Grain Boundary Structure and Chemistry

  • V. Vitek
  • M. Yan

Abstract

The importance of understanding the atomic and chemical structure of grain boundaries in intermetallic compounds for a fundamental comprehension of their fracture behavior is the principal theme of this contribution. Since intermetallics are the prime examples of quasi-brittle materials, we first discuss general features of brittle fracture in ductile materials. Ll2 intermetallic compounds, in particular Ni3Al, have been studied most extensively; therefore, we review in detail the present state of our understanding of the atomic and chemical structure of grain boundaries in these alloys and discuss possible reasons for intrinsic brittleness of their grain boundaries. Results of recent atomistic studies of grain boundaries in Ll2 alloys are then described. First, we concentrate on comparison of the boundary structures in Ni3Al and Cu3Au, the two alloys with the same crystal structure but rather different propensities to ordering. Second, we discuss the effects of temperature and bulk nonstoichiometry on the structure and chemistry of grain boundaries in Ni3Al. At this point, the most important finding is that significantly different structures are invoked by segregation of nickel and aluminum, respectively, which may be related to the fact that only nickel-rich alloys may be ductilized by boron alloying. Finally, we discuss briefly the structure and properties of grain boundaries in NiAl and assess the possibilities and limits of further research on atomic level behavior of interfaces in intermetallic compounds.

