Skip to main content

Utilization of Nitric Oxide as a Paramagnetic Probe of the Molecular Oxygen Binding Site of Metalloenzymes

  • Chapter
Nitric Oxide Research from Chemistry to Biology

Abstract

The paramagnetism of many nitrosylated complexes of metalloproteins has led to numerous but limited studies by EPR spectroscopy since the early seventies. Spectral analysis can, in the best of cases, bring evidence of specific structural changes within the metal ligation sphere. However interpretations are somewhat difficult when no X-ray or other complementary spectroscopic data, such as EXAFS, resonance Raman or infrared, are available. Furthermore some of the nitrosylated metalloprotein complexes are diamagnetic (S = 0) or paramagnetic with integer spin (S = 1, 2, etc.), which are EPR-silent with conventional instrumentation. Despite its specificity EPR spectroscopy is therefore much less in general use than other spectroscopic methods, such as resonance Raman or NMR. See chapter 3 for the basic principles of EPR spectroscopy and chapters 4 and 5 for its exemplary application to hemoglobin in vitro and in red blood cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Henry Y, Ducrocq C, Drapier J-C, et al. Nitric oxide, a biological effector. Electron paramagnetic resonance detection of nitrosyl-iron-protein complexes in whole cells. Eur Biophys J 1991; 20:1–15.

    PubMed  CAS  Google Scholar 

  2. Richter-Addo GB, Legzdins P. Metal nitrosyls. Oxford University Press, Oxford, UK, 1992.

    Google Scholar 

  3. Kon H. Paramagnetic resonance study of nitric oxide hemoglobin. J Biol Chem 1968; 243:4350–4357.

    PubMed  CAS  Google Scholar 

  4. Dickinson LC, Chien JCW. An electron paramagnetic resonance study of nitro-sylmyoglobin. J Am Chem Soc 1971; 93:5036–5040.

    PubMed  CAS  Google Scholar 

  5. Yonetani T, Yamamoto H, Erman JE et al. Electron properties of hemoproteins. V. Optical and electron paramagnetic resonance characteristics of nitric oxide derivatives of metalloporphyrin-apo-hemoprotein complexes. J Biol Chem 1972; 247:2447–2455.

    PubMed  CAS  Google Scholar 

  6. Henry Y, Banerjee R. Electron paramagnetic studies of nitric oxide haemoglobin derivatives: isolated subunits and nitric oxide hybrids. J Mol Biol 1973; 73:469–482.

    PubMed  CAS  Google Scholar 

  7. Chien JCW. Electron paramagnetic resonance study of the stereochemistry of nitrosylhemoglobin. J Chem Phys 1969; 51: 4220–4227.

    PubMed  CAS  Google Scholar 

  8. Morse RH, Chan SI. Electron paramagnetic resonance studies of nitrosyl ferrous heme complexes. Determination of an equilibrium between two conformations. J Biol Chem 1980; 255:7876–7882.

    PubMed  CAS  Google Scholar 

  9. Hori H, Ikeda-Saito M, Yonetani T. Single crystal EPR of myoglobin nitroxide. Freezing-induced reversible changes in the molecular orientation of the ligand. J Biol Chem 1981; 256:7849–7855.

    PubMed  Google Scholar 

  10. Shiga T, Hwang R-J, Tyuma I. Electron paramagnetic resonance studies of nitric oxide hemoglobin derivatives. I. Human hemoglobin subunits. Biochemistry 1969; 8:378–383.

    PubMed  CAS  Google Scholar 

  11. Nagai K, Hori H, Yoshida S et al. The effect of quaternary structure on the state of the α and β subunits within nitrosyl haemoglobin. Low temperature photodissociation and the ESR spectra. Biochim Biophys Acta 1978; 532:17–28.

    PubMed  CAS  Google Scholar 

  12. Sharma VS, Isaacson RA, John ME et al. Reaction of nitric oxide with heme proteins: studies on metmyoglobin, opossum meth-emoglobin, and microperoxidase. Biochemistry 1983; 22:3897–3902.

    PubMed  CAS  Google Scholar 

  13. LoBrutto R, Wei YH, Yoshida S et al. Electron paramagnetic resonance- (EPR-) resolved kinetics of cryogenic nitric oxide recombination to cytochrome c oxidase and myoglobin. Biophys J 1984; 45:473–479.

    PubMed  CAS  Google Scholar 

  14. Bazylinski DA, Hollocher TC. Metmyoglobin and methemoglobin as efficient traps for nitrosyl hydride (nitroxyl) in neutral aqueous solution. J Am Chem Soc 1985; 107:7982–7986.

    CAS  Google Scholar 

  15. Bazylinski DA, Goretski J, Hollocher TC. On the reaction of trioxodinitrate (II) with hemoglobin and myoglobin. J Am Chem Soc 1985; 107:7986–7989.

    CAS  Google Scholar 

  16. Neto LM, Nascimento OR, Tabak M et al. The mechanism of reaction of nitrosyl with met- and oxymyoglobin: an ESR study. Biochim Biophys Acta 1988; 956:189–196.

    PubMed  CAS  Google Scholar 

  17. De Sanctis G, Falcioni G, Polizio F et al. Mini-myoglobin: native-like folding of the NO-derivative. Biochim Biophys Acta 1994; 1204:28–32.

    PubMed  Google Scholar 

  18. Gorbunov NV, Osipov AN, Day BW et al. Reduction of ferrylmyoglobin and ferrylhemoglobin by nitric oxide: a protective mechanism against ferryl hemoprotein-induced oxidations. Biochemistry 1995; 34:6689–6699.

    PubMed  CAS  Google Scholar 

  19. Zhao XJ, Sampath V, Caughey WS. Infrared characterization of nitric oxide bonding to bovine heart cytochrome c oxidase and myoglobin. Biochem Biophys Res Commun 1994; 204:537–543.

    PubMed  CAS  Google Scholar 

  20. Jongeward KA, Marsters JC, Mitchell MJ et al. Picosecond geminate recombination of nitrosylmyoglobins. Biochem Biophys Res Commun 1986; 140:962–966.

    PubMed  CAS  Google Scholar 

  21. Petrich JW, Lambry J-C, Balasubramanian S et al. Ultrafast measurements of geminate recombination of NO with site-specific mutants of human myoglobin. J Mol Biol 1994; 238:437–444.

    PubMed  CAS  Google Scholar 

  22. Walda KN, Liu XY, Sharma VS et al. Geminate recombination of diatomic ligands CO, O2, NO with myoglobin. Biochemistry 1994; 33:2198–2209.

    PubMed  CAS  Google Scholar 

  23. Carlson ML, Regan R, Elber R et al. Nitric oxide recombination to double mutants of myoglobin: role of ligand diffusion in a fluctuating heme pocket. Biochemistry 1994; 33:10597–10606.

    PubMed  CAS  Google Scholar 

  24. Schaad O, Zhou HX, Szabo A et al. Simulation of the kinetics of ligand binding to a protein by molecular dynamics: geminate rebinding of nitric oxide to myoglobin. Proc Natl Acad Sci USA 1993; 90:9547–9551.

    PubMed  Google Scholar 

  25. Das TK, Mazumdar S, Mitra S. Micelleinduced release of haem-NO from nitric oxide complex of myoglobin. J Chem Soc Chem Commun 1993; 18:1447–1448.

    Google Scholar 

  26. Duprat AF, Traylor TG, Wu G-Z et al. Myoglobin-NO at low pH: free four-coordinated heme in the protein pocket. Biochemistry 1995; 35:2634–2644.

    Google Scholar 

  27. Antholine WE, Mauk AG, Swartz HM et al. Electron spin resonance spectra of feline NO-hemoglobins. FEBS Lett 1973; 36:199–202.

    PubMed  CAS  Google Scholar 

  28. Trittelvitz E, Sick H, Gersonde K et al. Reduced Bohr effect in NO-ligated Chironomus haemoglobin. Eur J Biochem 1973; 35:122–125.

    PubMed  CAS  Google Scholar 

  29. Brunori M, Falcioni G, Rotilio G. Kinetic properties and electron paramagnetic resonance spectra of the nitric oxide derivative of hemoglobin componenets of trout (Salmo irideus). Proc Natl Acad Sci USA 1974; 71:2470–2472.

    PubMed  CAS  Google Scholar 

  30. Schüller DM, Wang MR, Hoffman BM. Resonance Raman and EPR of nitrosyl human hemoglobin and chains, carp hemoglobin, and model compounds. Implications for the nitrosyl heme coordination state. J Biol Chem 1979; 254:4072–4078.

    Google Scholar 

  31. Caracelli I, Meirelles NC, Tabak M et al. An ESR study of mttosyl-Aplysia brasiliana myoglobin and nitrosyl annelidae Glossoscolex paulist us erythrocruorin. Biochim Biophys Acta 1988; 955:315–320.

    PubMed  CAS  Google Scholar 

  32. Tsuneshige A, Imai K, Hori H et al. Spectroscopic, electron paramagnetic resonance and oxygen binding studies on the hemoglobin from the marine polychaete Perinereis aibubitensis (Grübe): comparative physiology of hemoglobin. J Biochem 1989; 106:406–417.

    PubMed  CAS  Google Scholar 

  33. Maskall CS, Gibson JF, Dart PJ. Electron paramagnetic resonance studies of leghaemo-globins from soya-bean and cowpea root nodules. Identification of nitrosyl-leghaemoglobin in crude leghaemoglobin preparations. Biochem J 1977; 167:435–445.

    PubMed  CAS  Google Scholar 

  34. Garcia-Plazaola JI, Arrese-Igor C, Langara L et al. Denitrification in intact lucerne plants. J Plant Physiol 1995; 146:563–565.

    CAS  Google Scholar 

  35. Sen S, Cheema IR. Nitric oxide synthase and calmodulin immunoreactivity in plant embryonic tissue. Biochem Arch 1995; 11:221–227.

    CAS  Google Scholar 

  36. Lockshin A, Burris RH. Inhibitors of nitrogen fixation in extracts from Clostridium pasteurianum. Biochim Biophys Acta 1965; 111:1–10.

