Transgenic Plants for Disease Control

  • Luis Herrera-Estrella
  • Laura Silva Rosales
  • Rafael Rivera-Bustamante
Part of the Plant-Microbe Interactions book series (PMI, volume 1)


A significant percentage of the potential harvest yield of most crops is lost each year due to diseases caused by viroids, viruses, bacteria, fungi and nematodes. This problem is particularly important in developing countries where farmers do not have the economic capacity to buy agrochemicals or to implement advanced technology. In some developing countries such losses still cause famine and threaten the economic survival of subsistance farmers.


Transgenic Plant Coat Protein Tobacco Mosaic Virus Cucumber Mosaic Virus Transgenic Tobacco Plant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Sanford, J. C. and S. A. Johnston. 1985. The concept of pathogen derived resistance: Deriving resistance genes from the parasite’s own genome. J. Theoret. Biol. 113:395–405.Google Scholar
  2. 2.
    Powell-Abel, P., R. S. Nelson, B. De, N. Hoffmann, S. G. Rogers, R. Fraley and R. N. Beachy. 1986. Delay of disease development in transgenic plants that express the tobacco mosaic virus coat protein gene. Science 232:738–743.Google Scholar
  3. 3.
    Hayakawa, T., Y. Zhu, K. Itoh, Y. Kimura, T. Izawa, K. Shimamoto, and S. Toriyama. 1992. Genetically engineered rice resistant to rice stripe virus, an insect-transmited virus. Proc. Nat. Acad. Sci. USA 89:9865–9869.PubMedGoogle Scholar
  4. 4.
    Murry, L. E., L.G. Elliot, S. A. Capitant, J. A. West, K. K. Hanson, L. Scarafia, S. Johnston, C. DeLuca-Flaherty, S. Nichols, D. Cunanan, P. S. Dietrich, I. J. Mettler, S. Dewald, D. A. Warnick, C. Rhodes, R. M. Sinibaldi, and K. J. Brunke. 1993. Transgenic corn plants expresing MDMV strain B coat protein are resistant to mixed infections of maize dwarf mosaic virus and maize chlorotic mottle virus. Bio/Technology 11:1559–1564.PubMedGoogle Scholar
  5. 5.
    Beachy, R. N., S. Loesch-Fries, and N. Turner. 1990. Coat protein-mediated resistance against virus infection. Ann. Rev. Phytopathol. 28:451–474.Google Scholar
  6. 6.
    Pang, S. Z., P. Nagpala, M. Wang, J. L. Slightom and D. Gonsalves. 1992. Resistance to heterologous isolates of tomato spotted wilt virus in transgenic tobacco expressing its nucleocapsid protein gene. Phytopathology 82:1223–1229.Google Scholar
  7. 7.
    Wilson, T. M. A. 1993. Strategies to protect crop plants against viruses: Pathogen-derived resistance blossoms. Proc. Nat. Acad. Sci. USA 90:3134–3141.PubMedGoogle Scholar
  8. 8.
    Powell, P. A., P. R. Sanders, N. E. Turner, R. T. Fraley and R. N. Beachy. 1990. Protection against tobacco mosaic virus infection in transgenic plants requires accumulation of capsid protein rather than coat protein RNA sequences. Virology 175:124–130.PubMedGoogle Scholar
  9. 9.
    Nejidat, A. and R. N. Beachy. 1990. Transgenic tobacco plants expressing a coat protein gene of tobacco mosaic virus are resistant to some other tobamoviruses. Mol. Plant-Microbe Interactions 3:247–251.Google Scholar
  10. 10.
    Nelson, R. S., P. Powell Abel and R. N. Beachy. 1987. Lesions and virus accumulation in inoculated transgenic tobacco plants expressing the coat protein gene of tobacco mosaic virus. Virology 158:126–132.PubMedGoogle Scholar
  11. 11.
    Register III J. C. and R. N. Beachy. 1988. Resistance to TMV in transgenic plants results from interference with an early event in infection. Virology 166:524–532.PubMedGoogle Scholar
  12. 12.
    Clark, W. G., J. C. Register III, A. Nejidat, D. A. Eichholtz, P. R. Sanders, R. T. Fraley and R. N. Beachy. 1990. Tissue-specific expression of the TMV coat protein in transgenic tobacco plants affects the level of coat protein-mediated virus protection. Virology 179:640–647.PubMedGoogle Scholar
  13. 13.
    Reimann-Philipp, U. and R. N. Beachy. 1993. Coat protein-mediated resistance in transgenic tobacco expressing the tobacco mosaic virus coat protein from tissue-specific promoters. Mol Plant-Microbe Interactions 6:323–330.Google Scholar
  14. 14.
    Osbourn, J. K., J. W. Watts, R. N. Beachy, and M. A. Wilson. 1989. Evidence that nucleocapsid disassembly and a later step in virus replication are inhibited in transgenic tobacco protoplasts expressing TMV coat protein. Virology 172:370–373.PubMedGoogle Scholar
  15. 15.
    Wisniewski, L. A., P. A. Powell, R. S. Nelson, and R. N. Beachy. 1990. Local and systemic movement of tobacco mosaic virus (TMV) in tobacco plants that express the TMV coat protein gene. Plant Cell 2:559–562.PubMedGoogle Scholar
  16. 16.
    Loesch-Fries, L. S., D. Merlo, T. Zinnen, L. Burhop, K. Hill, K. Krahn, N. Jarvis, S. Nelson, and E. Halk. 1987. Expression of alfalfa mosaic virus RNA4 in transgenic plants confers virus resistance. EMBO J. 6:1845–1851.PubMedGoogle Scholar
  17. 17.