Keywords

Entropy Nickel Boron Brittleness Recrystallization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aoki, K., and Izumi, O., 1979, J. Japan Inst. Metals 43: 1190.Google Scholar
  2. Baker, I., Darolia, R., Whittenberger, J. D., and Yoo, M. H., eds., 1993, High-Temperature Ordered Intermetallic Alloys V, MRS Symp. Proc. Vol. 288.Google Scholar
  3. Baker, I., and Schulson, E. M., 1989, Scripta Metall. 23: 1883.Google Scholar
  4. Baker, I., Schulson, E. M., Michael, J. R., and Pennycook, S. J., 1990, Phil. Mag. B 62: 659.Google Scholar
  5. Ball, A., and Smallman, R. E., 1966, Acta Metall. 14: 1349.Google Scholar
  6. Bartholomeusz, M. F., and Wert, J. A., 1992a, Acta Metall. Mater 40, 673.Google Scholar
  7. —, 1992b, J. Mater. Res. 7: 919.Google Scholar
  8. Binder, K., 1984, Application of the Monte Carlo Method in Statistical Physics (Berlin: Springer).Google Scholar
  9. Bradley, A. J., and Taylor, A., 1937, Proc. Roy. Soc. London A 159: 56.Google Scholar
  10. Brenner, S. S., and Ming-Jian, H., 1991, Scripta. Metall. Mater. 25: 1271.Google Scholar
  11. Briant, C. L., and Messmer, R. P., 1984, Acta Metall. 32: 2043.Google Scholar
  12. Camus, P. P., Baker, I., Horton, J. A., and Miller, M. K., 1988, J. Phys. France 49: C6–329.Google Scholar
  13. Chang, K. M., Darolia, R., and Lipsitt, H. A., 1992, Acta Metall. Mater 40: 2727.Google Scholar
  14. Chen, S. P., Srolovitz, D. J., and Voter, A. F., 1989, J. Mat. Res. 4: 62.Google Scholar
  15. Chen, S. P., Voter, A. F., Albers, R. C., Boring, A.M., and Hay, P. J., 1989, Scripta Metall. 23: 217.Google Scholar
  16. —, 1990, J. Mat. Res. 5: 955.Google Scholar
  17. Chen, S. P., Voter, A. F., Boring, A. M., Albers, R. C., and Hay, P. J., 1989, High-Temperature Ordered Intermetallics Alloys III, Materials Research Society 133: 149.Google Scholar
  18. Chen, S. P., Voter, A. F., and Srolovitz, D. J., 1986, Scripta Metall. 20: 1389.Google Scholar
  19. Darolia, R., Lahrman, D. F., Field, R. D., Dobbs, J. R., Chang, K. M., Goldman, E. H., and Konitzer, D. G., 1992, Ordered Intermetallics—Physical Metallurgy and Mechanical Behaviour, ed. C. T. Liu, R. W. Cahn, and G. Sauthoff, p. 679. Dordrecht, Kluwer Academic Publishers.Google Scholar
  20. Daw, M. S., and Baskes, M. I., 1984, Phys. Rev. B., 29: 6443.Google Scholar
  21. Dimiduk, D. M., 1991, Journal de Physique III, 1: 1025.Google Scholar
  22. Dimiduk, D. M., Weddington, V. L., and Lipsitt, H. A., 1987, High-Temperature Ordered Intermetallics Alloys II, MRS Symp. Proc. 81: 221.Google Scholar
  23. Eberhard, M. E., and Vvedensky, D. D., 1988, Scripta Metall., 22: 1183.Google Scholar
  24. Finnis, M. W., and Sinclair, J. E., 1984, Phil. Mag. A, 50: 45.Google Scholar
  25. Foiles, S. M., 1985, Phys. Rev. B, 32: 7685.Google Scholar
  26. —, 1989, Phys. Rev. B 40: 11502.Google Scholar
  27. Fonda, R. W., and Luzzi, D. E., 1993, Phil. Mag. A, 68, 1151.Google Scholar
  28. Forwood, C. T., and Gibson, M. A., 1992, Phil. Mag. A, 66: 1121.Google Scholar
  29. Freeman, A. J., 1992, Ber. Bunsen Ges. Phys. Chem., 96: 1512.Google Scholar
  30. Freeman, A. J., Xu, J.-H., Hong, T., and Lin, W., 1992, Ordered Intermetallics—Physical Metallurgy and Mechanical Behaviour, ed. C. T. Liu, R. W. Cahn, and G. Sauthoff, p. 1. Dordrecht: Kluwer Academic Publishers.Google Scholar
  31. Frost, H. J., 1987, Acta Metall., 35: 519.Google Scholar
  32. George, E. P., Horton, J. A., Porter, W. D., and Schneibel, J. H., 1990, J. Mater. Res. 5: 1639.Google Scholar
  33. George, E. P., and Liu, C. T., 1990, J. Mater. Res., 5: 754.Google Scholar