    PubMed  CAS  Google Scholar 

  37. Trinchant JC, Rigaud J. Nitrite inhibition of nitrogenase from soybean bacteroids. Arch Microbiol 1980; 124:49–54.

    CAS  Google Scholar 

  38. Meyer J. Comparison of carbon monoxide, nitric oxide, and nitrite as inhibitors of the nitrogenase from Clostridium pasteurianum. Arch Biochem Biophys 1981; 210:246–256.

    PubMed  CAS  Google Scholar 

  39. Michalski WP, Nicholas DJD. Inhibition of nitrogenase by nitrite and nitric oxide in Rhodopseudomonas sphaeroides f. sp. denitrificans. Arch Microbiol 1987; 147:304–308.

    CAS  Google Scholar 

  40. Hyman MR, Seefeldt LC, Morgan TV et al. Kinetic and spectroscopic analysis of the inactivating effects of nitric oxide on the individual components of Azotobacter vinelandii nitrogenase. Biochemistry 1992; 31:2947–2955.

    PubMed  CAS  Google Scholar 

  41. Ehrenberg A, Szczepkowski TW. Properties and structure of the compounds formed between cytochrome c and nitric oxide. Acta Chem Scand I960; 14:1684–1692.

    Google Scholar 

  42. Kon H. Electron paramagnetic resonance of nitric oxide cytochrome c. Biochem Biophys Res Commun 1969; 35:423–427.

    PubMed  CAS  Google Scholar 

  43. Yoshimura T, Suzuki S, Nakahara A et al. Spectral properties of nitric oxide complexes of cytochrome c 1 from Alcaligenes sp. NCIB 11015. Biochemistry 1986; 25:2436–2442.

    CAS  Google Scholar 

  44. Yoshimura T, Iwasaki H, Shidara S et al. Nitric oxide complex of cytochrome c 1 in cells of denitrifying bacteria. J Biochem 1988; 103:1016–1019.

    PubMed  CAS  Google Scholar 

  45. Yoshimura T, Shidara S, Ozaki T et al. Five coordinated nitrosylhemoprotein in whole cells of denitrifying bacterium, Achromobacter xylosoxidans NCIB 11015. Arch Microbiol 1993; 160:498–500.

    CAS  Google Scholar 

  46. Yonetani T, Yamamoto H. Optical and electron paramagnetic resonance properties of the nitric oxide compounds of cytochrome c peroxidase and horseradish peroxidase. In: King TE, Mason HS, Morrison M, eds. Oxidases and Related Redox Systems, Vol I, University Park Press, Baltimore, 1973; 279–298.

    Google Scholar 

  47. Henry Y, Mazza G. EPR studies of nitric oxide complexes of turnip and horse-radish peroxidases. Biochim Biophys Acta 1974; 371:14–19.

    PubMed  CAS  Google Scholar 

  48. Chiang R, Makino R, Spomer WE et al. Chloroperoxidase: P-450 type absorption in the absence of sulfhydryl groups. Biochemistry 1975; 14: 4166–4171.

    PubMed  CAS  Google Scholar 

  49. Bolscher BGJM, Wever R. The nitrosyl compounds of ferrous animal haloper-oxidases. Biochim Biophys Acta 1984; 791:75–81.

    PubMed  CAS  Google Scholar 

  50. Sievers G, Peterson J, Gadsby PMA et al. The nitrosyl compound of ferrous lacto-peroxidase. Biochim Biophys Acta 1984; 785:7–13.

    CAS  Google Scholar 

  51. Poulos TL, Freer ST, Alden RA et al. The crystal structure of cytochrome c peroxidase. J Biol Chem 1980; 255:575–580.

    PubMed  CAS  Google Scholar 

  52. Finzel BC, Poulos TL, Kraut J. Crystal structure of yeast cytochrome c peroxidase refined at 1.7 Å resolution. J Biol Chem 1984; 259:13027–13036.

    PubMed  CAS  Google Scholar 

  53. Cooper CE, Odell E. Interaction of human myeloperoxidase with nitrite. FEBS Lett 1992; 314:58–60.

    PubMed  CAS  Google Scholar 

  54. Koppenol WH. Thermodynamic consideration on the formation of reactive species from hypochlorite, superoxide and hydrogen monoxide. Could nitrosyl chloride be produced by neutrophils and macrophages? FEBS Lett 1994; 347:5–8.

    PubMed  CAS  Google Scholar 

  55. Champion PM, Münck E, DeBrunner PG et al. Mössbauer investigations of chloro-peroxidase and its halide complexes. Biochemistry 1973; 12:426–435.

    PubMed  CAS  Google Scholar 

  56. Poulos TL, Finzel BC, Howard AJ. High-resolution crystal structure of cytochrome P450cam. J Mol Biol 1987; 195:687–700.

    PubMed  CAS  Google Scholar 

  57. Deisseroth A, Dounce AL. Catalase: physical and chemical properties, mechanism of catalysis, and physiological role. Physiol Rev 1970; 50:319–375.

    PubMed  CAS  Google Scholar 

  58. Reid TJ, Murhy MRN, Sicignano A et al. Structure and heme environment of beef liver catalase at 2.5 Å resolution. Proc Natl Acad Sci USA 1981; 78:4767–4771.

    PubMed  CAS  Google Scholar 

  59. Nicholls P. The reactions of azide with catalase and their significance. Biochem J 1964; 90:331–343.

    PubMed  CAS  Google Scholar 

  60. Craven PA, DeRubertis FR, Pratt DW. Electron spin resonance study of the role of NO-catalase in the activation of guanylate cyclase by NaN3 and NH2OH. Modulation of enzyme responses by heme proteins and their nitrosyl derivatives. J Biol Chem 1979; 254:8213–8222.

    PubMed  CAS  Google Scholar 

  61. Kalyanaraman B, Janzen EG, Mason RP. Spin trapping of the azidyl radical in azide/ catalase/H2O2 and various azide/peroxidase/ H2O2 peroxidizing systems. J Biol Chem 1985; 260:4003–4006.

    PubMed  CAS  Google Scholar 

  62. Brown GC. Reversible binding and inhibition of catalase by nitric oxide. Eur J Biochem 1995; 232:188–191.

    PubMed  CAS  Google Scholar 

  63. Henry Y, Ishimura Y, Peisach J. Binding of nitric oxide to reduced L-tryptophan-2,3-dioxygenase as studied by electron paramagnetic resonance. J Biol Chem 1976; 251:1578–1581.

    PubMed  CAS  Google Scholar 

  64. Shimizu T, Nomiyama S, Hirata F et al. Indoleamine 2,3-dioxygenase. Purification and some properties. J Biol Chem 1978; 253:4700–4706.

    PubMed  CAS  Google Scholar 

  65. Hirata F, Hayaishi O. Studies on indoleamine 2,3-dioxygenase. I. superoxide anion as substrate. J Biol Chem 1975; 250:5960–5966.

    PubMed  CAS  Google Scholar 

  66. Taniguchi T, Hirata F, Hayaishi O. Intracellular utilization of superoxide anion by indoleamine 2,3-dioxygenase of rabbit enterocytes. J Biol Chem 1977; 252:2774–2776.

    PubMed  CAS  Google Scholar 

  67. Sono M, Tanigushi T, Watanabe et al. Indoleamine 2,3-dioxygenase. Equilibrium studies of the tryptophan binding to the ferric, ferrous, and CO-bound enzymes. J Biol Chem 1980; 255:1339–1345.

    PubMed  CAS  Google Scholar 

  68. Sono M, Dawson JH. Extensive studies of the heme coodination structure of indoleamine 2,3-dioxygenase and of tryptophan binding with magnetic and natural circular dichroism and electron paramagnetic resonance. Biochim Biophys Acta 1984; 789:170–187.

    PubMed  CAS  Google Scholar 

  69. Werner ER, Bitterlich G, Fuchs D et al. Human macrophages degrade tryptophan upon induction by interferon-gamma. Life Sci 1987; 41:273–280.

    PubMed  CAS  Google Scholar 

  70. Werner ER, Werner-Felmayer G, Fuchs D et al. Paralllel induction of tetrahydro-biopterin biosynthesis and indoleamine 2,3-dioxygenase activity in human cells and cell lines by interferon-γ. Biochem J 1989; 262:861–866.

    PubMed  CAS  Google Scholar 

  71. Thomas SR, Mohr D, Stocker R. Nitric oxide inhibits indoleamine 2,3-dioxygenase activity in interferon-γ primed mononuclear phagocytes. J Biol Chem 1994; 269:14457–14464.

    PubMed  CAS  Google Scholar 

  72. Humes JL, Winter CA, Sadowski SJ et al. Multiple sites on prostaglandin cyclooxyge-nase are determinants in the action of nonsteroidal antiinflammatory agents. Proc Natl Acad Sci USA 1981; 78:2053–2056.

    PubMed  CAS  Google Scholar 

  73. De Witt DL, El-Harith EA, Kraemer SA et al. The aspirin and heme-binding sites of ovine and murine prostaglandin en-doperoxide synthases. J Biol Chem 1990; 265:5192–5198.

    Google Scholar 

  74. Tsai AL, Kulmacz RJ, Wang JS et al. Heme coordination of prostaglandin H synthase. J Biol Chem 1993; 268:8554–8563.

    PubMed  CAS  Google Scholar 

  75. Karthein R, Nastainczyk W, Ruf HH. EPR study of ferric prostaglandin H synthase and its ferrous NO derivative. Eur J Biochem 1987; 166:173–180.

    PubMed  CAS  Google Scholar 

  76. Shimokawa T, Smith WL. Essential his-tidines of prostaglandin endoperoxide synthase. His-309 is involved in heme binding. J Biol Chem 1991; 266:6168–6173.

    PubMed  CAS  Google Scholar 

  77. Karthein R, Dietz R, Nastainczyk W et al. Higher oxidation states of prostaglandin H synthase. EPR study of a transient tyrosyl radical in the enzyme during the peroxidase reaction. Eur J Biochem 1988; 171:313–320.

    PubMed  CAS  Google Scholar 

  78. Shimokawa T, Kulmacz RJ, De Witt DL et al. Tyrosine 385 of prostaglandin endoperoxide synthase is required for cy-clooxygenase catalysis. J Biol Chem 1990; 265:20073–20076.