    Turner, N. E., K. M. ÒConnell, R. S. Nelson, P. R. Sanders and R. N. Beachy. 1987. Expression of alfalfa mosaic virus coat protein gene confers cross-protection in transgenic tobacco and tomato plants. EMBO J. 6:1181–1188.Google Scholar
  18. 18.
    van Dun, C. M. P., J. F. Bol, and L. van Vloten-Doting. 1987. Expression of alfalfa mosaic virus and tobacco rattle virus coat protein genes in transgenic tobacco plants. Virology 159:299–305.PubMedGoogle Scholar
  19. 19.
    van Dun, C. M. P., B. Overduin, L. van Vloten-Doting, and J.F. Bol. 1988. Transgenic tobacco expressing tobacco streak virus or mutated alfalfa mosaic virus coat protein does not cross-protect against alfalfa mosaic virus infection. Virology 164:383–389.PubMedGoogle Scholar
  20. 20.
    Cuozzo, M., K. M. ÒConnell, W. Kaniewski, R.-X. Fang, N. H. Chua, and N. E. Turner. 1988. Viral protection in transgenic tobacco plants expressing the cucumber mosaic virus coat protein or its antisense RNA. Bio/Technology 6:549–557.Google Scholar
  21. 21.
    Hemenway, C, R.-X. Fang, W. K. Kaniewski, N.-H. Chua, and N. E. Turner. 1988. Analysis of the mechanism of protection in transgenic plants expressing the potato virus X coat protein or its antisense RNA. EMBO J. 7:1273–1280.PubMedGoogle Scholar
  22. 22.
    MacKenzie, D. J. and J. H. Tremaine. 1990. Transgenic Nicotiana debneyii coat protein are resistant to potato virus S infection. J. Gen. Virol 71:2167–2170.PubMedGoogle Scholar
  23. 23.
    Stark, D. M. and R. N. Beachy. 1989. Protection against potyvirus infection in transgenic plants: Evidence for broad spectrum resistance. Bio/Technology 7:1257–1262.Google Scholar
  24. 24.
    Lawson, C, W. Kaniewski, L. Haley, R. Rozman, C. Newell, P. Sanders, and N. E. Turner. 1990. Engineering resistance to mixed virus infection in a commercial potato cultivar: resistance to potato virus X and potato virus Y in transgenic Russet Burbank. Bio/Technology 8:127–134.PubMedGoogle Scholar
  25. 25.
    Ling, K., S. Namba, C. Gonsalves, J. L. Slightom and D. Gonsalves. 1991. Protection against detrimental effects of potyvirus infection in transgenic tobacco plants expressing the papaya ringspot virus coat protein gene. Biotechnology 9:752–758.PubMedGoogle Scholar
  26. 26.
    Namba, S., K. Ling, C. Gonsalvez, J. L. Sligthom, and D. Gonsalves. 1992. Protection of transgenic plants expressing the coat protein gene of watermelon mosaic virus II or zucchini yellow mosaic virus against six potyviruses. Phytopathology 82:940–945.Google Scholar
  27. 27.
    Regner, F., A. da Camara Machado, L. Laimer da Camara Machado, H. Steinkellner, D. Mattanovich, V. Hanzer, H. Weiss and R. H. Katinger. 1992. Coat protein mediated resistance to plum pox virus in Nicotiana clevelandii and Nicotiana benthamiana. Plant Cell Rep. 11:30–33.Google Scholar
  28. 28.
    Lindbo, J. A., L. Silva-Rosales, and W. G. Dougherty. 1993. Pathogen derived resistance to potyviruses: working, but why? Sem. Virol. 4:369–379.Google Scholar
  29. 29.
    Lindbo, J. A. and W. G. Dougherty. 1992. Pathogen derived resistance to a potyvirus: immune and resistant phenotypes in transgenic tobacco plants expressing altered forms of a potyvirus coat protein nucleotide sequence. Mol. Plant-Microbe Interactions 5:144–153.Google Scholar
  30. 30.
    Fang, G. and R. Grumet. 1993. Genetic engineering of potyvirus resistance using constructs derived from the zucchini yellow mosaic virus coat protein gene. Mol. Plant-Microbe Interactions 6:358–367.Google Scholar
  31. 31.
    Lindbo, J.A. and W.G. Dougherty. 1992. Untranslated transcripts of the tobacco etch virus coat protein gene sequence can interfere with tobacco etch virus replication in transgenic plants and protoplasts. Virology 189:725–753.PubMedGoogle Scholar
  32. 32.
    Silva-Rosales, L., J. A. Lindbo, and W.G. Dougherty. 1994. Analysis of transgenic tobacco plants expressing a severely truncated form of a potyvirus coat protein nucleotide sequence. Plant Mol. Biol. 24:929–939.PubMedGoogle Scholar
  33. 33.
    Dougherty, W. G., J. A. Lindbo, H. A. Smith, T. D. Parks, S. Swaney, and W. M. Proebsting. 1994. RNA-mediated virus resistance in transgenic plants: exploitation of a cellular pathway possibly involved in RNA degradation. Mol. Plant-Microbe Interactions 7: 544–552Google Scholar
  34. 34.
    Lindbo, J. A., L. Silva-Rosales, W. M. Proebsting, and W. G. Dougherty. 1993. Induction of highly specific antiviral state in transgenic plants: Implications for regulation of gene expression and virus resistance. Plant Cell 5:1749–1759.PubMedGoogle Scholar
  35. 35.
    Wassenegger, M., S. Heimes, L. Riedel, and H. L. Sanger. 1994. RNA-directed de novo methylation of genomic sequences in plants. Cell 76:567–576.PubMedGoogle Scholar
  36. 36.
    Farinelli, L. and P. Malnoe. 1993. Coat protein gene-mediated resistance to potato virus Y in tobacco: Examination of the resistance mechanisms: Is the transgenic coat protein required for protection? Mol. Plant-Microbe Interactions 6:284–292.Google Scholar
  37. 37.
    Maiti, I. B., J. F. Murphy, J. G. Shaw, and A. G. Hunt. 1993. Plants that express a potyvirus proteinase gene are resistant to virus infection. Proc. Nat. Acad. Sci. USA 90:6110–6114.PubMedGoogle Scholar
  38. 38.