  34. —, 1991, Alloy Phase Stability and Design, Materials Research Society 186: 309.Google Scholar
  35. George, E. P., Liu, C. T., and Padgett, R. A., 1989, Scripta. Metall. Mater., 23: 979.Google Scholar
  36. Goodwin, L., Needs, R. J., and Heine, V., 1988, Phys. Rev. Lett., 60: 2050Google Scholar
  37. —, 1990, J. Phys.: Condens. Matter, 2: 351.Google Scholar
  38. Hack, J. E., Chen, S. P., and Srolovitz, D. J., 1989, Acta Metall., 37: 1957.Google Scholar
  39. Hahn, K. H., and Vedula, K., 1989, Scripta Metall., 23: 7.Google Scholar
  40. Hecker, S. S., Rohr, D. L., and Stein, D. F., 1978, Metall. Trans. A, 9: 481.Google Scholar
  41. Hirth, J. P., and Rice, J. R., 1980, Metall. Trans. A, 11: 1501.Google Scholar
  42. Izumi, O., ed. 1991, International Symposium on Intermetallic Compounds—Structure and Mechanical Properties—(JIMIS-6) Sendai, Japan: The Japan Institute of Metals.Google Scholar
  43. Izumi, O., and Takasugi, T., 1988, J. Mat. Res. 3:426.Google Scholar
  44. Johnson, L. A., Pope, D. P., and Stiegler, J. O., eds., 1991, High-Temperature Ordered Intermetallic Alloys IV, MRS Symp. Proc. 213.Google Scholar
  45. Johnson, W. C., and Blakeley, J. M., eds., 1977, Interfacial Segregation, Metals Park, OH: ASM.Google Scholar
  46. Jokl, M. L., Vitek, V., and McMahon, C. J., Jr., 1980, Acta Metall., 28: 2479.Google Scholar
  47. Jokl, M. L., Vitek, V., McMahon, J.C. J., and Burgers, P., 1989, Acta Metall., 37: 87.Google Scholar
  48. Kimura, A., Izumi, O., Igarashi, J., Misawa, T., and Takasugi, T., 1991, International Symposium on Intermetallic Compounds—Structure and Mechanical Properties—(JIMIS-6). ed. O. Izumi, p. 737. Sendai: The Japan Institute of Metals.Google Scholar
  49. King, A. H., Frost, H. J., and Yoo, M. H., 1991, Scripta. Metall. Mater., 25: 1249.Google Scholar
  50. King, A. H., and Yoo, M. H., 1987, Scripta Metall. 21: 1115.Google Scholar
  51. Knott, J. F., 1977, Fracture 77 1: 61. Waterloo, Ontario: University of Waterloo Press.Google Scholar
  52. —, 1987, Atomistics of Fracture, ed. R. M. Latanision and J. Pickens, p. 209. New York: Plenum Press.Google Scholar
  53. Kruisman, J. J., Vitek, V., and DeHosson, J. T. M., 1988, Acta Metall. 36: 2729.Google Scholar
  54. Krzanowski, J. E., 1989, Scripta. Metall. Mater., 23: 1219.Google Scholar
  55. —, 1992a, Acta Metall Mater. 40: 1923.Google Scholar
  56. —, 1992b, Phil. Mag. A, 65: 91.Google Scholar
  57. Kumar, K. S., Manna, S. K., and Visawanadham, R. K., 1992, Acta Metall. Mater, 40: 1201.Google Scholar
  58. Kung, H., Rasmussen, D. R., and Sass, S. L., 1991, Scripta. Metall. Mater., 25: 1277.Google Scholar
  59. —, 1992, Acta Metall. Mater., 40: 81.Google Scholar
  60. —, 1992b, Ordered Intermetallics—Physical Metallurgy and Mechanical Behaviour, ed. C. T. Liu, R. W. Cahn, and G. Sauthoff, p. 355. Dordrecht: Klewer Academic Publishers.Google Scholar
  61. Kung, H., and Sass, S. L., 1992, Acta Metall. Mater 40: 99.Google Scholar
  62. Lathanision, R. M, and Jones, R. H., eds., 1987, Chemistry and Physics of Fracture, Boston, Martinus Nijhoff.Google Scholar
  63. Lee, T. C., Robertson, I. M., and Birnbaum, H. K., 1992, Acta Metall. Mater, 40: 2569.Google Scholar
  64. Lee, T. C., Subramanian, R., Robertson, I. M., and Birnbaum, H. K., 1991, Scripta. Metall. Mater., 25: 1265.Google Scholar
  65. LeSar, R., Najafabadi, R., and Srolovitz, D. J., 1989, Phys. Rev. Lett., 63: 624.Google Scholar
  66. Lin, H., and Pope, D. P., 1993, Acta Metall. Mater, 41: 553.Google Scholar
  67. Lin, I.-H., and Thomson, R., 1986, Acta Metall. 34: 187.Google Scholar