    PubMed  CAS  Google Scholar 

  79. Lassman G, Odenwaller R, Curtis JF et al. Electron spin resonance investigation of tyrosyl radicals of prostaglandin H synthase. Relation to enzyme catalysis. J Biol Chem 1991; 266:20045–20055.

    Google Scholar 

  80. Tsai AL, Palmer G, Kulmacz. Prostaglandin H synthase. Kinetics of tyrosyl radical formation and of cyclooxygenase catalysis. J Biol Chem 1992; 267;17753–17759.

    PubMed  CAS  Google Scholar 

  81. Degtyarenko KN, Archakov AI. Molecular evolution of P450 superfamily and P450-containing monooxygenase systems. FEBS Lett 1993; 332:1–8.

    PubMed  CAS  Google Scholar 

  82. Mansuy D, Battioni P, Battioni JP. Chemical model systems for drug-metabolizing cytochrome-P-4 50-dependent monooxygenases. Eur J Biochem 1989; 184:267–285.

    PubMed  CAS  Google Scholar 

  83. Poulos TL, Finzel BC, Gunsalus IC et al. The 2.6-Å crystal structure of Pseudomonas putida cytochrome P-450. J Biol Chem 1985; 260:16122–16130.

    PubMed  CAS  Google Scholar 

  84. Poulos TL, Finzel BC, Howard AJ. Crystal structure of substrate-free Pseudomonas putida cytochrome P-450. Biochemistry 1986; 25:5314–5322.

    PubMed  CAS  Google Scholar 

  85. Raag R, Poulos TL. Crystal structure of the carbon monoxide-substrate-cytochrome P-450Cam ternary complex. Biochemistry 1989; 28:7586–7592.

    PubMed  CAS  Google Scholar 

  86. Hill HAO, Röder A, Williams RJP. The chemical nature and reactivity of cytochrome P-450. In: Hemmerich P, Jorgensen CK, Neilands JB et al, eds. Structure and Bonding, Vol 8, 1970; 123–151.

    Google Scholar 

  87. Peisach J, Blumberg WE. Electron paramagnetic resonance study of the high- and low-spin forms of cytochrome P-450 in liver and in liver microsomes from a methyl-cholanthrene-treated rabbit. Proc Natl Acad Sci USA 1970; 67:172–179.

    PubMed  CAS  Google Scholar 

  88. Peisach J, Mims WB. Linear electric field-induced shifts in electron paramagnetic resonance: a new method for study of the ligands of cytochrome P-450. Proc Natl Acad Sci USA 1973; 70:2979–2982.

    PubMed  CAS  Google Scholar 

  89. Stern JO, Peisach J. A model compound for nitrosyl cytochrome P-450; further evidence for mercaptide sulfur ligation to heme. FEBS Lett 1976; 62:364–368.

    PubMed  CAS  Google Scholar 

  90. Peisach J, Stern JO, Blumberg WE. Optical and magnetic probes of the structure of cytochrome P-450’s. Drug Metab Dispos 1973; 1:45–61.

    PubMed  CAS  Google Scholar 

  91. Chevion M, Peisach J, Blumberg WE. Imidazole, the ligand trans to mercaptide in ferric cytochrome P-450. An EPR study of proteins and model compounds. J Biol Chem 1977; 252:3637–3645.

    PubMed  CAS  Google Scholar 

  92. Dawson JH, Andersson LA, Sono M. Spectroscopic investigations of ferric cytochrome P-450-CAM ligand complexes. Identification of the ligand trans to cysteinate in the native enzyme. J Biol Chem 1982; 257:3606–3617.

    PubMed  CAS  Google Scholar 

  93. Jänig GR, Dettmer R, Usanov SA et al. Identification of the ligand trans to thiolate in cytochrome P-450 LM2 by chemical modification. FEBS Lett 1983; 159:58–62.

    PubMed  Google Scholar 

  94. Ebel RE, O’Keeffe DH, Peterson JA. Nitric oxide complexes of cytochrome P-450. FEBS Lett 1975; 55:198–201.

    PubMed  CAS  Google Scholar 

  95. O’Keeffe DH, Ebel RE, Peterson JA. Studies of the oxygen binding site of cytochrome P-450. Nitric oxide as a spin-label probe. J Biol Chem 1978; 253:3509–3516.

    PubMed  Google Scholar 

  96. Tsubaki M, Hiwatashi A, Ichikawa Y et al. Electron paramagnetic resonance study of ferrous cytochrome P-450scc-nitric oxide complexes: effects of cholesterol and its analogues. Biochemistry 1987; 26:4527–4534.

    PubMed  CAS  Google Scholar 

  97. Hori H, Masuya F, Tsubaki M et al. Electronic and stereochemical characterizations of intermediates in the photolysis of ferric cytochrome P450scc nitrosyl complexes. Effects of cholesterol and its analogues on ligand binding structures. J Biol Chem 1992; 267:18377–18381.

    PubMed  CAS  Google Scholar 

  98. Masuya F, Tsubaki M, Makino R et al. EPR studies on the photoproducts of ferric cytochrome P450cam (CYP101) nitrosyl complexes: effects of camphor and its analogues on ligand-bound structures. J Biochem 1994; 116:1146–1152.

    PubMed  CAS  Google Scholar 

  99. Wink DA, Osawa Y, Darbyshire JF et al. Inhibiton of cytochromes P450 by nitric oxide and a nitric oxide-releasing agent. Arch Biochem Biophys 1993; 300:115–123.

    PubMed  CAS  Google Scholar 

  100. Stadler J, Trockfeld J, Schmalix WA et al. Inhibition of cytochromes P4501A by nitric oxide. Proc Natl Acad Sci USA 1994; 91:3559–3563.

    PubMed  CAS  Google Scholar 

  101. Kahl R, Wulff U, Netter KJ. Effect of nitrite on microsomal cytochrome P-450. Xenobiotica 1978; 8:359–364.

    PubMed  CAS  Google Scholar 

  102. LeGall J, Payne WJ, Morgan TV et al. On the purification of nitrite reductase from Thiobacillus denitrifkans and its reaction with nitrite under reducing conditions. Biochem Biophys Res Commun 1979; 87:355–362.

    PubMed  CAS  Google Scholar 

  103. Bessières P, Henry Y. Etude de la réduction du nitrite par le NADH, catalysée par la nitrite reductase de Pseudomonas aeruginosa. C R Acad Sc Paris 1980; 290:1309–1312.

    Google Scholar 

  104. Bessières P, Henry Y. Stoichiometry of nitrite reduction catalyzed by Pseudomonas aeruginosa nitrite-reductase. Biochimie 1984; 66:313–318.

    PubMed  Google Scholar 

  105. Liu M-C, Huynh B-H, Payne WJ et al. Optical, EPR and Mössbauer spectroscopic studies on the NO derivatives of cytochrome cd1 from Thiobacillus denitrificans. Eur J Biochem 1987; 169:253–258.

    PubMed  CAS  Google Scholar 

  106. Liu M-C, Liu M-Y, Peck HD et al. Comparative EPR studies on the nitrite reductases from Escherichia coli and Wolinella succinogenes. FEBS Lett 1987; 218:227–230.

    PubMed  CAS  Google Scholar 

  107. Dermastia M, Turk T, Hollocher TC. Nitric oxide reductase. Purification from Paracoccus denitrificans with use of a single column and some characteristics. J Biol Chem 1991; 266:10899–10905.

    PubMed  CAS  Google Scholar 

  108. Kastrau DHW, Heiss B, Kroneck PMH et al. Nitric oxide reductase from Pseudomonas stutzeri, a novel cytochrome bc complex. Phospholipid requirement, electron paramagnetic resonance and redox properties. Eur J Biochem 1994; 222:293–303.

    PubMed  CAS  Google Scholar 

  109. Ribeiro JMC, Hazzard JMH, Nussenveig RH et al. Reversible binding of nitric oxide by a salivary heme protein from a bloodsucking insect. Science 1993; 260:539–541.

    PubMed  CAS  Google Scholar 

  110. Valenzuela JG, Walker FA, Ribeiro JMC. A salivary nitrophorin (nitric-oxide-carrying hemoprotein) in the bedbug Cimex lectularius.J Exp Biol 1995; 198:1519–1526.

    PubMed  CAS  Google Scholar 

  111. Hatefi Y. The mitochondrial electron transport and oxidative phosphorylation system. Annu Rev Biochem 1985; 54:1015–1069

    PubMed  CAS  Google Scholar 

  112. Anraku Y. Bacterial electron transport chains. Annu Rev Biochem 1988; 57:101–132.

    PubMed  CAS  Google Scholar 

  113. Calhoun MW, Thomas JW, Gennis RB. The cytochrome oxidase superfamily of redox-driven proton pumps. Trends in Biol Sci 1994; 19:325–330.

    CAS  Google Scholar 

  114. Castresana J, Lübben M, Saraste M et al. Evolution of cytochrome oxidase, an enzyme older than atmospheric oxygen. EMBO J 1994; 13:2516–2525.

    PubMed  CAS  Google Scholar 

  115. Chan SI, Li PM. Cytochrome c oxidase: understanding nature’s design of a proton pump. Biochemistry 1990; 29:1–12.

    PubMed  CAS  Google Scholar 

  116. Larsen RW, Pan L-P, Musser SM et al. Could CuB be the site of redox linkage in cytochrome c oxidase? Proc Natl Acad Sci USA 1992; 89:723–727.

    PubMed  CAS  Google Scholar 

  117. Shapleigh JP, Hosler JP, Tecklenburg MMJ et al. Definition of the catalytic site of cytochrome c oxidase: specific ligands of heme a and the heme a 3-CuB center. Proc Natl Acad Sci USA 1992; 89:4786–4790.

    PubMed  CAS  Google Scholar 

  118. Li PM, Malmström BG, Chan SI. The nature of CuA in cytochrome c oxidase. FEBS Lett 1989; 248:210–211.

    PubMed  CAS  Google Scholar 

  119. Lappalainen P, Aasa R, Malmström BG et al. Soluble CuA-binding from the Paracoccus cytochrome c oxidase. J Biol Chem 1993; 268:26416–26421.