    Nida, D. L., J. R. Anjos, G. P. Lomonossoff, and S. A. Ghabrial. 1992. Expression of cowpea mosaic virus coat protein precursor in transgenic tobacco plants. J. Gen. Virol. 73:157–163.Google Scholar
  39. Kaniewski, W., C. Lawson, B. Sammons, L. Haley, J. Hart, X. Delannay, and N. E. Turner. 1990. Field resistance of transgenic Russet Burbank potato to effects of infection by potato virus X and Potato virus Y. Bio/Technology 8:750–754.Google Scholar
  40. 40.
    Ploeg, A. T., A. Mathis, J. F. Bol, D. J. F. Brown, and D. J. Robinson. 1993. Susceptibility of transgenic tobacco plants expressing tobacco rattle virus coat protein to nematode-transmitted and mechanically inoculated tobacco rattle virus. J. Gen. Virol. 74:2709–2715.PubMedGoogle Scholar
  41. 41.
    Golemboski, D. B., G. P. Lomonossoff, and M. Zaitlin. 1990. Plants transformed with a tobacco mosaic virus nonstructural gene sequence are resistant to the virus. Proc. Nat. Acad. Sci. USA 87:6311–6315.PubMedGoogle Scholar
  42. 42.
    Carr, J. P. and M. Zaitlin. 1991. Resistance in transgenic tobacco plants expressing a nonstructutal gene sequence of tobacco mosaic virus is a consequence of markedly reduced virus replication. Mol. Plant-Microbe Interactions 4:579–585.Google Scholar
  43. 43.
    Carr, J.P., L.E. Marsh, G.P, Lomonossoff M., E. Sekiya, and M. Zaitlin. 1992. Resistance to tobacco mosaic virus induced by the 54 kD gene sequence requires expression on the 54 kD protein. Mol. Plant-Microbe Interactions 5:397–404.Google Scholar
  44. 44.
    MacFarlane, S. A. and J. W. Davies. 1992. Plants transformed with a region of the 201-kilodalton replicase from pea early browning virus RNA 1 are resistant to virus infection. Proc. Nat. Acad. Sci. USA 89:5829–5833.PubMedGoogle Scholar
  45. 45.
    Braun, C. J. and C. L. Hemenway. 1992. Expression of amino-terminal portions or full-length viral replicase genes in transgenic plants confers resistance to potato virus X infection. Plant Cell 4:735–744.PubMedGoogle Scholar
  46. 46.
    Donson, J., C. M. Kearney, T. H. Turpen, I. A. Khan, G. Kurath, A. M. Turpen, G. E. Jones, W. O. Dawson, and D. J. Lewandowski. 1993. Broad resistance to tobamoviruses is mediated by a modified tobacco mosaic virus replicase trans-gene. Mol. Plant-Microbe Interactions 6:635–642.Google Scholar
  47. 47.
    van Dun, C. M. P., L. van Vloten-Doting, and J. F. Bol 1988. Expression of alfalfa mosaic virus cDNA 1 and 2 in transgenic tobacco plants. Virology 163:572–578.PubMedGoogle Scholar
  48. 48.
    Mori, M., K. Mise, T. Okuno, and I. Furusawa. 1992. Expresion of brome mosaic virus-encoded replicase genes in transgenic tobacco plants. J. Gen. Virol 73:169–172.PubMedGoogle Scholar
  49. 49.
    Rubino, L., R. Lupo, and M. Russo. 1993. Resistance to cymbidium ringspot tombusvirus infection in transgenic Nicotiana benthamiana plants expressing a full-length replicase gene. Mol. Plant-Microbe Interactions 6:729–734.Google Scholar
  50. 50.
    Audy, P., P. Palukaitis, S. A. Slack, and M. Zaitlin. 1994. Replicase-mediated resistance to potato virus Y in transgenic tobacco plants. Mol. Plant-Microbe Interactions 7:15–22.Google Scholar
  51. 51.
    Longstaff, M., G. Brigneti, F. Boccard, S. Chapman, and D. Baulcombe. 1993. Extreme resistance to potato virus X infection in plants expressing a modified component of the putative viral replicase. EMBO J. 12:379–386.PubMedGoogle Scholar
  52. 52.
    Anderson, J.M., P. Palukaitis, and M. Zaitlin. 1992. A defective replicase gene induces resistance to cucumber mosaic virus in transgenic tobacco plants. Proc. Nat. Acad. Sci. USA 89:8759–8763.PubMedGoogle Scholar
  53. 53.
    Carr, J. and M. Zaitlin. 1993. Replicase-mediated resistance. Sem. Virol. 4:339–347.Google Scholar
  54. 54.
    Inokuchi, Y. and A. Hirashima. 1987. Interference with viral infection by defective RNA polymerase. J. Virol. 61:3946–3949.PubMedGoogle Scholar
  55. 55.
    van der Kuyl, A. C, L. Neelman, and J. F. Bol. 1991. Role of alfalfa mosaic virus coat protein in regulation of the balance between viral plus and minus strand RNA synthesis. Virology 185:496–499.PubMedGoogle Scholar
  56. 56.
    Quadt, R., C. C. Kao, K. S. Browning, R. P. Hershberger, and P. Ahlquist. 1993. Characterization of a host protein associated with brome mosaic virus RNA-dependent RNA polymerase. Proc. Nat. Acad. Sci. USA 90:1498–1507.PubMedGoogle Scholar
  57. Wolf, S., C. M. Deom, R. N. Beachy, and W. J. Lucas. 1989. Movement protein of tobacco mosaic virus modified plasmodesmatal size exclusion limit. Science 246:377–379.PubMedGoogle Scholar
  58. 58.
    Citovsky, V., D. Knorr, G. Schuster, and P. Zambryski. 1990. The P30 movement protein of tobacco mosaic virus is a single-strand nucleic acid binding protein. Cell 60:637–647.PubMedGoogle Scholar
  59. 59.
    Von Arnim, A. and J. Stanley. 1992. Determinants of tomato golden mosaic virus symptom development located on DNA B. Virology 186:286–293.Google Scholar
  60. 60.
    Von Arnim, A., T. Frischmuth, and J. Stanley. 1993. Detection and possible functions of African cassava mosaic virus DNA B gene products. Virology 192:264–272.Google Scholar
  61. 61.