  68. Liu, C. T., 1988, Interfacial Structure, Properties and Design, Materials Research Society 122.Google Scholar
  69. —, 1991a, International Symposium on Intermetallic Compounds—Structure and Mechanical Properties—(JIMIS-6), ed. O. Izumi, p. 703, Sendai: The Japan Institute of Metals.Google Scholar
  70. —, 1991b, Scripta. Metall. Mater., 25: 1231.Google Scholar
  71. —, 1992, Ordered Intermetallics—Physical Metallurgy and Mechanical Behaviour, ed. C. T. Liu, R. W. Cahn, and G. Sauthoff, p. 321, Dordrecht: Kluwer Academic Publishers.Google Scholar
  72. Liu, C. T., Cahn, R. W., and Sauthoff, G., eds., 1992, Ordered Intermetallics—Physical Metallurgy and Mechanical Behaviour, Dordrecht: Kluwer Academic Publishers.Google Scholar
  73. Liu, C. T., White, C. L., and Horton, J. A., 1985, Acta Metall, 33: 213.Google Scholar
  74. Luzzi, D. E., Min Yan, Sob, M., and Vitek, V., 1991, Phys. Rev. Lett, 67: 1894.Google Scholar
  75. Masuda-Jindo, K., 1988, J. Phys. France, 49: C5–557.Google Scholar
  76. Messmer, R. P., and Briant, C. L., 1982, Acta Metall. Mater, 30: 487.Google Scholar
  77. Metropolis, N., Rosenbluth, A. W., Rosenbluth, N. M., and Teller, A. H., 1953, J. Chem. Phys., 21: 10.Google Scholar
  78. Miller, M. K., Jayram, R., and Camus, P. P., 1992, Scripta. Metall. Mater., 26: 679.Google Scholar
  79. Mills, M. J., 1989, Scripta Metall, 23: 2061.Google Scholar
  80. Mills, M. J., and Daw, M. S., 1991, High Resolution Electron Microscopy of Defects in Materials, MRS Symp. Proc. 183: 15.Google Scholar
  81. Mills, M. J., Goods, S. H., and Foiles, S. M., 1992, Structure and Properties of Interfaces in Materials, MRS Symp. Proc. 238: 127.Google Scholar
  82. Mills, M. J., Goods, S. H., Foiles, S. M., and Whetstone, J. R., 1991, Scripta. Metall. Mater., 25: 1283.Google Scholar
  83. Min Yan, 1992, Ph.D. Thesis, University of Pennsylvania.Google Scholar
  84. Min Yan, Fonda, R. W. and Luzzi, D. E., 1994, Phil. Mag. A, to be published.Google Scholar
  85. Min Yan, Vitek, V., and Ackland, G. J., 1992, Structure and Properties of Interfaces in Materials, MRS Symp. Proc. 238: 139.Google Scholar
  86. Morris, D. G., and Lerf, R., 1991, Phil. Mag. A, 63: 1195.Google Scholar
  87. Najafabadi, R., and Srolovitz, D. J., 1993, High-Temperature Ordered Intermetallic Alloys V, MRS Symp. Proc., 288: 189.Google Scholar
  88. Najafabadi, R., Srolovitz, D. J., and LeSar, R., 1990, J. Mater. Res. 5: 2662.Google Scholar
  89. Najafabadi, R., Wang, H. Y., Srolovitz, D. J., and LeSar, R., 1991a, High-Temperature Ordered Intermetallic Alloys IV, MRS Symp. Proc. 213: 51.Google Scholar
  90. —, 1991b, Acta Metall. Mater, 39: 3071.Google Scholar
  91. Nishimura, C., and Liu, C. T., 1992, Scripta. Metall. Mater., 27: 1307.Google Scholar
  92. Pascoe, R. T., and Newey, C. W. A., 1968, Met. Sci. J, 2: 138.Google Scholar
  93. Pestman, B. J., and Dehosson, J. T. M., 1992, Acta Metall. Mater, 40: 2511.Google Scholar
  94. Pestman, B. J., DeHosson, J. T. M., Vitek, V., and Schapink, F. W., 1991a, Phil. Mag. A, 64: 951.Google Scholar
  95. —, 1991b, High-Temperature Ordered Intermetallic Alloys IV, MRS Symp. Proc. 213: 429.Google Scholar
  96. Pettifor, D. G., 1989, Phys. Rev. Lett., 63: 2480.Google Scholar
  97. Pettifor, D. G., and Aoki, M., 1991, Phil. Trans. Roy. Soc. London A 334: 439.Google Scholar
  98. Petton, G., and Farkas, D., 1991, Scripta Metall, 25: 55.Google Scholar
  99. Pope, D. P., 1990, High Temperature Aluminides and Intermetallics, ed. S. H. Whang, C. T. Liu, D.P. Pope, and J. O. Stiegler, p. 51. Warrendale, PA: TMS.Google Scholar