    PubMed  CAS  Google Scholar 

  120. Lappalainen P, Saraste M. The binuclear CuA centre of cytochrome oxidase. Biochim Biophys Acta 1994; 1187:222–225.

    CAS  Google Scholar 

  121. Kroneck PMH, Antholine WA, Riester J et al. The cupric site in nitrous oxide contains a mixed-valence [Cu(II),Cu(I)] binuclear center: a multifrequency electron paramagnetic resonance investigation. FEBS Lett 1988; 242:70–74.

    PubMed  CAS  Google Scholar 

  122. Kroneck PMH, Antholine WA, Riester J et al. The nature of the cupric site in nitrous oxide reductase and of CuA in cytochrome c oxidase. FEBS Lett 1989; 248:212–213.

    PubMed  CAS  Google Scholar 

  123. Ohnishi T, Harmon HJ, Waring AJ. Electron-paramagnetic-resonance studies on the spatial relationship of redox components in cytochrome oxidase. Biochem Soc Transac 1985; 13:607–611.

    CAS  Google Scholar 

  124. Hosler JP, Kim Y, Shapieigh J et al. Vibrational characteristic of mutant and wild-type carbon monoxide cytochrome c oxidase: evidence for a linear arrangement of heme a, a 3 , and CuB. J Am Chem Soc 1994; 116:5515–5516.

    CAS  Google Scholar 

  125. Blokzijl-Homan MFJ, Van Gelder BF. Biochemical and biophysical studies on cytochrome aa 3 . III. The EPR spectrum of NO-ferrocytochrome a 3 . Biochim Biophys Acta 1971; 234:493–498.

    PubMed  CAS  Google Scholar 

  126. Stevens TH, Bocian DF, Chan SI. EPR studies of 15NO-ferrocytochrome a 3 in cytochrome c oxydase. FEBS Lett 1979; 97:314–316.

    PubMed  CAS  Google Scholar 

  127. Twilfer H, Gersonde K, Christahl M. Resolution enhancement of EPR spectra using the Fourier transform technique. Analysis of nitrosyl cytochrome c oxidase in frozen solution. J Magn Res 1981; 44:470–478.

    CAS  Google Scholar 

  128. LoBrutto R, Wei YH, Mascarenhas R et al. Electron nuclear double resonance and electron paramagnetic resonance study on the structure of the NO-ligated heme a 3 in cytochrome c oxidase. J Biol Chem 1983; 258:7437–7448.

    PubMed  CAS  Google Scholar 

  129. Stevens TH, Brudvig GW, Bocian FP et al. Structure of cytochrome a 3 -Cua3 couple in cytochrome c oxidase as revealed by nitric oxide binding studies. Proc Natl Acad Sci USA 1979; 76:3320–3324.

    PubMed  CAS  Google Scholar 

  130. Fee JA. Copper proteins systems containing the “blue” copper center. Structure and Bonding 1975; 23:1–60.

    CAS  Google Scholar 

  131. Brudvig GW, Stevens TH, Morse RH et al. Conformations of oxidized cytochrome c oxidase. Biochemistry 1981; 20:3912–3921.

    PubMed  CAS  Google Scholar 

  132. Boelens R, Rademaker H, Pel R et al. EPR studies of the photodissociation reactions of cytochrome c oxidase-nitric oxide complexes. Biochim Biophys Acta 1982; 679:84–94.

    PubMed  CAS  Google Scholar 

  133. Boelens R, Rademaker H, Wever R et al. The cytochrome c oxidase-azide-nitric oxide complex as a model for oxygen-binding site. Biochim Biophys Acta 1984; 765:196–209.

    PubMed  CAS  Google Scholar 

  134. Rousseau DL, Sing S, Ching YC et al. Nitrosyl cytochrome c oxidase. Formation and properties of mixed valence enzyme. J Biol Chem 1988; 263:5681–5685.

    PubMed  CAS  Google Scholar 

  135. Brudvig GW, Stevens TH, Chan SI. Reactions of nitric oxide with cytochrome c oxidase. Biochemistry 1980; 19:5275–5285.

    PubMed  CAS  Google Scholar 

  136. Cleeter MWJ, Cooper JM, Darley-Usmar VM et al. Reversible inhibition of cytochrome c oxidase, the terminal enzyme of the mitochondrial respiratory chain, by nitric oxide. Implications for neurodegenerative diseases. FEBS Lett 1994; 345:50–54.

    PubMed  CAS  Google Scholar 

  137. Brown GC, Cooper CE. Nanomolar concentrations of nitric oxide reversibly inhibit synaptosomal respiration by competing with oxygen at cytochrome oxidase. FEBS Lett 1994; 356:295–298.

    PubMed  CAS  Google Scholar 

  138. Saraste M, Castresana J. Cytochrome oxidase evolved by tinkering with denitrifka-tion enzymes. FEBS Lett 1994; 341:1–4.

    PubMed  CAS  Google Scholar 

  139. Van der Oost J, de Boer APN, de Gier JW et al. The heme-copper oxidase family consists of three distinct types of terminal oxidases and is related to nitric oxide reductase. FEMS Microbiol Lett 1994; 121:1–10.

    PubMed  Google Scholar 

  140. Malkin R, Malmström BG. The state and function of copper in biological systems. Adv Enzymol 1970; 33:177–244.

    PubMed  CAS  Google Scholar 

  141. Lehn J-M, Malmström BG, Selin E et al. Metal analysis of the laccase of Gabriel Bertrand (1897). Trends in Biol Sci 1986; 11:228–230.

    CAS  Google Scholar 

  142. Ryden L. Ceruloplasmin. In: Lontie R, ed. Copper Proteins and Copper Enzymes, Vol III. CRC Press, Boca Raton, Florida, USA, 1984:37–100.

    Google Scholar 

  143. Reinhammar B. Laccase. In: Lontie R, ed. Copper Proteins and Copper Enzymes, Vol III. CRC Press, Boca Raton, Florida, USA, 1984:1–35.

    Google Scholar 

  144. Mondovi B, Avigliano L. Ascorbate oxidase. In: Lontie R, ed. Copper Proteins and Copper Enzymes, Vol III. CRC Press, Boca Raton, Florida, USA, 1984:101–118.

    Google Scholar 

  145. Messerschmidt A, Huber R. The blue oxidases, ascorbate oxidase, laccase and ceruloplasmin. Modelling and structural relationships. Eur J Biochem 1990; 187:341–352.

    PubMed  CAS  Google Scholar 

  146. Takahashi N, Ortel TL, Putnam FW. Single-chain structure of human ceruloplasmin: the complete amino acid sequence of the whole molecule. Proc Natl Acad Sci USA 1984; 81:390–394.

    PubMed  CAS  Google Scholar 

  147. Messerschmidt A, Ladenstein R, Huber R et al. Refined crystal structure of ascorbate oxidase at 1.9 Å resolution. J Mol Biol 1992; 224:179–205.

    PubMed  CAS  Google Scholar 

  148. Messerschmidt A, Steigemann W, Huber R et al. X-ray crystallographic characterisation of type-2-depleted ascorbate oxidase from zucchini. Eur J Biochem 1992; 209:597–602.

    PubMed  CAS  Google Scholar 

  149. Messerschmidt A, Luecke H, Huber R. X-ray structures and mechanistic implications of functional derivatives of ascorbate oxidase from zucchini: reduced, peroxide and azide forms. J Mol Biol 1993; 230:997–1014.

    PubMed  CAS  Google Scholar 

  150. Ryden L. Evolution of blue copper proteins. In: King T, Mason HS, Morrison M, eds. Oxidases and Related Redox Systems. Alan R. Liss, Inc, New York. 1988; 349–366.

    Google Scholar 

  151. Van Leeuwen FXR, Wever R, Van Gelder BF. EPR study of nitric oxide-treated ceruloplasmin. Biochim Biophys Acta 1973; 315:200–203.

    PubMed  Google Scholar 

  152. Wever R, Van Leeuwen FXR, Van Gelder BF. The reaction of nitric oxide with ceruloplasmin. Biochim Biophys Acta 1973; 302:236–239.

    PubMed  CAS  Google Scholar 

  153. Van Leeuwen FXR, Van Gelder BF. A spectroscopic study of nitric-oxide-treated ceruloplasmin. Eur J Biochem 1978; 87:305–312.

    PubMed  Google Scholar 

  154. Musci G, Di Marco S, Bonaccorsi di Patti M et al. Interaction of nitric oxide with ceruloplasmin lacking an EPR-detectable type 2 copper. Biochemistry 1991; 30:9866–9872.

    PubMed  CAS  Google Scholar 

  155. Rotilio G, Morpurgo L, Graziani MT et al. The reaction of nitric oxide with Rhus vernicifera laccase. FEBS Lett 1975; 54:163–166.

    PubMed  CAS  Google Scholar 

  156. Martin CT, Morse RH, Kanne RM et al. Reactions of nitric oxide with tree and fungal laccase. Biochemistry 1981; 20:5147–5155.

    PubMed  CAS  Google Scholar 

  157. Van Leeuwen FXR, Wever R, Van Gelder BF et al. The interaction of nitric oxide with ascorbate oxidase. Biochim Biophys Acta 1975; 403:285–291.

    PubMed  CAS  Google Scholar 

  158. Swain JA, Darley-Usmar V, Gutteridge JMC. Peroxynitrite releases copper from ceruloplasmin: implications for atherosclerosis. FEBS Lett 1994; 342:49–52.

    PubMed  CAS  Google Scholar 

  159. Volbeda A, Hol WGJ. Pseudo 2–fold symmetry in the copper-binding domain of arthropodan haemocyanins. Possible implications for the evolution of oxygen transport proteins. J Mol Biol 1989; 206:531–546.

    PubMed  CAS  Google Scholar 

  160. Van Holde KE, Miller KI. Haemocyanins. Quarterly Rev Biophys 1982; 15:1–129.

    Google Scholar 

  161. Ellerton HD, Ellerton NF, Robinson HA. Hemocyanin — a current perspective. Prog Biophys Molec Biol 1983; 41:143–248.

    CAS  Google Scholar 

  162. Gaykema WPJ, Hol WGJ, Vereijken JM et al. 3.2 Å structure of the oxygen-carrying protein Palunirus interruptus haemocyanin. Nature 1984; 309:23–29.

    CAS  Google Scholar 

  163. Volbeda A, Hol WGJ. Crystal structure of hexameric haemocyanin from Panulirus interruptus refine at 3.2 Å resolution. J Mol Biol 1989; 209:249–279.