    Von Arnim, A. and J. Stanley. 1992. Inhibition of African cassava mosaic virus systemic infection by a movement protein from the related geminivirus tomato golden mosaic virus. Virology 187:555–564.Google Scholar
  62. 62.
    Lapidot, M., R. Gafny, B. Ding, S. Wolf, W. J. Lucas, and R.N. Beachy. 1993. A dysfunctional movement protein of tobacco mosaic virus that partially modifies the plasmodesmata and limits virus spread in transgenic plants. Plant J. 4:959–970.Google Scholar
  63. 63.
    Rezaian, M. A., K. G. M. Skene, and J. G. Ellis. 1988. Antisense RNAs of cucumber mosaic virus in transgenic plants assessed for the control of the virus. Plant Mol. Biol. 11:463–471.Google Scholar
  64. 64.
    Day, A. G., E. R. Bejarano, K. W. Buck, M. Burrell, and C. P. Lichtenstein. 1991. Expression of an antisense viral gene in transgenic tobacco confers resistance to the DNA virus tomato golden mosaic virus. Proc. Nat. Acad. Sci. USA 88:6721–6725.PubMedGoogle Scholar
  65. 65.
    Bejarano, E. R. and C. P. Lichtenstein. 1994. Expression of TGMV antisense RNA in transgenic tobacco plants inhibits replication of BCTV but not ACMV geminivirus. Plant Mol. Biol. 24:241–248.PubMedGoogle Scholar
  66. 66.
    Gerlach, W. L., D. Llewellyn, and J. Haseloff. 1987. Construction of a plant disease resistance gene from the satellite RNA of tobacco ringspot virus. Nature 328:802–805.Google Scholar
  67. 67.
    Harrison, B. D., M. A. Mayo, and D. C. Baulcombe. 1987. Virus resistance in transgenic plants that express cucumber mosaic virus satellite RNA. Nature 334:799–802.Google Scholar
  68. 68.
    Baulcombe, D., M. Devic, M. Jaegle, and B. Harrison. 1989. Control of viral infection in transgenic plants by expression of satellite RNA of cucumber mosaic virus. In Molecular Biology of Plant Pathogen Interactions, eds. B. Staskawicz, P. Ahlquist, and O. Yoder, pp. 257–267. Alan R. Liss, New York.Google Scholar
  69. 69.
    Wu, S. X., S. Z. Zhao, G. J. Wang, X. C. Yang, C. X. Zhang, X. Wang, and B. Tian. 1992. Genetic engineering of tobacco plants with CMV resistance conferred by monomer cDNA of satellite RNA. Science In China Series B, Chem. Life Sci. Earth Sci. 35:677–687.Google Scholar
  70. 70.
    Taviadoraki, P., E. Benvenuto, S. Trinca, D. De Martinis, A. Cattaneo, and P. Galeffi. 1993. Transgenic plants expressing a functional single-chain Fv antibody are specifically protected from virus attack. Nature 366:469–472.Google Scholar
  71. 71.
    Devash, Y., S. Biggs, and I. Sela. 1982. Multiplication of tobacco mosaic virus in tobacco leaf disks is inhibited by (2′–5′) oligoadenylate. Science 216:1415–1416.PubMedGoogle Scholar
  72. 72.
    Devash, Y., M. Reichman, I. Sela, N. L. Reichenbach, and R. J. Suhadolnik. 1985. Plant oligoadenylates: enzymatic synthesis, isolation and biological activities. Biochemistry 24:593–599.PubMedGoogle Scholar
  73. 73.
    Devash, Y., R. J. Suhadolnik, and I. Sela. 1986. Measurements of effects of (2′–5′)-oligo-adenylates and analogs on tobacco mosaic virus replication. Methods Enzymol. 119:759–761.PubMedGoogle Scholar
  74. 74.
    Saichenko, T. A., I. S. Shcherbatenko, E. Trube, I. F. Kanevskii, and Y. Y. Gleba. 1992. Resistance of transgenic tobacco plants expressing the gene of murine (2′-5′)-oligoadenylate synthetase to the tobacco mosaic virus. Doklady Akademii Nauk Ukrainy 0:145–148.Google Scholar
  75. 75.
    Truve, E., A. Aaspôllu, J. Honkanen, R. Puska, M. Metho, A. Hassi, T. H. Teeri, M. Kelve, P. Seppänen, and M. Saarma. 1993. Transgenic potato plants expressing mammalian 2′–5′ oligoadenylate synthetase are protected from potato virus X infection under field conditions. Bio/Technology 11:1048–1052.PubMedGoogle Scholar
  76. 76.
    Lodge, J. K., W. K. Kaniewski, and N. E. Turner. 1993. Broad-spectrum virus resistance in transgenic plants expressing pokeweed antiviral protein. Proc. Nat. Acad. Sci. USA 90:7089–7093.PubMedGoogle Scholar
  77. 77.
    Mitchell, R. E. 1984. The relevance of non-host-specific toxins in the expression of virulence by pathogens. Annu. Rev. Phytopathol. 22:215–245.Google Scholar
  78. 78.
    Panopoulos, N. J., P. B. Lindgren, R. C. Peet, R. F. Thorn, M. Hickman, D. R. Gies, and D. K. Willis. 1985. Molecular analysis of pathogenicity and virulence in Pseudomonas syringae pathovars. In Advances in Molecular Genetics of the Bacteria-Plant Interaction, vol. 23, pp. 381–419. Cornell University Press, Ithaca, N.Y.Google Scholar
  79. 79.
    Misaghi, I. J. 1982. The role of pathogen-produced toxins in pathogenesis. In: Physiology and Biochemistry of Plant-Pathogen interactions, pp. 35–61 Plenum Press, New York.Google Scholar
  80. 80.
    Staskawicz, B. J. and N. J. Panopoulos. 1979. A rapid and sensitive microbiological assay for phaseolotoxin. Phytopathology 69:663–666.Google Scholar
  81. 81.
    Gross, D. C. 1991. Molecular and genetic analysis of toxin production by pathovars of Pseudomonas syringae. Annu. Rev. Phytopathol. 29:247–278.Google Scholar
  82. 82.
    Durbin, R. D. 1988. The role of microbial toxins in plant-pathogen specificity. In: Physiology and Biochemistry of Plant-Microbial Interactions, eds. N. T. Keen, T. Kosuge, and L. L. Walling, pp. 96–102. American Society of Plant Physiologists, Rockville, MD.Google Scholar
  83. 83.
    Panopoulos, N. J., J. D. Walton, and D. K. Willis. 1984. Genetic and biochemical basis of virulence in plant pathogens. In Genes Involved in Plant-Microbe Interactions. pp. 339–373. Springer-Verlag, New York.Google Scholar
  84. 84.
    Turner, J. G. and R. R. Taha. 1984. Contribution of tabtoxin to the pathogenicity of Pseudomonas syringae pv. tabaci. Physiol. Plant Pathol. 25:55–69.Google Scholar
  85. 85.
    Durbin, R. D. and P. J. Langston-Unkefer. 1988. The mechanism for self-protection against bacterial Phytotoxins. Annu. Rev. Phytopathol. 26:313–329.Google Scholar
  86. 86.
    Patil, S. S., P. E. Kolattukudy, and A. E. Dimond. 1970. Inhibition of ornithine carbamoyltransferase from bean plants by the toxin of Pseudomonas phaseolicola. Plant Physiol. 46:752–753.Google Scholar
  87. 87.
    Mitchell, R. E. and R. L. Bieleski. 1977. Involvement of phaseolotoxin in halo blight of beans. Transport and conversion to functional toxin. Plant Physiol. 60:723–729.PubMedGoogle Scholar
  88. 88.
    Staskawicz, B. J., N. J. Panopoulos, and N. J. Hoogenraad. 1980. Phytotoxin-insensitive ornithine carbamoyltransferase of Pseudomonas syringae pv. phaseolicola. Basis for immunity to phaseolotoxin. J. Bacteriol 142:720–723.PubMedGoogle Scholar
  89. 89.
    Mosqueda, G., G. V. D. Broeck, O. Saucedo, A. M. Bailey, A. Alvarez-Morales, and L. Herrera-Estrella. 1990. Isolation and characterization of the gene from Pseudomonas syringae p.v. phaseolicola encoding the phaseolotoxin-insensitive ornithine carbamoyltransferase. Mol Gen. Genet. 222:461–466.PubMedGoogle Scholar
  90. 90.
    De la Fuente-Martínez, J. M., G. Mosqueda-Cano, A. Alvarez-Morales, and L. Herrera-Estrella. 1992. Expression of a bacterial phaseolotoxin-resistant ornithyl transcarbamylase in transgenic tobacco confers resistance to Pseudomonas syringae pv. phaseolicola. Bio/Technology 10:905–909.Google Scholar
  91. 91.
    De la Fuente-Martínez, J. M., and L. Herrera-Estrella. 1993. Strategies to design transgenic plants resistant to toxins produced by pathogens. AgBiotech News and Information 5:295N–299N.Google Scholar
  92. 92.
    Anzai, H., K. Yonetyama, and I. Yamaguchi. 1989. Transgenic tobacco resistant to bacterial disease by the detoxification of a pathogenic toxin. Mol. Gen. Genet. 219:492–494.Google Scholar
  93. 93.
    Gnanamanickam, S. S. and S. S. Patil. 1977. Phaseolotoxin supresses bacterially induced hypersensitive reaction and phytoalexin synthesis in bean cultivars. Physiol. Plant Pathol. 10:169–179.Google Scholar
  94. 94.
    Johal, G. S. and S. P. Briggs. 1992. Reductase activity encoded by the Hm-1 disease resistance gene in maize. Science 258:985–987.PubMedGoogle Scholar
  95. 95.
    Meeley, R. B., G. S. Johal, S. P. Briggs, and J. D. Walton. 1992. A biochemical phenotype for a disease resistance gene of maize. Plant Cell 4:71–77.PubMedGoogle Scholar
  96. 96.
    Avni, A., J. D. Anderson, N. Holland, J. D. Rochaix, Z. Gromet-Elhanan, and M. Edelman. 1992. Tentoxin sensitivity of choroplasts determined by codon 83 of ß subunit of proton-ATPase. Science 257:1245–1247.PubMedGoogle Scholar
  97. 97.
    Bailey, J. A. and J. W. Mansfield. 1982. Phytoalexins Wiley, New York.Google Scholar
  98. 98.
    Ebel, J. 1986. Phytoalexin synthesis: The biochemical analysis of the induction process. Annu. Rev. Phytopathol. 24:235–264.Google Scholar
  99. 99.
    Grisebach, H. and J. Ebel. 1978. Phytoalexins, chemical defense substances of higher plants. Angew Chem. Int. Ed. Engl. 17:635–647.Google Scholar
  100. 100.
    Cruickshank, I. A. M. 1962. Studies on phytoalexins IV. The antimicrobial spectrum of pisatin. Austral. Biol. Sci. 15:147–159.Google Scholar
  101. 101.
    van Etten, H. D., D. E. Matthews, and P. S. Matthews. 1989. Phytoalexin detoxification: Importance for pathogenicity and practical implications. Annu. Rev. Phytopathol. 27:143–164.Google Scholar
  102. 102.
    Tegtmeier, K. J. and H. D. V. Etten. 1982. The Role of pisatin tolerance and degradation in the virulence of Nectria haematococca on peas: A genetic analysis. Phytopathology 72:608–612.Google Scholar
  103. 103.
    Schäfer, W., D. Straney, L. Ciuffetti, H. D. V. Etten, and O. C. Yoder. 1989. One enzyme makes a fungal pathogen, but not a saprophyte, virulent on a new host plant. Science 246:247–249.PubMedGoogle Scholar
  104. 104.
    Keen, N. T. 1986. Phytoalexins and their involvement in plant disease resistance. Iowa State. J. Res. 60:477–499.Google Scholar
  105. 105.
    Lamb, C. J., M. A. Lawton, M. Dron, and R. A. Dixon. 1989. Signals and transduction mechanisms for activation of plant defences against microbial attack. Cell 56:215–224.PubMedGoogle Scholar
  106. 106.
    Welle, R., G. Schroder, E. Schütz, H. Grisebach, and J. Schroder. 1991. Induced plant responses to pathogen attack. Analysis and heterologous expression of the key enzyme in the biosynthesis of phytoalexins in soybeans. European J. Bio-chem. 196:423–430.Google Scholar
  107. 107.
    Schröder, J., T. Lanz, and G. Schroder. 1989. Genes for biosynthesis of stilbene-type phytoalexins. In Plant Gene Transfer, eds. C. Lamb and R. Beachy, 345 p. A.R. Liss, New York.Google Scholar
  108. 108.
    Paiva, N. L., R. Edwards, Y. Sun, G. Hrazdina, and R. A. Nixon. 1991. Stress responses in alfalfa (Medicago sativa L.) 11. Molecular cloning and expression of alfalfa isoflavone reductase, a key enzyme of isoflavonoid phytoalexin biosynthesis. Plant Mol. Biol. 17:653–667.PubMedGoogle Scholar
  109. 109.
    Stein, U. and R. Blaich. 1985. Untersuchungen über Stilbenproduktion und Botrytisanfálligkeit bei Vitis-Arten. Vitis 24:75–87.Google Scholar
  110. 110.
    Hain, R., B. Bieseler, H. Kindl, G. Schröder, and R. Stöcker. 1990. Expression of a stilbene synthase gene in Nicotiana tabacum results in synthesis of the phytoalexin resveratrol. Plant Mol. Biol. 15:325–335.PubMedGoogle Scholar
  111. 111.
    Hain, R., H.-J. Reif, E. Krause, R. Langebartels, H. Kindl, B. Vornam, W. Wiese, E. Schmelzer, P. H. Schreier, R. H. Stöcker, and K. Stenzel. 1993. Disease resistance results from foreign phytoalexin expression in a novel plant. Nature 361:153–156.PubMedGoogle Scholar
  112. 112.
    Endo, Y., K. Tsurugi, and R. F. Ebert. 1988. The mechanism of barley toxin: a type 1 ribosome-inactivating protein with RNA N-glycosidase activity. Biochim. Biophys. Acta 954:224–226.PubMedGoogle Scholar
  113. 113.
    Stirpe, F. 1982. On the action of ribosome-inactivating proteins: Are plants ribosomes species-specific? Biochem. J. 202:279–280.PubMedGoogle Scholar
  114. 114.
    Stirpe, F. and R. C. Hughes. 1989. Specificity of ribosome-inactivating proteins with RNA N-glycosidase activity. Biochem J. 262:1001–1002.PubMedGoogle Scholar
  115. 115.
    Roberts, W. K. and C. P. Selitrennikoff. 1986. Isolation and partial characterization of two antifungal proteins from barley. Biochim. Biophys. Acta 880:161–170.PubMedGoogle Scholar
  116. 116.
    Leah, R., H. Tommerup, I. Svendsen, and J. Mundy. 1991. Biochemical and molecular characterization of three barley seed proteins with antifungal properties. J. Biol. Chem. 266:1564–1573.PubMedGoogle Scholar
  117. 117.
    Longeman, J., G. Jach, H. Tommerup, J. Mundy, and J. Schell. 1992. Expression of a barley ribosome-inactivating protein leads to increased fungal protection in transgenic tobacco plants. Biotechnology 10:305–308.Google Scholar
  118. van Hofsten, P., I. Faye, K. Kockum, J-Y. Lee, K. G. Xanthopulos, I. A. Boman, H.G. Boman, A. Engström, D. Andrew, and R.B. Merrifield. 1985. Molecular cloning, cDNA sequencing and chemical synthesis of cecropin B from Hy-alophora cecropia. Proc. Nat. Acad. Sci. USA 82:2240–2244.Google Scholar
  119. 119.
    Lee, J. Y., A. Boman, C. Sun, M. Andesson, H. Jornvall, V. Mutt, and H. G. Boman. 1989. Antibacterial peptides from pig intestine: Isolation of a mammalian cecropin. Proc. Nat. Acad. Sci. USA 86:9159–9162.PubMedGoogle Scholar
  120. 120.
    Casteels, P., C. Ampe, F. Jacobs, M. Vaeck, and P. Tempst. 1989. Apidaecins: antibacterial peptides from honey-bees. EMBO J. 8:2387–2391.PubMedGoogle Scholar
  121. 121.
    Zasloff, M. 1987. Magainins, a class of antimicrobial peptides from Xenopus skin: isolation and characterization of two active forms and cDNA sequence of a precursor. Proc. Nat. Acad. Sci. USA 84:5449–5453.PubMedGoogle Scholar
  122. 122.
    Haberman, E. 1972. Bee and wasp venoms. Science 177:314–322.Google Scholar
  123. 123.
    Boman, H. G. and D. Hulmark. 1987. Cell-free immunity in insects. Anna. Rev. Microbiol. 41:103–126.Google Scholar
  124. 124.
    Christensen, B., J. Fink, R. B. Merrifield, and D. Mauzerall. 1988. Channel-forming properties of cecropins and related model compounds incorporated into planar lipid membranes. Proc. Nat. Acad. Sci. USA 85:5072–5076.PubMedGoogle Scholar
  125. 125.
    Nordeen, R. O., S. L. Sinden, J. M. Jaynes, and L. D. Owens. 1992. Activity of cecropin sb37 against protoplasts from several plant species and their bacterial pathogens. Plant Sci. 82:101–107.Google Scholar
  126. 126.
    Jaynes, J. M., K. G. Xanthopoulos, L. Destefano, and J.H. Doods. 1987. Increasing bacterial disease resistance in plants utilizing antibacterial genes from insects. Bioessays 6:263–270.Google Scholar
  127. 127.
    Jaynes, J. M., P. Nagpala, L. Destefano-Beltran, J. H. Huang, J. Kim, T. Denny, and S. Centiner. 1993. Expression of a cecropin b lytic peptide analog in transgenic tobacco confers enhanced resistance to bacterial wilt caused by Pseudomonas solanacearum. Plant Science 89:43–53.Google Scholar
  128. 128.
    Bohlmann, H. 1994. The role of thionins in plant protection. Critical Reviews Crit. Rev. Plant Sci. 13:1–16.Google Scholar
  129. 129.
    Bohlmann, H. and K. Apel. 1987. Isolation and characterization of cDNAs coding for leaf-specific thionins closely related to the endosperm-specific hor-dothionin of barley (Hordeum vulgare L.). Mol. Gen. Genet. 207:446–454.Google Scholar
  130. 130.
    García-Olmedo, F., P. Rodríguez-Palenzuela, C. Hernández-Lucas, F. Ponz, C. Maraña, M. J. Carmona, J. López-Fando, J. A. Fernández, and P. Carbonero. 1989. The thionins: A protein family that includes purothionins, viscotoxins, and crambis. Plant Mol. Cell Oxf. Surv. 6:31–60.Google Scholar
  131. 131.
    Bohlmann, H., S. Clausen, S. Behnke, H. Giese, C. Hiller, U. Reimann-Phillip, G. Schrader, V. Barkholt, and K. Apel. 1988. Leaf-specific thionin of barley-a novel class of a cell wall proteins toxic to plant-pathogenic fungi and possibly involved in the defense mechanism of plants. EMBO J. 7:1559–1565.PubMedGoogle Scholar
  132. 132.
    Remain-Phillipp, U., G. Scharader, E. Martionoa, V. Barlholt, and K. Apel. 1989. Intracellular thionins of barley. J. Biol. Chem. 264:8978–8984.Google Scholar
  133. 133.
    Fernandez de Caleya, R., B. Gonzalez, F. Garcia-Olmedo, and P. Carbonero. 1972. Susceptibility of phypathogenic bacteria to wheat purothionons in vitro. Appl. Microbiol. 23:998–1000.Google Scholar
  134. 134.
    Cammue, B. P. A., M. F. C. D. Bolle, F. R. G. Terras, P. Proost, J. V. Damme, S. B. Rees, J. Vanserleyden, and W. F. Broekaert. 1992. Isolation and characterization of a novel class of plant antimicrobial peptides from Mirabilis jalapa L. seeds. J. Biol Chem. 267:2228–2233.PubMedGoogle Scholar
  135. 135.
    Carmona, M. J., A. Molina, J. A. Fernández, J. J. López-Fando, and F. García-Olmedo. 1993. Expression of the alfa-thionin gene from barley in tobacco confers enhanced resistance to bacterial pathogens. Plant J. 3:457–462.PubMedGoogle Scholar
  136. 136.
    Joliès, P. and J. Joliès. 1984. What’s new in lysozyme research? Mol Cell Biochem. 63:165–189.Google Scholar
  137. 137.
    Tsugita, A. 1971. Phage lysozyme and other lytic enzymes. In The Enzymes, ed. P. D. Boyer, pp. 334–341. Academic Press, New York.Google Scholar
  138. 138.
    Linthorst, H. J. M. 1991. Pathogenesis-related proteins of plants. Crit. Rev. Plant Sci. 10:123–150.Google Scholar
  139. 139.
    Destefano-Beltran, L., P. Nagpala, K. Jaeho, J. H. Doods, and J. M. Jaynes. 1991. Genetics transformation of potato to enhance nutritional value and confer disease resistance. In Plant Gene Research. Molecular Appoaches to Crop Improvement,: eds. E. S. Denis and D. J. Llewellyn eds. Springer Verlag, Wien/New York pp. 12–82.Google Scholar
  140. 140.
    Trudel, J., C. Potvin, and A. Asselin. 1992. Expression of active hen egg white lisozyme in transgenic tobacco. Plant Sci. 87:55–67.Google Scholar
  141. 141.
    During, K., P. Porsch, M. Fladung, and H. Lörz. 1993. Transgenic potato plants resistant to the phytophatogenic bacterium Erwinia carotovora. Plant J. 3:587–598.Google Scholar
  142. Keen, N. T. 1990. Gene-for-gene complementarity in plant-pathogen interactions. Annu. Rev. Genet. 24:447–463.PubMedGoogle Scholar
  143. 143.
    de Wit, P. J. G. M. 1992. Molecular characterization of gene-for-gene systems in plant-fungus interactions and the application of avirulence genes in control of plant pathogens. Annu. Rev. Phytopathol 30:391–418.PubMedGoogle Scholar
  144. 144.
    Bowles, D. J. 1990. Defense-related proteins in higher plants. Annu. Rev. Biochem. 59:873–907.PubMedGoogle Scholar
  145. 145.
    Sequeira, L. 1983. Mechanisms of induced resistance in Plants. Annu. Rev Microbiol. 37:51–79.PubMedGoogle Scholar
  146. 146.
    Ross, A. F. 1961. Systemic acquired resistance induced by localized virus infections in plants. Virology 14:340–358.PubMedGoogle Scholar
  147. 147.
    White, R. F. 1979. Acetylsalicylic acid (aspirin) induces resistance to tobacco mosaic virus in tobacco. Virology 99:410–412.PubMedGoogle Scholar
  148. 148.
    Mauch, F., B. Mauch-Mani, and T. Boiler. 1988. Inhibition of fungal growth by contaminations of chitinase and β-l,3-glucanase. Plant Physiol. 88:936–942.PubMedGoogle Scholar
  149. 149.
    Roberts, W. K. and C. P. Selitrennikoff. 1988. Plant and bacterial chitinases differ in antifungal activity. J. Gen. Microbiol 134:169–176.Google Scholar
  150. 150.
    Roberts, W. K. and C. P. Seletrennikoff. 1990. Zeamatin, an antifungal protein from maize with membrane-permeabilizing activity. J. Gen. Microbiol 136:1771–1778.Google Scholar
  151. 151.
    Vigers, A. J., W. K. Roberts, and C. P. Selitrennikoff. 1991. A new family of plant antifungal proteins. Mol Plant-Microbe Interactions 4:315–323.Google Scholar
  152. 152.
    Woloshuk, C. P., J. S. Meulenhoff, M. Sela-Buurlage, P. J. M. van den Elzen, and B. J. C. Comelissen. 1991. Pathogen-induced proteins with inhibitory activity toward Phytophthora infestans. Plant Cell 3:619–628.PubMedGoogle Scholar
  153. 153.
    Bell, J. N., T. B. Ryder, V. P. M. Wingate, J. A. Bailey, and C. J. Lamb. 1986. Differential accumulation of plant defense gene transcripts in a compatible and an incompatible plant-pathogen interaction. Mol Cell Biol 6:1615–1623.PubMedGoogle Scholar
  154. 154.
    Benhamou, N., J. Grenier, A. Asselin, and M. Legrand. 1989. Inmmunogold localization of β-l,3-glucanases in two plants infected by vascular wilt fungi. Plant Cell 1:1209–1221.PubMedGoogle Scholar
  155. 155.
    Joosten, M. H. A. J. and P. G. M. De Wit. 1989. Identification of several pathogenesis-related proteins in tomato leaves inoculated with Cladosporium fulvum (syn. Fulvia fulva) as 1,3-β-glucanases and chitinases. Plant Physiol 89:945–951.PubMedGoogle Scholar
  156. 156.
    Cutt, J.R., Harpster, M. H., Dixon, D. C, Carr, J. P., P. Dunsmuir, and D. F. Klessig. 1989. Disease response to tobacco mosaic virus in transgenic plants that constitutively express the pathogenesis-related PR Ib gene. Virology 173:89–97.PubMedGoogle Scholar
  157. 157.
    Linthorst, H. J. M., R. L. J. Meuwissen, S. Kauffmann, and J. F. Bol. 1989. Constitutive expression of pathogenesis-related proteins PR-1, GRP, and PR-S in tobacco has no effect on virus infection. Plant Cell 1:285–291.PubMedGoogle Scholar
  158. 158.
    Wessels, J. G. H. and J. H. R. Sietsma. 1982. The fungal cell wall. In Encyclopedia of Plant Physiology, new series., eds. W. Tanner, and F. A. Loewus. Springer Verlag, New York.Google Scholar
  159. 159.
    Boller, T. 1988. Ethylene and the regulation of antifungal hydrolases in plants. In: Plant Molecular Cell Biology, eds. B. J. Miflin and H. F. Miflin pp. 145–163. Oxford University Press, Oxford.Google Scholar
  160. 160.
    Broglie, K., I. Chet, M. Holliday, R. Cressman, P. Biddle, S. Knowlton, C. J. Mauvais, and R. Broglie. 1991. Trangenic plants with enhanced resistance to the fungal pathogen Rhizoctonia solani. Science 254:1194–1197.PubMedGoogle Scholar
  161. 161.
    Vierheilig, H., M. Alt, J. M. Neuhaus, T. Boller, and A. Wiemken. 1993. Colonization of transgenic Nicotiana sylvestris plants, expressing different forms of Nicotiana tabacum chitinase, by the root pathogen Rhizoctonia solani and by the mycorrhizal symbiont Glomus mosseae. Mol Plant-Microbe Interactions 6:261–264.Google Scholar
  162. 162.
    Nehaus, J. M., P. Ahl-Goy, U. Hinz, S. Flores, and F. Meins. 1991. High-level expression of a tobacco chitinase gene in Nicotiana sylvestris. Susceptibility of transgenic plants to Cercospora nicotianae infection. Plant Mol Biol 16:141–151.Google Scholar
  163. 163.
    Flor, H. H. 1946. Genetics of pathogenicity in Melampsora lini. J. Agric. Res. 73:335–357.Google Scholar
  164. 164.
    Flor, H. H. 1971. Current status of the gene for gene concept. Annu. Rev. Phytopathol 9:335–357.Google Scholar
  165. 165.
    Tomiyama, K. 1992. Hypersensitive cell death: Its significance and physiology in plant infection. In The Physiological and Biochemical Basis, eds. Y. Asada, W. R. Busnell, S. Ouchi, and C. P. Vance, pp.329–344. Springer Verlag, Berlin.Google Scholar
  166. 166.
    Avni, A., J. D. Anderson, N. Holland, J.D. Rochaix, Z. Gromet-Elhanan, and M. Edelman. 1992. Tentoxin sensitivity of chloroplasts determined by codon 83 of β subunit of proton-ATPase. Science 257:1245–1247.PubMedGoogle Scholar
  167. 167.
    Mitchell, R. E. 1984. The relevance of non-host-specific toxins in the expression of virulence by pathogens. Annu. Rev. Phytopathol. 22:215–245.Google Scholar
  168. 168.
    Turner, J. G. and R. R. Taha. 1984. Contribution of tabtoxin to the pathogenicity of Pseudomonas syringae pv. tabaci. Physiol. Plant Pathol. 25: 55–69.Google Scholar
  169. 169.
    Mathews, D. and R. D. Durbin, 1987. Bacterial toxins: The mechanism of chlorosis induction by tagetitoxin. Curr. Top. Plat. Biochem. Physiol. 6:46–54.Google Scholar
  170. 170.
    Suzuki, Y. S., Y. Wang, and J.Y. Takemoto. 1992. Syringomycin-stimulated phosphorylation of the plasma membrane H+-ATPase from red beet storage tissue. Plant Physiol. 99: 1314–1320.PubMedGoogle Scholar
  171. Giovanelli, J., Owen, L. D., and Mudd, S. H. 1973. ß-cystathionase: in vivo inactivation by rhizobitoxine and its role in methionine biosynthesis. Plant Physiol. 51: 492–503.PubMedGoogle Scholar

Copyright information

© Chapman & Hall 1997

Authors and Affiliations

  • Luis Herrera-Estrella
  • Laura Silva Rosales
  • Rafael Rivera-Bustamante

There are no affiliations available

Personalised recommendations