  100. —, 1992, Ordered Intermetallics—Physical Metallurgy and Mechanical Behaviour, ed. C. T. Liu, R. W. Cahn, and G. Sauthoff, p. 143. Dordrecht: Kluwer Academic Publishers.Google Scholar
  101. Pope, D. P., and Ezz, S. S., 1984, Int. Met. Rev, 25: 233.Google Scholar
  102. Pugh, S. F., 1991, An Introduction to Grain Boundary Fracture in Metals, London: The Institute of Metals.Google Scholar
  103. Rice, J. R, 1991, J. Mech. Phys. Sol, 40: 239.Google Scholar
  104. Rice, J. R., and Thomson, R., 1974, Phil. Mag, 29: 73.Google Scholar
  105. Rice, J. R., and Wang, J.-S., 1989, Mat. Sci. Eng. A, 107: 23.Google Scholar
  106. Robertson, I. M., Lee, T. C., Subramanian, R., and Birnbaum, H. K., 1992, Structure and Properties of Interfaces in Materials, MRS Symp. Proc. 238: 357.Google Scholar
  107. Sagi, M. A., and Pettifor, D. G., 1987, Phil. Mag. Lett, 56: 245.Google Scholar
  108. Sauthoff, G., 1989, Z. Metallkunde 80: 337.Google Scholar
  109. Schulson, E. M., 1991, International Symposium on Intermetallic Compounds—Structure and Mechanical Properties—(JIMIS-6), ed. O. Izumi, p. 339, Sendai: The Japan Institute of Metals.Google Scholar
  110. Schulson, E. M., and Baker, I., 1991, Scripta. Metall. Mater, 25: 1253.Google Scholar
  111. —, 1992, Ordered Intermetallics—Physical Metallurgy and Mechanical Behaviour, ed. C. T. Liu, R. W. Cahn, and G. Sauthoff, p. 371, Dordrecht: Kluwer Academic Publishers.Google Scholar
  112. Schulson, E. M., and Barker, D. R., 1983, Scripta Metall, 17: 519.Google Scholar
  113. Schulson, E. M., Weihs, T. P., Baker, I., Frost, H. J., and Horton, J. A., 1985a, Scripta Metall, 19: 1497.Google Scholar
  114. Schulson, E. M., Weihs, T. P., Viens, D. V., and Baker, I., 1985b, Acta Metall, 33: 1587.Google Scholar
  115. Schulson, E. M., Xu, Y., Munroe, P. R., Guha, S., and Baker, I., 1991, Acta Metall. Mater, 39: 2971.Google Scholar
  116. Self, P. G., and O’Keefe, M. A., 1988, High Resolution Transmission Electron Microscopy and Associated Techniques, ed. P. R. Buseck, J. M. Cowley and L. Eyring, p. 244, Oxford: Oxford University Press.Google Scholar
  117. Sieloff, D. N., Brenner, S. S., and Hua, M. J., 1989, High-Temperature Ordered Intermetallics Alloys III, MRS Symp. Proc. 133: 155.Google Scholar
  118. Sob, M., Vitek, V., and Oh, Y., 1992, Computational Methods in Materials Science, MRS Symp. Proc. 278: 205.Google Scholar
  119. Spence, J. C. H., 1988, Experimental High-Resolution Electron Microscopy, Oxford:Oxford University Press.Google Scholar
  120. Sun, Y., Rice, J. R., and Truskinovsky, L., 1991, High Temperature Ordered Intermetallic Alloys IV, MRS Symp. Proc. 213: 243.Google Scholar
  121. Sutton, A. P., 1984, Int. Met. Rev., 29: 377.Google Scholar
  122. Sutton, A. P., 1989a, Atomistic Simulations of Materials: Beyond Pair Potentials, ed. V. Vitek and D. Srolovitz, p. 265. New York: Plenum Press.Google Scholar
  123. —, 1989b, Philos. Mag. A 60: 147.Google Scholar
  124. —, 1990, J. Phys. France, 51: C1-35.Google Scholar
  125. —, 1992, Phil Trans Roy Soc London A, 341: 233.Google Scholar
  126. Sutton, A. P., and Balluffi, R. W., 1990, Phil. Mag. Lett, 61: 91.Google Scholar
  127. Sutton, A. P., and Vitek, V., 1983, Phil. Trans. Roy. Soc. London A, 309: 1.Google Scholar
  128. Takasugi, T., George, E. P., Pope, D. P., and Izumi, O., 1985, Scripta Metall, 19:551.Google Scholar
  129. Takasugi, T., Hanada, S., and Yoshida, M., 1992, J. Mat. Res., 7: 2739.Google Scholar