    PubMed  CAS  Google Scholar 

  164. Lerch K. Copper monooxygenases: tyrosinase and dopamine β-monooxygenase. In: Sigel H, ed. Metal Ions in Biological Systems, Vol 13, Copper proteins. Marcel Dekker, New York, 1981; 143–186.

    Google Scholar 

  165. Solomon EI. Binuclear copper active site: hemocyanin, tyrosinase, and type 3 copper oxidases. In: Spiro TG, ed. Copper Proteins. Wiley Interscience, New York, 1981; 41–108.

    Google Scholar 

  166. Villafranca JJ. Dopamine β-hydroxylase. In: Spiro TG, ed. Copper Proteins. Wiley Interscience, New York, 1981: 263–289.

    Google Scholar 

  167. Blackburn NJ, Mason HS, Knowles PF. Dopamine β-hydroxylase: evidence for binuclear copper sites. Biochem Biophys Res Commun 1980; 95:1275–1281.

    PubMed  CAS  Google Scholar 

  168. Hasnain SS, Diakun GP, Knowles FP et al. Direct structural information for the copper site of dopamine β-monooxygenase obtained by using extended X-ray-absorption fine structure. Biochem J 1984; 221:545–548.

    PubMed  CAS  Google Scholar 

  169. Schoot-Uiterkamp AJM. Monomer and magnetic dipole-coupled Cu2+ EPR signals in nitrosylhemocyanin. FEBS Lett 1972; 20:93–96.

    CAS  Google Scholar 

  170. Schoot-Uiterkamp AJM, Mason HS. Magnetic dipole-dipole coupled Cu(II) pairs in nitric-oxide-treated tyrosinase: a structural relationship between the active sites of tyrosinase and hemocyanin. Proc Natl Acad Sci USA 1973; 70:993–996.

    CAS  Google Scholar 

  171. Schoot-Uiterkamp AJM, Van Der Deen H, Berendsen HCJ et al. Computer simulation of the EPR spectra of mononuclear and dipolar coupled Cu(II) ions in nitric oxide- and nitrite-treated hemocyanins and tyrosinase. Biochim Biophys Acta 1974; 372:407–425.

    CAS  Google Scholar 

  172. Verplaetse J, Van Tornout P, Defreyn G et al. The reaction of nitrogen monoxide and of nitrite with deoxyhaemocyanin and methaemocyanin of Helix pomatia. Eur J Biochem 1979; 95:327–331.

    PubMed  CAS  Google Scholar 

  173. Percival MD. Human 5-lipoxygenase contains an essential iron. J Biol Chem 1991; 266:10158–10061.

    Google Scholar 

  174. Chasteen ND, Grady JK, Skorey KI et al. Characterization of the non-heme iron center of human 5-lipoxygenase by electron paramagnetic resonance, fluorescence, and ultraviolet-visible spectroscopy: redox cycling between ferrous and ferric states. Biochemistry 1993; 32:9763–9771.

    PubMed  CAS  Google Scholar 

  175. Gaffney BJ, Mavrophilipos DV, Doctor KS. Access of ligands to the ferric center in lipoxygenase-1. Biophys J 1993; 64:773–783.

    PubMed  CAS  Google Scholar 

  176. Boyington JC, Gaffney BJ, Amzel LM. The three-dimensional structure of an arachidonic acid 15-lipoxygenase. Science 1993; 260:1482–1486.

    PubMed  CAS  Google Scholar 

  177. Minor W, Steczko J, Bolin JT et al. Crystallographic determination of the active site iron and its ligands in soybean lipoxygenase L-l. Biochemistry 1993; 32:6320–6323.

    PubMed  CAS  Google Scholar 

  178. Zhang Y, Gan Q-F, Pavel EG et al. EPR definition of the non-heme ferric active sites of mammalian 15-lipoxygenase: major difference relative to human 5-lipoxygenases and plant lipoxygenases and their ligand field origin. J Am Chem Soc 1995; 117:7422–7427.

    CAS  Google Scholar 

  179. Galpin JR, Veldink GA, Vliegenthart JFG et al. The interaction of nitric oxide with soybean lipoxygenase-1. Biochim Biophys Acta 1978; 536:356–362.

    PubMed  CAS  Google Scholar 

  180. Salerno JC, Siedow JN. The nature of the nitric oxide complexes of lipoxygenase. Biochim Biophys Acta 1979; 579:246–251.

    PubMed  CAS  Google Scholar 

  181. Nelson MJ. The nitric oxide complex of ferrous soybean lipoxygenase-1. Substrate, pH and ethanol effects on the active site iron. J Biol Chem 1987; 262:12137–12142.

    PubMed  CAS  Google Scholar 

  182. Rich PR, Salerno JC, Leigh JS et al. A spin 3/2 ferrous-nitric oxide derivative of an iron-containing moiety associated with Neurospora crassa and higher plant mitochondria. FEBS Lett 1978; 93:323–326.

    CAS  Google Scholar 

  183. Nakatsuka M, Osawa Y. Selective inhibition of the 12-lipoxygenase pathway of arachidonic acid metabolism by L-arginine or sodium nitroprusside in intact human platelets. Biochem Biophys Res Commun 1994; 200:1630–1634.

    PubMed  CAS  Google Scholar 

  184. Ohlendorf DH, Lipscomb JD, Weber PC. Structure and assembly of protocatechuate 3,4-dioxygenase. Nature 1988; 336:403405.

    Google Scholar 

  185. True AE, Orville AM, Pearce LL et al. An EXAFS study of the interaction of substrate with the ferric active site of protocatechuate 3,4-dioxygenase. Biochemistry 1990; 29:10847–10854.

    PubMed  CAS  Google Scholar 

  186. Arciero DM, Lipscomb JD, Huynh BH et al. EPR and Mössbauer studies of protocatechuate 4,5-dioxygenase. Characterization of a new Fe2+ environment. J Biol Chem 1983; 258:14981–14991.

    PubMed  CAS  Google Scholar 

  187. Arciero DM, Orville AM, Lipscomb JD. 17O water and nitric oxide binding by protocatechuate 4,5-dioxygenase and catechol 2,3-dioxygenase. J Biol Chem 1985; 260:14035–14044.

    PubMed  CAS  Google Scholar 

  188. Arciero DM, Lipscomb JD. Binding of 17O-labeled substrate and inhibitors to protocatechuate 4,5-dioxygenase-nitrosyl complex. Evidence for direct substrate binding to the active Fe2+ of extradiol dioxygenase. J Biol Chem 1986; 261:2170–2178.

    PubMed  CAS  Google Scholar 

  189. Orville AM, Lipscomb JD. Simultaneous binding of nitric oxide and isotopically labeled substrates or inhibitors by reduced protocatechuate 3,4-dioxygenase. J Biol Chem 1993; 268:8596–8607.

    PubMed  CAS  Google Scholar 

  190. Bill E, Bernhardt FH, Trautwein AX et al. Mössbauer investigation of the cofactor iron of putidamonooxin. Eur J Biochem 1985; 147:177–182.

    PubMed  CAS  Google Scholar 

  191. Chen VJ, Orville AM, Harpel MR et al. Spectroscopic studies of isopenicillin N synthase. A mononuclear nonheme Fe2+ oxidase with metal coordination sites for small molecules and substrate. J Biol Chem 1989; 264:21677–21681.

    PubMed  CAS  Google Scholar 

  192. Brown CA, Pavlosky MA, Westre TE et al. Spectroscopic and theoretical description of the electronic structure of S = 3/2 iron-nitrosyl complexes and their relation to O2 activation by non-heme iron enzyme active sites. J Am Chem Soc 1995; 117:715–732.

    CAS  Google Scholar 

  193. Beinert H. Recent developments in the field of iron-sulfur proteins. FASEB J 1990; 4:2483–2491.

    PubMed  CAS  Google Scholar 

  194. Drapier J-C, Hirling H, Wietzerbin J et al. Biosynthesis of nitric oxide activates iron regulatory factor in macrophages. EMBO J 1993; 12:3643–3649.

    PubMed  CAS  Google Scholar 

  195. Melefors Ö, Hentze MW. Iron regulatory factor—the conductor of cellular iron regulation. Blood Reviews 1993; 7:251–258.

    PubMed  CAS  Google Scholar 

  196. Weiss G, Goossen B, Doppler W et al. Translational regulation via iron-responsive elements by the nitric oxide/NO-synthase pathway. EMBO J 1993; 12:3651–3657.

    PubMed  CAS  Google Scholar 

  197. Klausner RD, Rouault TA, Harford JB. Regulating tha fate of mRNA: the control of cellular iron metabolism. Cell 1993; 72:19–28.

    PubMed  CAS  Google Scholar 

  198. Philpott CC, Klausner RD, Rouault TA. The afunctional iron-responsive element binding protein/cytosolic aconitase: the role of active-site residues in ligand binding and regulation. Proc Natl Acad Sci USA 1994; 91:7321–7325.

    PubMed  CAS  Google Scholar 

  199. Hirling H, Henderson BR, Kühn LC. Mutational analysis of the [4Fe-4S]-cluster converting iron regulatory factor from its RNA-binding form to cytoplasmic aconitase. EMBO J 1994; 13:453–461.

    PubMed  CAS  Google Scholar 

  200. Ward RJ, Kühn LC, Kaldy P et al. Control of cellular iron homeostasis by iron-responsive elements in vivo. Eur J Biochem 1994; 220:927–931.

    PubMed  CAS  Google Scholar 

  201. Weiss G, Werner-Felmayer G, Werner ER et al. Iron regulates nitric oxide synthase activity by controlling nuclear transcription. J Exp Med 1994; 180:969–976.

    PubMed  CAS  Google Scholar 

  202. Dailey HA, Finnegan MG, Johnson MK. Human ferrochelatase is an iron-sulfur protein. Biochemistry 1994; 33:403–407.

    PubMed  CAS  Google Scholar 

  203. Ferreira GC. Mammalian ferrochelatase. Overexpression in Escherichia coli as a soluble protein, purification and characterization. J Biol Chem 1994; 269:4396–4400.

    PubMed  CAS  Google Scholar 

  204. Kohno H, Okuda M, Furukawa T et al. Site-directed mutagenesis of human ferrochelatase: identification of histidine-263 as a binding site for metal ions. Biochim Biophys Acta 1994; 1209:95–100.

