glucose to erythritol. Biotechnology Letters 15(4), 383–388.CrossRefGoogle Scholar
  4. Bär, A. (1984) Safety assessment of polyol sweeteners; some aspects of toxicity. Food Chemistry 16, 231–241.CrossRefGoogle Scholar
  5. Bär, A. (1988) Caries prevention with xylitol. In World Review Nutrition and Dietetics, Vol. 55, G.H. Bourne (ed.). S. Karger, Basel, pp. 183–209.Google Scholar
  6. Bornet, F., Dauchy, F., Chevalier, A. and Slama, G. (1992) Etude de devenir metabolique, après ingestion chez l’homme sain, d’un nouvel edulcorant de charge basse calorie: l’érythritol. Gastroenterol. Clin. Biol. 16, A169.Google Scholar
  7. Burkitt, D.P., Walker, A.R.P. and Painter, N.S. (1972) Effect of dietary fiber on stool and transit time, and its role in the causation of disease. Lancet 30, 1408–1411.CrossRefGoogle Scholar
  8. Cunha, M., Firme, P., San Romao, M.V. and Santos, H. (1992) Application of nuclear magnetic resonance to elucidate the unexpected biosynthesis of erythritol by Leuconostoc oenos. Appl. Env. Microbiol. 58(7), 2271–2279.Google Scholar
  9. Estrella, M.I., Hernandez, M.T. and Olano, A. (1986) Changes in polyalcohol and phenol compound contents in the ageing of sherry wines. Food Chemistry 20(2), 137–152.CrossRefGoogle Scholar
  10. Firme, M.P., Leitao, M.C. and San Romao, M.V. (1994) The metabolism of sugar and malic acid bv Leuconostoc oenos: effect of malic acid, pH and aeration conditions. J. Appl. Bact. 76(2), 173–181.Google Scholar
  11. Flouné, B. (1989) The digestion of starches and sugars present in the diet. In Dietary Starches and Sugars in Man: a Comparison. J. Dobbing (ed.). Springer-Verlag, Berlin, Heidelberg, pp. 49–66.Google Scholar
  12. Gomcz-Cordoves, M.C. and Hernandez, L. (1987) Polyalcohols and sugars in wines with different degrees of pressing. Alimentaria 183, 109–111.Google Scholar
  13. Graf, H. and Mühlemann, H.R. (1965) Glass electrode telemetry of pH-changes of interdental human plaque. J. Dent. Res. 44, 1039.Google Scholar
  14. Grossklaus, R. (1987) Dosisabhängigkeit der energetischen Nutzung von Zuckeraustausch-stoffen. Dtsch. Zahnarztl. 42, S154–S158.Google Scholar
  15. Hattori, K. and Suzuki, T. (1974) Production of erythritol bv n-alkene grown yeasts. Agric. Biol. Chem. 38(3), 581–586.CrossRefGoogle Scholar
  16. Hiele, M., Ghoos, Y., Rutgeers, P. and Vantrappen, G. (1989) How to determine the absorptive and metabolic characteristic of new sugars and sugar alcohols. Gastroenterology 96, A208.Google Scholar
  17. Hiele, M., Ghoos, Y., Rutgeers, P. and Vantrappen, G. (1993) Metabolism of erythritol in humans: comparison with glucose and lactitol. British Journal of Nutrition 69.Google Scholar
  18. Hodgkinson, A., Davis, D., Fourman, F., Robertson, W.G. and Roe, F.J.C. (1982) A comparison of the effects of lactose and of two chemically modified waxy maize starches on mineral metabolism in the rat. Fd Cosmet. Toxicol. 20. 371–382.Google Scholar
  19. Imfeld, T. (1982) Interdental plaque pH telemetry. In Surface and Colloid Phenomena in the Oral Cavity: Methodological Aspects. Proceedings of a workshop in saliva-dental plaque and enamel surface interactions, Frank and Leach (eds), TRL Press Ltd., London. pp. 143–156.Google Scholar
  20. Imfeld, T. (1983) Identification of Low Caries Risk Dietary Components. Monographs in Oral Science, Vol. 11, S. Karger, Basel.Google Scholar
  21. Ishizuka, H., Wako, K., Kasumi, T. and Sasaki, T. (1989) Breeding of a mutant of Aureohasidium sp. with high erythritol production. Journal of Fermentation and Bioengineering 68(5), 310–314.CrossRefGoogle Scholar
  22. Kawanabe, J., Hirasawa, M., Takeuchi, T., Oda, T. and Ikeda, T. (1992) Noncariogenicity of erythritol as a substrate. Caries Research 26. 258–362.CrossRefGoogle Scholar
  23. Kleinberg, I. (1970) Regulation of the acid-base metabolism of the dento-gingival plaque and its relation to dental caries and periodontal disease. International Dental Journal 20, 451–465.Google Scholar
  24. Leegwater, D.C., De Groot, A.P. and van Kalmthout-Kutper, M. (1974) The etioiogy of caecal enlargement in the rat. Fd Cosmet. Toxicol. 12, 687–697.CrossRefGoogle Scholar
  25. Leutner, C. (1981) (ed.), Geigy Scientific Tables, Vol. 1. Ciba Geigy Ltd., Basle, Switzerland, pp. 84–85.Google Scholar
  26. Levin, R.J. (1989) Dietary carbohydrate and the kinetics of intestinal functions in relation to hexose absorption. In Dietary Starches and Sugars in Man: a Comparison. J. Dobbing (ed.), Springer-Verlag, Berlin, Heidelberg, pp. 89–118.Google Scholar
  27. Linke, H. A.B. (1987) Sweeteners and dental health: the influence of sugar substitutes on oral microorganisms. In Development in Sweeteners - 3. Grenby T.H. (ed.); Elsevier. Amsterdam, pp. 151–188.Google Scholar
  28. Loesche, W.H. (1986) Role of Streptococcus mutans in human dental decay. Microbiology Review 50, 353–380.Google Scholar
  29. Loesche, W.H. (1995) The rationale for caries prevention through the use of sugar substitutes. Int. Dent. J. 35, 1–8.Google Scholar
  30. Meyrial, V., Delgenes, J.P., Moletta, R. and Navarro, J.M. (1991) Xylitol production from D-xylose by Candida Guilmlermondi: Fermentation behaviour. Biotechnology Letters 13(4), 281–286.CrossRefGoogle Scholar
  31. Mühlemann, H.R. (1979) Sugar substitutes and plaque pH telemetry in caries prevention. J. Clin. Periodontol. extra issue 7, 47.CrossRefGoogle Scholar
  32. Noda, K. and Oku, T. (1990a) The fate and availability of erythritol in rats. International Symposium of Caloric Evaluation of Carbohydrates — Book of Abstracts. Kyoto 11–12 Jan.Google Scholar
  33. Noda, K. and Oku, T. (1990b) The erythritol balance study and evaluation of its metabolisable energy. International Symposium of Caloric Evaluation of Carbohydrates — Book of Abstracts. Kyoto 11–12 Jan.Google Scholar
  34. Noda, K. and Oku, T. (1992) Metabolism and distribution of erythritol after oral administration to rats. Journal of Nutrition 122, 1266–1272.Google Scholar
  35. O’Connor, M. (1992) Europe and nutrition: prospects for public health. Brit. Med. J. 304, 178–180.CrossRefGoogle Scholar
  36. Oku, T. and Noda, K. (1990) Influence of chronic ingestion of newly developed sweetener, erythritol on growth and gastrointestinal function of the rats. Nutrition Research 10, 987–996.CrossRefGoogle Scholar
  37. Ribereau-Gayon, P. and Bertrand, A. (1972) New applications of gas chromatography for analysis and quality control of wines. Vitis 10(4), 318–322.Google Scholar
  38. Roberts, G.P., MacDiarmid, A. and Gleed, P. (1976) The present of erythritol in the fetal fluid of fallow deer. Res. Vet. Science 20, 154–256.Google Scholar
  39. Roboz, J., Kappatos, D.C., Greaves, J. and Holland, J.F. (1984) Determination of polyols in serum by selected ion monitoring. Clin. Chem. 30(10), 1611–1615.Google Scholar
  40. Sasaki, T. (1989) Production and properties of erythritol obtained by fermentation of glucose by Aureobasidium. Journal of the Agricultural Chemistry Society of Japan 63(6), 1130–1132.CrossRefGoogle Scholar
  41. Servo, C., Pabo, J. and Pitkaenen, E. (1977) Gas chromatographic separation and mass spectrometric identification of polyols in human cerebrospinal fluid and plasma. Acta Neurol. Scand. 56, 104–110.CrossRefGoogle Scholar
  42. Shindou, T., Sasaki, Y., Miki, H., Eguchi, T., Hagiwara, K and Ichikawa, T. (1988) Determination of erythritol in fermented foods by HPLC. Journal of the Eood Hygienic Society of Japan 29(6), 419–422.Google Scholar
  43. Shindou, T., Sasaki, Y., Miki, H., Eguchi, T., Hagiwara, K. and Ichikawa, T. (1989) Identification of erythritol by HPLC and GC-MS and quantitative measurement in pulps of various fruits. J. Agric. Eood Chem. 37, 1474–1476.CrossRefGoogle Scholar
  44. Southgate, D.A.T. (1989) The role of the gut microflora in the digestion of starches and sugars: with special reference to their role in the metabolism of the host, including energy and vitamin metabolism. In Dietary Starches and Sugars in Man: a Comparison. J. Dobbing (ed.), Springer-Verlag, Berlin, Heidelberg, pp. 67–88.Google Scholar
  45. Spencer, J.F.T. (1968) Production of polyhydric alcohols by yeast. Progress in Industrial Microbiology 7, 1–42.Google Scholar
  46. Sponholz, W.R. and Dittrich, H.H. (1985) Sugar alcohols and myoinositol in wines and sherries. Vitis 24(2), 97–105.Google Scholar
  47. Sponholz, W.R., Lachev, M. and Dittrich, H.H. (1986) The formation of alditols by the yeasts of wine. Chemie Mikrobiologie Technologie der Lebensmittel. 10(1–2), 19–24.Google Scholar
  48. Størset, P., Stooke, O. and Jellum, E. (1978) Monosaccharides and monosaccharide derivatives in human seminal plasma. J. Chrom. 145, 351–357.CrossRefGoogle Scholar
  49. Tomana, M., Prchal, J.T., Cooper Garner, L., Skala, H.W. and Barker, S.A. (1984) Gas chromatographic analysis of lens monosaccharides. J. Lab. Clin. Med. 103(1), 137–142.Google Scholar
  50. van Es, A.J.H. (1987) Energy utilisation of low digestibility carbohydrates. In Leegwater D.C. et al. (eds.) Wageningen, Pudoc. 121–127.Google Scholar
  51. Würsch, P. and Schweizer, T. (1987) Sugar substitutes and their energy value for the human body. Dtsch. Zahnärztl. 42, S151–S153.Google Scholar
  52. Yoshida, H., Sugahara, J. and Hayashi, J. (1984) Studies on free sugars and free sugar alcohols of mushrooms. Journal of the Japanese Society of Food Science and Technology 31(12), 765–771.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1996

Authors and Affiliations

  • J. Goossens
  • M. Gonze

There are no affiliations available

Personalised recommendations