  130. Takasugi, T., Hirakawa, S., Izumi, O., Ono, S., and Watanabe, S., 1987, Acta Metall, 35: 2015.Google Scholar
  131. Takasugi, T., and Izumi, O., 1985a, Acta Metall, 33: 1247.Google Scholar
  132. —, 1985b, Acta Metall, 33: 39.Google Scholar
  133. —, 1991, Scripta. Metall. Mater, 25: 1243.Google Scholar
  134. —, 1992, Ordered Intermetallics—Physical Metallurgy and Mechanical Behaviour, ed. C. T. Liu, R. W. Cahn, and G. Sauthoff, p. 391, Dordrecht: Kluwer Academic Publishers.Google Scholar
  135. Takasugi, T., Izumi, O., and Masahashi, N., 1985, Acta Metall. 33: 1259.Google Scholar
  136. Takasugi, T., Nagashima, M., and Izumi, O., 1990, Acta Metall. Mater, 38: 747.Google Scholar
  137. Tarnow, E., Dallot, P., Bristowe, P. D., Joannopoulos, J. D., Francis, G. P., and Payne, M. C., 1990, Phys. Rev. B., 42: 3644.Google Scholar
  138. Taub, A. I., and Briant, C. L., 1987, Acta Metall, 35: 1597.Google Scholar
  139. Taub, A. I., Briant, C. L., Huang, S. C., Chang, K. M., and Jackson, M. R., 1986, Scripta. Metall. Mater, 20: 129.Google Scholar
  140. Thomson, R., 1986, Solid State Physics, ed. H. Ehrenreich and D. Turnbull, 39: 2.Google Scholar
  141. Tichelaar, F. D., Schapink, F. W., and Li, X., 1992, Phil. Mag. A, 65: 913.Google Scholar
  142. Vitek, V., 1984, Dislocations 1984, ed. P. Veyssiere, L. Kubin, and J. Castaign, p. 435, Paris: Editions CNRS.Google Scholar
  143. —, 1991, J. Phys. France III, 1: 1085.Google Scholar
  144. Vitek, V., Ackland, G. J., and Cserti, J., 1991, Alloy Phase Stability and Design, MRS Symp. Proc. 186: 237.Google Scholar
  145. Vitek, V., and Chen, S. P., 1991, Scripta. Metall. Mater, 25: 1237.Google Scholar
  146. Vitek, V., Chen, S. P., Voter, A. F., Kruisman, J. J., and DeHosson, J. T. M., 1989, Grain Boundary Chemistry and Intergranular Fracture, Materials Science Forum 46: 237.Google Scholar
  147. Vitek, V., Min Yan, and Ackland, G. J., 1992, Ordered Intermetallics—Physical Metallurgy and Mechanical Behaviour, ed. C. T. Liu, R. W. Cahn, and G. Sauthoff, p. 335, Dordrecht: Kluwer Academic Publishers.Google Scholar
  148. Vitek, V., Sodani, Y., and Cserti, J., 1991, High-Temperature Ordered Intermetallic Alloys IV, MRS Symp. Proc. 213: 195.Google Scholar
  149. Voter, A. F., Chen, S. P., Albers, R. C., Boring, A. M., and Hay, P. J., 1989,Atomistic Simulations of Materials: Beyond Pair Potentials, ed. V. Vitek and D. Srolovitz, p. 223, New York: Plenum Press.Google Scholar
  150. Was, G. S., and Bruemmer, S. M., eds., 1989, Grain Boundary Chemistry and Intergranular Fracture, Materials Science Forum 46.Google Scholar
  151. Weertman, J., 1978, Acta Metall, 26: 1731.Google Scholar
  152. Whang, S. H., Liu, C. T., Pope, D. P., and Stiegler, J. O., eds., 1990, High Temperature Aluminides and Intermetallics, Warrendale, PA: TMS.Google Scholar
  153. White, C. L., Clausing, R. E., and Heatherley, L., 1979, Metall. Trans. A, 10: 683.Google Scholar
  154. White, C. L., Liu, C. T., and Padgett, J.R. A., 1988, Acta Metall, 36: 2229.Google Scholar
  155. White, C. L., Padgett, R. A., Liu, C. T., and Yalisove, S. M., 1984, Scripta Metall, 18: 1417.Google Scholar
  156. Wu, Z. L., Pope, D. P., and Vitek, V., 1991a, Scripta Metall. 24: 2187.Google Scholar
  157. —, 1991b, Scripta Metall. 24, 2191.Google Scholar
  158. Yamaguchi, M., and Umakoshi, Y., 1990, Prog. Mater. Sci, 34: 1.Google Scholar
  159. Yoo, M. H., and King, A. H., 1988, J. Mat. Res, 3: 848.Google Scholar

Copyright information

© Chapman & Hall 1996

Authors and Affiliations

  • V. Vitek
  • M. Yan

There are no affiliations available

Personalised recommendations