    PubMed  CAS  Google Scholar 

  205. Ferreira GC. Ferrochelatase binds the iron-responsive element present in the erythroid 5-aminolevulinate synthase mRNA. Biochem Biophys Res Commun 1995; 214:875–878.

    PubMed  CAS  Google Scholar 

  206. Smith BE, Eady RR. Metalloclusters of the nitrogenases. Eur J Biochem 1992; 205:1–15.

    PubMed  CAS  Google Scholar 

  207. Kim J, Rees DC. Nitrogenase and biological nitrogen fixation. Biochemistry 1994; 33:389–397.

    PubMed  CAS  Google Scholar 

  208. Howard JB, Rees DC. Nitrogenase: a nucleotide-depedent molecular switch. Annu Rev Biochem 1994; 63:235–264.

    PubMed  CAS  Google Scholar 

  209. He SH, Teixeira M, LeGall J et al. EPR studies with 77Se-enriched (NiFeSe) hydrogenase of Desulfovibrio baculatus. Evidence for a selenium ligand to the active site nickel. J Biol Chem 1989; 264:2678–2682.

    PubMed  CAS  Google Scholar 

  210. Volbeda A, Charon M-H, Piras C et al. Crystal structure of the nickel-iron hydrogenase from Desulfovibrio gigas. Nature 1995; 373:580–587.

    PubMed  CAS  Google Scholar 

  211. Cunningham RP, Asahara H, Bank JF et al. Endonuclease III is an iron-sulfur protein. Biochemistry 1989; 28:4450–4455.

    PubMed  CAS  Google Scholar 

  212. Nunoshiba T, deRojas-Walker T, Wishnok JS et al. Activation by nitric oxide of an oxidative-stress response that defends Escherichia coli against activated macrophages. Proc Natl Acad Sci USA 1993; 90:9993–9997.

    PubMed  CAS  Google Scholar 

  213. Hidalgo E, Demple B. An iron-sulfur center essential for transcriptional activation by the redox sensing SoxR protein. EMBO J 1994; 13:138–146.

    PubMed  CAS  Google Scholar 

  214. Hidalgo E, Bollinger JM, Bradley TM et al. Binuclear [2Fe-2S] clusters in the Escherichia coli SoxR protein and role of the metal centers in transcription. J Biol Chem 1995; 270:20908–20914.

    PubMed  CAS  Google Scholar 

  215. Beinert H, Sands RH. Studies on succinic acid and DPNH dehydrogenase preparations by paramagnetic resonance (EPR) spectroscopy. Biochem Biophys Res Commun 1960; 3:41–46.

    CAS  Google Scholar 

  216. King TE, Howard RL, Mason HS. An electron spin resonance study of soluble succinic dehydrogenase. Biochem Biophys Res Commun 1961; 5:329–333.

    CAS  Google Scholar 

  217. Ohnishi T, Salerno JC, Winter DB et al. Thermodynamic and EPR characteristics of two ferredoxin-type iron-sulfur centers in the succinate-ubiquinone reductase segment of the respiratory chain. J Biol Chem 1976; 251:2094–2104.

    PubMed  CAS  Google Scholar 

  218. Salerno JC, Ohnishi T, Lim J et al. Tetranuclear and binuclear iron-sulfur clusters in succinate dehydrogenase: a method of iron quantitation by formation of paramagnetic complexes. Biochem Biophys Res Commun 1976; 73:833–840.

    PubMed  CAS  Google Scholar 

  219. McDonald CC, Phillips WD, Mower HF. An electron spin resonance of some complexes of iron, nitric oxide, and anionic ligands. J Am Chem Soc 1965; 87: 3319–3326.

    CAS  Google Scholar 

  220. Vanin AF. Identification of divalent iron complexes with cysteine in biological systems by the EPR method. Biokhimia 1967; 32:277–282 (English translation 228–232).

    CAS  Google Scholar 

  221. Woolum JC, Tiezzi E, Commoner B. Electron spin resonance of iron-nitric oxide complexes with amino acids, peptides and proteins. Biochim Biophys Acta 1968; 160:311–320.

    PubMed  CAS  Google Scholar 

  222. Vanin AF, Vakhnina LV, Chetverikov AG. Nature of the EPR signals of a new type found in cancer tissues. Biofizika 1970; 15:1044–1051 (English translation 1082–1089).

    PubMed  CAS  Google Scholar 

  223. Butler AR, Glidewell C, Li M-H. Nitrosyl complexes of iron-sulfur clusters. Adv Inorg Chem 1988; 32:335–393.

    CAS  Google Scholar 

  224. Woolum JC, Commoner B. Isolation and identification of a paramagnetic complex from the livers of carcinogen-treated rats. Biochim Biophys Acta 1970; 201:131–140.

    PubMed  CAS  Google Scholar 

  225. Nagata C, Ioki Y, Kodama M et al. Free radical induced in rat liver by a chemical carcinogen, N-methyl-N′-nitro-N-nitrosoguanidine. Ann N Y Acad Sci 1973; 222:1031–1047.

    PubMed  CAS  Google Scholar 

  226. Beinert H, Kennedy MC. Engineering of protein bound iron-sulfur clusters. A tool for the study of protein and cluster chemistry and mechanism of iron-sulfur enzymes. Eur J Biochem 1989; 186:5–15.

    PubMed  CAS  Google Scholar 

  227. Robbins AH, Stout CD. The structure of aconitase. Proteins 1989; 5:289–312.

    PubMed  CAS  Google Scholar 

  228. Robbins AH, Stout CD. Structure of activated aconitase: formation of the [4Fe-4S] cluster in the crystal. Proc Natl Acad Sci USA 1989; 86:3639–3643.

    PubMed  CAS  Google Scholar 

  229. Drapier J-C, Hibbs JB. Murine cytotoxic activated macrophages inhibit aconitase in tumor cells. Inhibition involves the iron-sulfur prosthetic group and is reversible. J Clin Invest 1986; 78:790–797.

    PubMed  CAS  Google Scholar 

  230. Drapier J-C, Hibbs JB. Differentiation of murine macrophages to express nonspecific cytotoxicity for tumor cells results in L-arginine-dependent inhibition of mitochondrial iron-sulfur enzymes in the macrophage effector cells. J Immunol 1988; 140:2829–2838.

    PubMed  CAS  Google Scholar 

  231. Hibbs JB, Taintor RR, Vavrin Z et al. Synthesis of nitric oxide from a terminal guanidino nitrogen atom of L-arginine: a molecular mechanism regulating cellular proliferation that targets intracellular iron. In: Moncada S and Higgs EA, eds. Nitric Oxide from L-arginine: a Bioregulatory System. Amsterdam: Elsevier Science Publishers BV, 1990: 189–223.

    Google Scholar 

  232. Pellat C, Henry Y, Drapier J-C. IFN-γ-activated macrophages: detection by electron paramagnetic resonance of complexes between L-arginine-derived nitric oxide and non-heme iron proteins. Biochem Biophys Res Commun 1990; 166:119–125.

    PubMed  CAS  Google Scholar 

  233. Lancaster JR, Hibbs JB. EPR demonstration of iron-nitrosyl complex formation by cytotoxic activated macrophages. Proc Natl Acad Sci USA 1990; 87:1223–1227.

    PubMed  CAS  Google Scholar 

  234. Drapier J-C, Pellat C, Henry Y. Generation of EPR-detectable nitrosyl-iron complexes in tumor target cells cocultured with activated macrophages. J Biol Chem 1991; 266:10162–10167.

    PubMed  CAS  Google Scholar 

  235. Drapier J-C, Pellat C, Henry Y. Characterization of the nitrosyl-iron complexes generated in tumour cells after co-culture with activated macrophages. In: Moncada S, Marietta MA, Hibbs JB et al, eds. The Biology of Nitric Oxide. London, UK: Portland Press, 1992: 72–76.

    Google Scholar 

  236. Reddy D, Lancaster JR, Cornforth DP. Nitrite inhibition of Clostridium botulinum: electron spin resonance detection of iron-nitric oxide complexes. Science 1983; 221:769–770.

    PubMed  CAS  Google Scholar 

  237. Payne MJ, Woods LFJ, Gibbs P et al. Electron paramagnetic resonance spectroscopic investigation of the inhibition of the phosphoroclastic system of Clostridium sporogenes by nitrite. J Gen Microbiol 1990; 136:2067–2076.

    PubMed  CAS  Google Scholar 

  238. Trinchant JC, Rigaud J. Nitrite and nitric oxide as inhibitors of nitrogenase from soybean bacteroids. Appl Environ Microbiol 1982; 44:1386–1388.

    Google Scholar 

  239. Vaughn SA, Burgess BK. Nitrite, a new substrate for nitrogenase. Biochemistry 1989; 28:419–424.

    PubMed  CAS  Google Scholar 

  240. Berlier Y, Fauque GD, LeGall J et al. Inhibition studies of three classes of Desulfovibrio hydrogenase: application to the further characterization of the multiple hydrogenases found in Desulfovibrio vulgaris Hildenborough. Biochem Biophys Res Commun 1987; 146:147–153.

    PubMed  CAS  Google Scholar 

  241. Bianco P, Haladjian J, Bruschi M et al. Reactivity of [Fe] and [Ni-Fe-Se] hydrogenases with their oxido-reduction partner: the tetraheme cytochrome c 3. Biochem Biophys Res Commun 1992; 189:633–639.

    PubMed  CAS  Google Scholar 

  242. Wang C-P, Franco R, Moura JJG et al. The nickel site in active Desulfovibrio baculatus [NiFeSe] hydrogenase is diamagnetic. Multifield saturation magnetization measurement of the spin state of Ni(II). J Biol Chem 1992; 267:7378–7380.

    PubMed  CAS  Google Scholar 

  243. Guigliarelli B, More C, Fournel A et al. Structural organization of the Ni and (4Fe-4S) centers in the active form of Desulfovibrio gigas hydrogenase. Analysis of the magnetic interactions by electron paramagnetic resonance spectroscopy. Biochemistry 1995; 34:4781–4790.

    PubMed  CAS  Google Scholar 

  244. Hyman MR, Arp DJ. Kinetic analysis of the interaction of nitric oxide with the membrane-associated, nickel and iron-sulfur-containing hydrogenase from Azotobacter vinelandii. Biochim Biophys Acta 1991; 1076:165–172.

    PubMed  CAS  Google Scholar 

  245. Robbins AH, McRee DE, Williamson M et al. Refined crystal structure of Cd,Zn metallothionein at 2.0 Å resolution. J Mol Biol 1991; 221:1269–1293.

    PubMed  CAS  Google Scholar 

  246. Messerle BA, Schäffer A, Vasak M et al. Three-dimensional structure of human [113Cd7] metallothionein-2 in solution determined by n.m.r. spectroscopy. J Mol Biol 1990; 214:765–779.

    PubMed  CAS  Google Scholar 

  247. Zhu Z, DeRose EF, Mullen GP et al. Sequential proton resonance assignments and metal cluster topology of lobster metallothionein-1. Biochemistry 1994; 33:8858–8865.

    PubMed  CAS  Google Scholar 

  248. Ding XQ, Butzlaff C, Bill E et al. Mössbauer and magnetic susceptibility studies on iron(II) metallothionein from rabbit liver. Evidence for the existence of an unusual type of [M3(CysS)9]3− cluster. Eur J Biochem 1994; 220:827–837.

    PubMed  CAS  Google Scholar 

  249. Kennedy MC, Gan T, Antholine WE et al. Metallothionein reacts with Fe2+ and NO to form products with g = 2.039 ESR signal. Biochem Biophys Res Commun 1993; 196:632–635.

    PubMed  CAS  Google Scholar 

  250. Schwarz MA, Lazo JS, Yalowich JC et al. Metallothionein protects against the cytotoxic and DNA-damaging effects of nitric oxide. Proc Natl Acad Sci USA 1995; 92:4452–4456.

    PubMed  CAS  Google Scholar 

  251. Sanders-Loehr J. Binuclear iron proteins. In: Loehr TM, ed. Iron Carriers and Iron Proteins. New York, VHC publishers, 1989:375–466.

    Google Scholar 

  252. Nordlund P, Eklund H. Structure and function of the Escherichia coli ribonucleotide reductase protein R2. J Mol Biol 1993; 232:123–164.

    PubMed  CAS  Google Scholar 

  253. Stenkamp RE, Siecker LC, Jensen LH et al. Structure of the binuclear iron complex in metazidohaemerythrin from Themiste dyscritum at 2.2 Å resolution. Nature 1981; 291:263–264.

    CAS  Google Scholar 

  254. Pulver S, Froland WA, Fox BG et al. Spectroscopic studies of the coupled binuclear non-heme iron active site in the fully reduced hydroxylase component of methane monooxygenase: comparison to deoxy and deoxy-azide hemerythrin. J Am Chem Soc 1993; 115:12409–12422.

    CAS  Google Scholar 

  255. Nocek JM, Kurtz DM, Pickering RA et al. Oxidation of deoxy hemerythrin to semi-methemoglobin by nitrite. J Biol Chem 1984; 259:12334–12338.

    PubMed  CAS  Google Scholar 

  256. Nocek JM, Kurtz DM, Sage JT et al. Nitric oxide adducts of the binuclear iron center in deoxyhemerythrin from Phascolopsis gouldii. Analogue of a putative intermediate in the oxygenation reaction. J Am Chem Soc 1985; 107:3382–3384.

    CAS  Google Scholar 

  257. Nocek JM, Kurtz DM, Sage JT et al. Nitric oxide adducts of the binuclear iron site of hemerythrin: spectroscopy and reactivity. Biochemistry 1988; 27:1014–1024.

    PubMed  CAS  Google Scholar 

  258. Enemark JH, Feltham RD. Stereochemical control of valence and its application to the reduction of coordinated NO and N2. Proc Natl Acad Sci USA 1972; 69:3534–3536.

    PubMed  CAS  Google Scholar 

  259. Enemark JH, Feltham RD. Principles of structure, bonding, and reactivity for metal nitrosyl complexes. Coord Chem Reviews 1974; 13:339–406.

    CAS  Google Scholar 

  260. Stubbe J. Ribonucleotide reductases. Adv Enzymol Related Areas Mol Biol 1990; 63:349–419.

    CAS  Google Scholar 

  261. Stubbe J. Ribonucleotide reductases: amazing and confusing. J Biol Chem 1990; 265; 5329–5332.

    PubMed  CAS  Google Scholar 

  262. Fontecave M, Nordlund P, Eklund H et al. The redox centers of ribonucleotide reductase of Escherichia coli. Adv Enzymol Related Areas Mol Biol 1992; 65:147–183.

    CAS  Google Scholar 

  263. Reichard P. From RNA to DNA, why so many ribonucleotide reductases? Science 1993; 260:1773–1777.

    PubMed  CAS  Google Scholar 

  264. Reichard P. The anaerobic ribonucleotide reductase from Escherichia coli. J Biol Chem 1993; 268:8383–8386.

    PubMed  CAS  Google Scholar 

  265. Sun X, Harder J, Krook M et al. A possible glycine radical in anaerobic ribonucleotide reductase from Escherichia coli: nucleotide sequence of the cloned nrdD gene. Proc Natl Acad Sci USA 1993; 90;577–581.

    PubMed  CAS  Google Scholar 

  266. Mulliez E, Fontecave M, Gaillard J et al. An iron-sulfur center and a free radical in the active anaerobic ribonucleotide reductase of Escherichia coli. J Biol Chem 1993; 268:2296–2299.

    PubMed  CAS  Google Scholar 

  267. Uhlin U, Uhlin T, Eklund H. Crystallization and crystallographic investigations of ribonucleotide reductase protein Rl from Escherichia coli. FEBS Lett 1993; 336:148–152.

    PubMed  CAS  Google Scholar 

  268. Uhlin U, Eklund H. Structure of ribonucleotide protein Rl. Nature 1994; 370:533–539.

    PubMed  CAS  Google Scholar 

  269. Davidov R, Kuprin S, Gräslund A, et al. Electron paramagnetic resonance study of the mixed-valent diiron center in Escherichia coli ribonucleotide reductase produced by reduction of radical-free protein R2 at 77 K. J Am Chem Soc 1994; 116:11120–11128.

    Google Scholar 

  270. Nordlund P, Sjöberg BM, Eklund H. Three-dimensional structure of the free radical protein of ribonucleotide reductase. Nature 1990; 345:593–598.

    PubMed  CAS  Google Scholar 

  271. Åberg A, Nordlund P, Eklund H. Unusual clustering of carboxyl side chains in the core of iron-free ribonucleotide reductase. Nature 1993; 361:276–278.

    PubMed  Google Scholar 

  272. Sahlin M, Lassmann G, Pötsch S et al. Tryptophan radicals formed by iron/oxygen reaction with Escherichia coli ribonucleotide reductase protein R2 mutant Y122F. J Biol Chem 1994; 269:11699–11702.

    PubMed  CAS  Google Scholar 

  273. Henriksen MA, Cooperman BS, Salem JS et al. The stable tyrosyl radical in mouse ribonucleotide reductase is not essential for enzymatic activity. J Am Chem Soc 1994; 116:9773–9774.

    CAS  Google Scholar 

  274. Ormö M, Regnström K, Wang Z et al. Residues important for radical stability in ribonucleotide reductase from Escherichia coli. J Biol Chem 1995; 270:6570–6576.

    PubMed  Google Scholar 

  275. Nyholm S, Thelander L, Gräslund A. Reduction and loss of the iron center in the reaction of the small subunit of mouse ribonucleotide reductase with hydroxyurea. Biochemistry 1993; 32:11569–11574.

    PubMed  CAS  Google Scholar 

  276. Ling J, Sahlin M, Sjöberg BM et al. Dioxygen is the source of the μ-oxo bridge in iron ribonucleotide reductase. J Biol Chem 1994; 269:5595–5601.

    PubMed  CAS  Google Scholar 

  277. Sahlin M, Petersson L, Gräslund A et al. Magnetic interaction between the tyrosyl free radical and the antiferromagnetically coupled iron center in ribonucleotide reductase. Biochemistry 1987; 26:5541–5548.

    PubMed  CAS  Google Scholar 

  278. Mann GJ, Gräslund A, Ochiai EI et al. Purification and characterization of recombinant mouse and herpes simplex virus ribonucleotide reductase R2 subunit. Biochemistry 1991; 30:1939–1947.

    PubMed  CAS  Google Scholar 

  279. Galli C, Atta M, Andersson KK et al. Variations of the diferric exchange coupling in the R2 subunit of ribonucleotide reductase from four species as determined by saturation-recovery EPR spectroscopy. J Am Chem Soc 1995; 117:740–746.

    CAS  Google Scholar 

  280. Gerfen GJ, Bellew BF, Sun U et al. High-frequency (139.5 GHz) EPR spectroscopy of the tyrosyl radical in Escherichia coli ribonucleotide reductase. J Am Chem Soc 1993; 115:6420–6421.

    CAS  Google Scholar 

  281. Lepoivre M, Chenais B, Yapo A et al. Alterations of ribonucleotide reductase activity following induction of the nitrite-generating pathway in adenocarcinoma cells. J Biol Chem 1990; 265:14143–14149.

    PubMed  CAS  Google Scholar 

  282. Lepoivre M, Fieschi F, Coves J et al. Inactivation of ribonucleotide reductase by nitric oxide. Biochem Biophys Res Commun 1991; 179:442–448.

    PubMed  CAS  Google Scholar 

  283. Kwon NS, Stuehr DJ, Nathan CF. Inhibition of tumor cell ribonucleotide reductase by macrophage-derived nitric oxide. J Exp Med 1991; 174:761–767.

    PubMed  CAS  Google Scholar 

  284. Lepoivre M, Flaman J-M, Henry Y. Early loss of the tyrosyl radical in ribonucleotide reductase of adenocarcinoma cells producing nitric oxide. J Biol Chem 1992; 267:22994–23000.

    PubMed  CAS  Google Scholar 

  285. Lepoivre M, Flaman J-M, Bobé P et al. Quenching of the tyrosyl free radical of ribonucleotide reductase by nitric oxide. Relationship to cytostasis induced in tumor cells by cytotoxic macrophages. J Biol Chem 1994; 269:21891–21897.

    PubMed  CAS  Google Scholar 

  286. Roy B, Lepoivre M, Henry Y et al. Inhibition of ribonucleotide reductase by nitric oxide derived from thionitrites: reversible modifications of both subunits. Biochemistry 1995; 34:5411–5418.

    PubMed  CAS  Google Scholar 

  287. Haskin CJ, Ravi N, Lynch JB et al. Reaction of NO with the reduced R2 protein of ribonucleotide reductase from Escherichia coli. Biochemistry 1995; 34:11090–11098.

    PubMed  CAS  Google Scholar 

  288. Theil EC. Ferritin: structure, gene regulation, and cellular function in animals, plants and microorganisms. Annu Rev Biochem 1987; 56:289–315.

    PubMed  CAS  Google Scholar 

  289. Theil EC. The ferritin family of iron storage proteins. Adv Enzymol 1989; 63:421–449.

    Google Scholar 

  290. Andrews SC, Arosio P, Bottke W et al. Structure, function, and evolution of ferritins. J Inorg Biochem 1992; 47:161–174.

    PubMed  CAS  Google Scholar 

  291. Reif DW. Ferritin as a source of iron for oxidative damage. Free Rad Biol Med 1992; 12:417–427.

    PubMed  CAS  Google Scholar 

  292. Sun S, Chasteen ND. Rapid kinetics of the EPR-active species formed during initial iron uptake in horse spleen apoferritin. Biochemistry 1994;33:15095–15102.

    PubMed  CAS  Google Scholar 

  293. Lawson DM, Treffry A, Artymiuk PJ et al. Identification of the ferroxidase centre in ferritin. FEBS Lett 1989; 254:207–210.

    PubMed  CAS  Google Scholar 

  294. Lawson DM, Artymiuk PJ, Yewdall SJ et al. Solving the structure of human H ferritin by genetically engineering intermolecular crystal contacts. Nature 1991; 349:541–544.

    PubMed  CAS  Google Scholar 

  295. Treffry A, Hirzmann J, Yewdall SJ et al. Mechanism of catalysis of Fe(II) oxidation by ferritin H chains. FEBS Lett 1992; 302:108–112.

    PubMed  CAS  Google Scholar 

  296. Bauminger ER, Harrison PM, Hechel D et al. Iron (II) oxidation and early intermediates of iron-core formation in recombinant human H-chain ferritin. Biochem J 1993; 296:709–719.

    PubMed  CAS  Google Scholar 

  297. Waldo GS, Ling J, Sanders-Loehr J et al. Formation of an Fe(III)-tyrosinate complex during biomineralization of H-subunit ferritin. Science 1993; 259:796–798.

    PubMed  CAS  Google Scholar 

  298. Hempstead PD, Hudson AJ, Artymiuk PJ et al. Direct observation of the iron binding sites in a ferritin. FEBS Lett 1994; 350:258–262.

    PubMed  CAS  Google Scholar 

  299. Chen-Barrett Y, Harrison PM, Treffry A et al. Tyrosyl radical formation during the oxidative deposition of iron in human apoferritin. Biochemistry 1995; 34:7847–7853.

    PubMed  CAS  Google Scholar 

  300. Reif DW, Simmons RD. Nitric oxide mediates iron release from ferritin. Arch Biochem Biophys 1990; 283:537–541.

    PubMed  CAS  Google Scholar 

  301. Laulhère JP, Fontecave M. Nitric oxide does not promote iron release from ferritin. Biometals 1996; 9:10–14.

    Google Scholar 

  302. LeBrun NE, Cheesman RM, Thomson AJ et al. An EPR investigation of non-haem iron sites in Escherichia coli bacterioferritin and their interaction with phosphate. A study using nitric oxide as a spin probe. FEBS Lett 1993; 323:261–266.

    CAS  Google Scholar 

  303. LeBrun NE, Wilson MT, Andrews SC et al. Kinetic and structural characterization of an intermediate in the biomineralization of bacterioferritin. FEBS Lett 1993; 333:197–202.

    CAS  Google Scholar 

  304. Lee M, Arosio P, Cozzi A et al. Identification of the EPR-active iron-nitrosyl complexes in mammalian ferritins. Biochemistry 1994; 33:3679–3687.

    PubMed  CAS  Google Scholar 

  305. Kon H, Kataoka N. Electron paramagnetic resonance of nitric oxide-protoheme with some nitrogenous base. Model systems of nitric oxide hemoproteins. Biochemistry 1969; 8:4757–4762.

    PubMed  CAS  Google Scholar 

  306. Henry Y, Lepoivre M, Drapier J-C et al. EPR characterization of molecular targets for NO in mammalian cells and organelles. FASEB J 1993; 7:1124–1134.

    PubMed  CAS  Google Scholar 

  307. Wilcox DE, Smith RP. Detection and quantification of nitric oxide using electron magnetic resonance spectroscopy. Methods: a companion to Methods in Enzymology 1995; 7:59–70.

    CAS  Google Scholar 

  308. Henry YA, Singel DJ. Metal-nitrosyl interactions in nitric oxide biology probed by electron paramagnetic resonance spectroscopy. In: Feelisch M, Stamler J, eds. Methods in Nitric Oxide Research. John Wiley and Sons, 1996: 357–372.

    Google Scholar 

  309. Singel DJ, Lancaster JR. Electron paramagnetic resonance spectroscopy and nitric oxide biology, in: Feelisch M, Stamler J, eds. Methods in Nitric Oxide Research. John Wiley and Sons, 1996:341–356.

    Google Scholar 

  310. Kosaka H, Shiga T. Detection of nitric oxide by electron paramagnetic resonance using hemoglobin. In: Feelisch M, Stamler JS, eds. Methods in nitric oxide research. John Wiley & Sons. 1996:373–381.

    Google Scholar 

  311. Arnold WP, Mittal CK, Katsuki S et al. Nitric oxide activates guanylate cyclase and increases guanosine 3′:5′-cyclic monophosphate levels in various tissue preparations. Proc Natl Acad Sci USA 1977; 74:3203–3207.

    PubMed  CAS  Google Scholar 

  312. Murad F, Mittal CK, Arnold WP et al. Guanylate cyclase: activation by azide, nitro compounds, nitric oxide, and hydroxyl radical and inhibition by hemoglobin and myoglobin. Adv Cyclic Nucleotide Res 1978; 9:145–157.

    PubMed  CAS  Google Scholar 

  313. Stone JR, Marletta MA. Soluble guanylate cyclase from bovine lung: activation with nitric oxide and carbon monoxide and spectral characterization of the ferrous and ferric states. Biochemistry 1994; 33:5636–5640.

    PubMed  CAS  Google Scholar 

  314. Stone JR, Sands RH, Dunham WR et al. Electron paramagnetic resonance spectral evidence for the formation of a penta-coordinated nitrosyl-heme complex on soluble guanylate cyclase. Biochem Biophys Res Commun 1995; 207:572–577.

    PubMed  CAS  Google Scholar 

  315. Stone JR, Marletta MA. Spectral and kinetic studies on the activation of soluble guanylate cyclase by nitric oxide. Biochemistry 1996; 35:1093–1099.

    PubMed  CAS  Google Scholar 

  316. Rogers NE, Ignarro LJ. Constitutive nitric oxide synthase from cerebellum is reversibly inhibited by nitric oxide formed from L-arginine. Biochem Biophys Res Commun 1992; 189:242–249.

    PubMed  CAS  Google Scholar 

  317. Rengasamy A, Johns RA. Regulation of nitric oxide synthase by nitric oxide. Mol Pharmacol 1993; 44:124–128.

    PubMed  CAS  Google Scholar 

  318. Rengasamy A, Johns RA. Inhibition of nitric oxide synthase by a superoxide generating system. J Pharmacol Exp Ther 1993; 267:1024–1027.

    PubMed  CAS  Google Scholar 

  319. Assreuy J, Cunha FQ, Liew FY et al. Feedback inhibition of nitric oxide synthase activity by nitric oxide. Br J Pharmacol 1993; 108:833–837.

    PubMed  CAS  Google Scholar 

  320. Buga H, Griscavage JM, Rogers NE et al. Negative feedback regulation of endothelial cell function by nitric oxide. Cir Res 1993; 73:808–812.

    CAS  Google Scholar 

  321. Griscavage JM, Rogers NE, Sherman MP et al. Inducible nitric oxide synthase from a rat alveolar macrophage cell line is inhibited by nitric oxide. J Immunol 1993; 151:6329–6337.

    PubMed  CAS  Google Scholar 

  322. Griscavage JM, Fukuto JM, Komori Y et al. Nitric oxide inhibits neuronal nitric oxide synthase by interacting with the heme prosthetic group. Role of tetrahydrobiopterin in modulating the inhibitory action of nitric oxide. J Biol Chem 1994; 269:21644–21649.

    PubMed  CAS  Google Scholar 

  323. Wang J, Rousseau DL, Abu-Soud HM et al. Heme coordination of NO in NO synthase. Proc Natl Acad Sci USA 1994; 91:10512–10516.

    PubMed  CAS  Google Scholar 

  324. Abu-Soud HM, Wang JL, Rousseau DL et al. Neuronal nitric oxide synthase self-inactivates by forming a ferrous-nitrosyl complex during aerobic catalysis. J Biol Chem 1995; 270:22997–23006.

    PubMed  CAS  Google Scholar 

  325. Hurshman AR, Marletta MA. Nitric oxide complexes of inducible nitric oxide synthase: spectral characterization and effect on catalytic activity. Biochemistry 1995; 34:5627–5634.

    PubMed  CAS  Google Scholar 

  326. Ravichandran LV, Fohns RA, Rengasamy A. Direct and reversible inhibition of endothelial nitric oxide synthase by nitric oxide. Am J Physiol 1995; 268:H2216–H2223.

    PubMed  CAS  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1997 R.G. Landes Company

About this chapter

Cite this chapter

Henry, Y.A. (1997). Utilization of Nitric Oxide as a Paramagnetic Probe of the Molecular Oxygen Binding Site of Metalloenzymes. In: Nitric Oxide Research from Chemistry to Biology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1185-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1185-0_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8503-8

  • Online ISBN: 978-1-4613-1185-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics