Skip to main content

General Discussion: Crossregulations of Metalloenzymes Triggered by Nitric Oxide

  • Chapter
Nitric Oxide Research from Chemistry to Biology

Abstract

This final chapter is meant to be a discussion of current results. The divisions into chapters 6, 10, 11 and the present one are in many respects arbitrary. In chapter 6 we have presented EPR results obtained on pure metalloenzymes interacting anaerobically with authentic NO gas in the test tube. Chapter 10 dealt mostly with results obtained with cells either in culture or separated from organ, and activated in vitro. There were the notable exceptions of pure soluble guanylate cyclase and of the isolated proteins of iron metabolism, which could have been treated in chapter 6. In chapter 11, mostly pathological cases were explained, on animal models and on patients whenever possible. In the present chapter, we have gathered recent results, often contradictory at first sight, which hint at several regulation loops triggered by NO synthesis (Table 14.1). All the metalloproteins mentioned here form NO complexes, as proven by EPR spectroscopy (chapter 6), but no useful correlation has yet been made between EPR spectra and cellular functions. So these “left-over” results will be served with almost no EPR “sauce”, which shall be a relief to some nauseated readers reaching this last chapter!

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Pou S, Pou WS, Bredt DS et al. Generation of superoxide by purified brain nitric oxide synthase. J Biol Chem 1992; 267:24173–24176.

    PubMed  CAS  Google Scholar 

  2. Hobbs AJ, Fukuto JN, Ignarro LJ. Formation of free nitric oxide from L-arginine by nitric oxide synthase: direct enhancement of generation by superoxide dismutase. Proc Natl Acad Sci USA 1994; 91:10992–10996.

    Article  PubMed  CAS  Google Scholar 

  3. Mayer B, Klatt P, Werner ER et al. Kinetics and mechanism of tetrahydrobiopterin-induced oxidation of nitric oxide. J Biol Chem 1995; 270:655–659.

    Article  PubMed  CAS  Google Scholar 

  4. White KA, Marietta MA. Nitric oxide synthase is a cytochrome P-450 type hemeprotein. Biochemistry 1992; 31:6627–6631.

    Article  PubMed  CAS  Google Scholar 

  5. Stuehr DJ, Ikeda-Saito M. Spectral characterization of brain and macrophage nitric oxide synthases. Cytochrome P-450-like hemeproteins that contain a flavin semi-quinone radical. J Biol Chem 1992; 267:20547–2055.

    PubMed  CAS  Google Scholar 

  6. McMillan K, Bredt DS, Hirsch DJ et al. Cloned, expressed rat cerebellar nitric oxide synthase contains stoichiometric amounts of heme, which binds carbon monoxide. Proc Natl Acad Sci USA 1992; 89:11141–11145.

    Article  PubMed  CAS  Google Scholar 

  7. Klatt P, Schmidt K, Mayer B. Brain nitric oxide synthase is a haemoprotein. Biochem J 1992; 288:15–17.

    PubMed  CAS  Google Scholar 

  8. Rogers NE, Ignarro LJ. Constitutive nitric oxide synthase from cerebellum is revers-ibly inhibited by nitric oxide formed from L-arginine. Biochem Biophys Res Commun 1992; 189:242–249.

    Article  PubMed  CAS  Google Scholar 

  9. Rengasamy A, Johns RA. Regulation of nitric oxide synthase by nitric oxide. Mol Pharmacol 1993; 44:124–128.

    PubMed  CAS  Google Scholar 

  10. Rengasamy A, Johns RA. Inhibition of nitric oxide synthase by a superoxide generating system. J Pharmacol Exp Ther 1993; 267:1024–1027.

    PubMed  CAS  Google Scholar 

  11. Salerno JC, Frey C, McMillan K et al. Characterization by electron paramagnetic resonance of the interactions of L-arginine and L-thiocitrulline with the heme cofactor region of nitric oxide synthase. J Biol Chem 1995; 270:27423–27428.

    Article  PubMed  CAS  Google Scholar 

  12. Galli C, Mac Arthur R, Abu-Soud HM et al. EPR spectroscopic characterization of neuronal NO synthase. Biochemistry 1996; 35:2804–2810.

    Article  PubMed  CAS  Google Scholar 

  13. Griscavage JM, Fukuto JM, Komori Y et al. Nitric oxide inhibits neuronal nitric oxide synthase by interacting with the heme prosthetic group. Role of tetrahydrobiopterin in modulating the inhibitory action of nitric oxide. J Biol Chem 1994; 269:21644–21649.

    PubMed  CAS  Google Scholar 

  14. Wang J, Rousseau DL, Abu-Soud HM et al. Heme coordination of NO in NO synthase. Proc Natl Acad Sci USA 1994; 91:10512–10516.

    Article  PubMed  CAS  Google Scholar 

  15. Abu-Soud HM, Wang J, Rousseau DL et al. Neuronal nitric oxide synthase self-inactivates by forming a ferrous-nitrosyl complex during aerobic catalysis. J Biol Chem 1995; 270:22997–23006.

    Article  PubMed  CAS  Google Scholar 

  16. Hyun J, Komori Y, Chaudhuri G et al. The protective effect of tetrahydrobiopterin on the nitric oxide-mediated inhibition of purified nitric oxide synthase. Biochem Biophys Res Commun 1995; 206:380–386.

    Article  PubMed  CAS  Google Scholar 

  17. Wang J, Stuehr DJ, Rousseau DL. Tetra-hydrobiopterin-deficient nitric oxide synthase has a modified heme environment and forms a cytochrome P-420 analogue. Biochemistry 1995; 34:7080–7087.

    Article  PubMed  Google Scholar 

  18. Buga H, Griscavage JM, Rogers NE et al. Negative feedback regulation of endothelial cell function by nitric oxide. Cir Res 1993; 73:808–812.

    CAS  Google Scholar 

  19. Ravichandran LV, Fohns RA, Rengasamy A. Direct and reversible inhibition of endothelial nitric oxide synthase by nitric oxide. Am J Physiol 1995; 268:H2216–H2223.

    PubMed  CAS  Google Scholar 

  20. Xu X-P, Pollock JS, Tanner MA et al. Hypoxia activates nitric oxide synthase and stimulates nitric oxide production in porcine coronary resistance arteriolar endothelial cells. Cardiovasc Res 1995; 30:841–847.

    PubMed  CAS  Google Scholar 

  21. Assreuy J, Cunha FQ, Liew FY et al. Feedback inhibition of nitric oxide synthase activity by nitric oxide. Br J Pharmacol 1993; 108:833–837.

    PubMed  CAS  Google Scholar 

  22. Griscavage JM, Rogers NE, Sherman MP et al. Inducible nitric oxide synthase from a rat alveolar macrophage cell line is inhibited by nitric oxide. J Immunol 1993; 151:6329–6337.

    PubMed  CAS  Google Scholar 

  23. Morin C, Fessi H, Devissaguet JP et al. Factors influencing macrophage activation by muramyl peptides: inhibition of NO synthase activity by high levels of NO. Biochim Biophys Acta 1994; 1224:427–432.

    Article  PubMed  Google Scholar 

  24. Hurshman AR, Marietta MA. Nitric oxide complexes of inducible nitric oxide synthase: spectral characterization and effect on catalytic activity. Biochemistry 1995; 34:5627–5634.

    Article  PubMed  CAS  Google Scholar 

  25. Xie Q, Nathan C. The high-output nitric oxide pathway: role and regulation. J Leuk Biol 1994; 56:576–582.

    CAS  Google Scholar 

  26. Park SK, Lin HL, Murphy S. Nitric oxide limits transcriptional induction of nitric oxide synthase in CNS glial cells. Biochem Biophys Res Commun 1994; 201:762–768.

    Article  PubMed  CAS  Google Scholar 

  27. Mariotto S, Cuzzolin L, Adami A et al. Inhibition by sodium nitroprusside of the expression of inducible nitric oxide synthase in rat neutrophils. Br J Pharmacol 1995; 114:1105–1106.

    PubMed  CAS  Google Scholar 

  28. Amin AR, Vyas P, Attur M et al. The mode of action of aspirin-like drugs: effect on inducible nitric oxide synthase. Proc Natl Acad Sci USA 1995; 92:7926–7930.

    Article  PubMed  CAS  Google Scholar 

  29. Andronik-Lion V, Boucher J-L, Delaforge M et al. Formation of nitric oxide by cytochrome P450-catalyzed oxidation of aromatic amidoximes. Biochem Biophys Res Commun 1992; 185:452–458.

    Article  PubMed  CAS  Google Scholar 

  30. Boucher J-L, Genet A, Vadon S et al. Formation of nitrogen oxides and citrulline upon oxidation of N ω-hydroxy-L-arginine by hemeproteins. Biochem Biophys Res Commun 1992; 184:1158–1164.

    Article  PubMed  CAS  Google Scholar 

  31. Boucher J-L, Genet A, Vadon S et al. Cytochrome P450 catalyzes the oxidation of N ω-hydroxy-L-arginine by NADPH and O2 to nitric oxide and citrulline. Biochem Biophys Res Commun 1992; 187:880–886.

    Article  PubMed  CAS  Google Scholar 

  32. Mansuy D, Boucher J-L, Clement B. On the mechanism of nitric oxide formation upon oxidative cleavage of C=N(OH) bonds by NO-synthases and cytochromes P450. Biochimie 1995; 77:661–667.

    Article  PubMed  CAS  Google Scholar 

  33. Renaud JP, Boucher J-L, Vadon S et al. Particular ability of liver P450s3A to catalyze the oxidation of N ω-hydroxyarginine to citrulline and nitrogen oxides and occurrence in NO synthases of a sequence very similar to the heme-binding sequence of P450s. Biochem Biophys Res Commun 1993; 192:53–60.

    Article  PubMed  CAS  Google Scholar 

  34. Servent D, Delaforge M, Ducrocq C et al. Nitric oxide formation during microsomal hepatic denitration of glyceryl trinitrate: involvement of cytochrome P-450. Biochem Biophys Res Commun 1989; 163:1210–1216.

    Article  PubMed  CAS  Google Scholar 

  35. Servent D, Ducrocq C, Henry Y et al. Nitroglycerin metabolism by Phanerochaete chrysosporium: evidence for nitric oxide and nitrite formation. Biochim Biophys Acta 1991; 1074:320–325.

    PubMed  CAS  Google Scholar 

  36. Servent D, Ducrocq C, Henry Y et al. Multiple enzymatic pathways involved in the metabolism of glyceryl trinitrate in Phanerochaete chrysosporium. Biotechnol Applied Biochem 1992; 15:257–266.

    CAS  Google Scholar 

  37. Delaforge M, Servent D, Wirsta P et al. Particular ability of cytochrome P-450 CYP3A to reduce glyceryl trinitrate in rat liver microsomes: subsequent formation of nitric oxide. Chem Biol Interactions 1993; 86:103–117.

    Article  CAS  Google Scholar 

  38. Delaforge M, Piffeteau A, Boucher J-L et al. Nitric oxide formation during the cytochrome P-450-dependent reductive metabolism of 18-nitro-oxyandrostenedione. J Pharmacol Exp Ther 1995; 274:634–640.

    PubMed  CAS  Google Scholar 

  39. Ebel RE, O’Keeffe DH, Peterson JA. Nitric oxide complexes of cytochrome P-450. FEBS Lett 1975; 55:198–201.

    Article  PubMed  CAS  Google Scholar 

  40. O’Keeffe DH, Ebel RE, Peterson JA. Studies of the oxygen binding site of cytochrome P-450. Nitric oxide as a spin-label probe. J Biol Chem 1978; 253:3509–3516.

    PubMed  Google Scholar 

  41. Tsubaki M, Hiwatashi A, Ichikawa Y et al. Electron paramagnetic resonance study of ferrous cytochrome P-450scc-nitric oxide complexes: effects of cholesterol and its analogue. Biochemistry 1987; 26:4527–4534.

    Article  PubMed  CAS  Google Scholar 

  42. Wink DA, Osawa Y, Darbyshire JF et al. Inhibition of cytochromes P450 by nitric oxide and a nitric oxide-releasing agent. Arch Biochem Biophys 1993; 300:115–123.

    Article  PubMed  CAS  Google Scholar 

  43. Stadler J, Trockfeld J, Schmalix WA et al. Inhibition of cytochromes P4501A by nitric oxide. Proc Natl Acad Sci USA 1994; 91:3559–3563.

    Article  PubMed  CAS  Google Scholar 

  44. Kuo PC, Abe KY. Cytokine-mediated production of nitric oxide in isolated rat hepa-tocytes is dependent on cytochrome P-450III activity. FEBS Lett 1995; 360:10–14.

    Article  PubMed  CAS  Google Scholar 

  45. Muntané-Relat J, Ourlin J-C, Domergue J et al. Differential effects of cytokines on the inducible expression of CYP1A1, CYP1A2, and CYP3A4 in human hepatocytes in primary culture. Hepatology 1995; 22:1143–1153.

    Article  PubMed  Google Scholar 

  46. Kim YM, Bergonia HA, Müller C et al. Loss and degradation of enzyme-bound heme induced by cellular nitric oxide synthesis. J Biol Chem 1995; 270:5710–5713.

    Article  PubMed  CAS  Google Scholar 

  47. Bond JS, Failla ML, Unger DF. Elevated manganese concentration and arginase activity in livers of streptozotocin-induced diabetic rats. J Biol Chem 1983; 258:8004–8009.

    PubMed  CAS  Google Scholar 

  48. Reczkowski RS, Ash DE. EPR evidence for binuclear Mn(II) centers in rat liver argin-ase. J Am Chem Soc 1992; 114:10992–10994.

    Article  CAS  Google Scholar 

  49. Schneider E, Dy M. The role of arginase in the immune response. Immunol Today 1985; 6:136–140.

    Article  CAS  Google Scholar 

  50. Robertson CA, Green BG, Niedzwiecki L et al. Effect of nitric oxide synthase substrate analog inhibitors on rat liver arginase. Biochem Biophys Res Commun 1993; 197:523–528.

    Article  PubMed  CAS  Google Scholar 

  51. Hrabak A, Bajor T, Temesi A. Comparison of substrate and inhibitor specificity of arginase and nitric oxide (NO) synthase for arginine analogues and related compounds in murine and rat macrophages. Biochem Biophys Res Commun 1994; 198:206–212.

    Article  PubMed  CAS  Google Scholar 

  52. Daghigh F, Fukuto JM, Ash DE. Inhibition of rat liver arginase by an intermediate in NO biosynthesis, N G-hydroxy-L-arginine: implications for the regulation of nitric oxide biosynthesis by arginase. Biochem Biophys Res Commun 1994; 202:174–180.

    Article  PubMed  CAS  Google Scholar 

  53. Boucher J-L, Custot J, Vadon S et al. N ω-hydroxy-L-arginine, an intermediate in the L-arginine to nitric oxide pathway, is a strong inhibitor of liver and macrophage arginase. Biochem Biophys Res Commun 1994; 203:1614–1621.

    Article  PubMed  CAS  Google Scholar 

  54. Custot J, Boucher J-L, Vadon S et al. N ω-Hydroxylamino-α-aminoacids as a new class of very strong inhibitors of arginases. J Biol Inorg Chem 1996; 1:73–82.

    Article  CAS  Google Scholar 

  55. Hecker M, Nematollahi H, Hey C et al. Inhibition of arginase by N G-hydroxy-L-argi-nine in alveolar macrophages: implications for the utilization of L-arginine for nitric oxide synthesis. FEBS Lett 1995; 359:251–254.

    Article  PubMed  CAS  Google Scholar 

  56. Wang WW, Jenkinson CP, Griscavage JM et al. Co-induction of arginase and nitric oxide synthase in murine macrophages activated by lipopolysaccharide. Biochem Biophys Res Commun 1995; 210:1009–1016.

    Article  PubMed  CAS  Google Scholar 

  57. Corraliza IM, Soler G, Eichmann K et al. Arginase induction by suppressors of nitric oxide synthesis (IL-4, EL-10 and PGE2) in murine bone-marrow-derived macrophages. Biochem Biophys Res Commun 1995; 206:667–673.

    Article  PubMed  CAS  Google Scholar 

  58. Albina JE. On the expression of nitric oxide synthase by human macrophages. Why no NO? J Leuk Biol 1995;58:643–649.

    CAS  Google Scholar 

  59. Nagasaki A, Gotoh T, Takeya M et al. Coinduction of nitric oxide synthase, argininosuccinate synthetase, and arginino-uccinate lyase in lipopolysaccharide-treated rats. RNA blots, immunoblots, and immu-nohistochemical analyses. J Biol Chem 1996; 271:2658–2662.

    Article  PubMed  CAS  Google Scholar 

  60. Cleeter MWJ, Cooper JM, Darley-Usmar VM et al. Reversible inhibition of cytochrome c oxidase, the terminal enzyme of the mitochondrial respiratory chain, by nitric oxide. Implications for neurodegenerative diseases. FEBS Lett 1994; 345:50–54.

    Article  PubMed  CAS  Google Scholar 

  61. Cooper CE, Brown GC. The interactions between nitric oxide and brain nerve terminals as studied by electron paramagnetic resonance. Biochem Biophys Res Commun 1995; 212:404–412.

    Article  PubMed  Google Scholar 

  62. Schweizer M, Richter C. Nitric oxide potently and reversibly deenergizes mitochondria at low oxygen tension. Biochem Biophys Res Commun 1994; 204:169–175.

    Article  PubMed  CAS  Google Scholar 

  63. Brown GC, Cooper CE. Nanomolar concentrations of nitric oxide reversibly inhibit synaptosomal respiration by competing with oxygen at cytochrome oxidase. FEBS Lett 1994; 356:295–298.

    Article  PubMed  CAS  Google Scholar 

  64. Brown GC. Nitric oxide regulates mitochondrial respiration and cell functions by inhibiting cytochrome oxidase. FEBS Lett 1995; 369:136–139.

    Article  PubMed  CAS  Google Scholar 

  65. Brown GC, Bolanos JP, Heales SJR et al. Nitric oxide produced by activated astrocytes rapidly and reversibly inhibits cellular respiration. Neurosci Lett 1995; 193:201–204.

    Article  PubMed  CAS  Google Scholar 

  66. Torres J, Darley-Usmar V, Wilson MT. Inhibition of cytochrome c oxidase in turnover by nitric oxide: mechanism and implications for control of respiration. Biochem J 1995; 312:169–173.

    PubMed  CAS  Google Scholar 

  67. Zhao XJ, Sampath V, Caughey WS. Infrared characterization of nitric oxide bonding to bovine cytochrome c oxidase and myoglobin. Biochem Biophys Res Commun 1994; 204:537–543.

    Article  PubMed  CAS  Google Scholar 

  68. Zhao XJ, Sampath V, Caughey WS. Cyto-chrome c oxidase catalysis of the reduction of nitric oxide to nitrous oxide. Biochem Biophys Res Commun 1995; 212:1054–1060.

    Article  PubMed  CAS  Google Scholar 

  69. Dong A, Huang P, Zhao XJ et al. Characterization of sites occupied by the anesthetic nitrous oxide within proteins by infrared spectroscopy. J Biol Chem 1994; 269:23911–23917.

    PubMed  CAS  Google Scholar 

  70. Bates TE, Loesch A, Burnstock G et al. Immunocytochemical evidence for a mito-chondrially located nitric oxide synthase in brain and liver. Biochem Biophys Res Commun 1995; 213:896–900.

    Article  PubMed  CAS  Google Scholar 

  71. Bates TE, Loesch A, Burnstock G et al. Mitochondrial nitric oxide synthase: a ubiquitous regulator of oxidative phosphorylation? Biochem Biophys Res Commun 1996; 218:40–44.

    Article  PubMed  CAS  Google Scholar 

  72. Werner ER, Bitterlich G, Fuchs D et al. Human macrophages degrade tryptophan upon induction by interferon-gamma. Life Sci 1987; 41:273–280.

    Article  PubMed  CAS  Google Scholar 

  73. Werner ER, Werner-Felmayer G, Fuchs D et al. Parallel induction of tetrahydro-biopterin biosynthesis and indoleamine 2,3-dioxygenase activity in human celles and cell lines by interferon-γ. Biochem J 1989; 262:861–866.

    PubMed  CAS  Google Scholar 

  74. Shimizu T, Nomiyama S, Hirata F et al. Indoleamine 2,3-dioxygenase. Purification and some properties. J Biol Chem 1978; 253;4700–4706.

    PubMed  CAS  Google Scholar 

  75. Hirata F, Hayaishi O. Studies on indoleamine 2,3-dioxygenase. I. Superoxide anion as substrate. J Biol Chem 1975; 250:5960–5966.

    PubMed  CAS  Google Scholar 

  76. Taniguchi T, Hirata F, Hayaishi O. Intracellular utilization of superoxide anion by indoleamine 2,3-dioxygenase of rabbit enterocytes. J Biol Chem 1977; 252:2774–2776.

    PubMed  CAS  Google Scholar 

  77. Thomas SR, Mohr D, Stocker R. Nitric oxide inhibits indoleamine 2,3-dioxygenase activity in interferon-γ primed mononuclear phagocytes. J Biol Chem 1994; 269:14457–14464.

    PubMed  CAS  Google Scholar 

  78. Melillo G, Cox GW, Biragyn A et al. Regulation of nitric oxide synthase mRNA expression by interferon-γ and picolinic acid. J Biol Chem 1994; 269:8128–8133.

    PubMed  CAS  Google Scholar 

  79. Melillo G, Musso T, Sica A et al. A hy-poxia-responsive element mediates a novel pathway of activation of the inducible nitric oxide synthase promoter. J Exp Med 1995; 182:1683–1693.

    Article  PubMed  CAS  Google Scholar 

  80. Verma A, Hirsch DJ, Glatt CE et al. Carbon monoxide: a putative neural messenger. Science 1993; 259:381–384.

    Article  PubMed  CAS  Google Scholar 

  81. Maines MD. Carbon monoxide: an emerging regulator of cGMP in the brain. Mol Cell Neurosci 1993; 4:389–397.

    Article  PubMed  CAS  Google Scholar 

  82. Marks GS. Heme oxygenase: the physiological role of one of its metabolites, carbon monoxide and interactions with zinc protoporphyrin, cobalt protoporphyrin and other metalloporphyrins. Cell Mol Biol 1994; 40:863–870.

    PubMed  CAS  Google Scholar 

  83. Stone JR, Marietta MA. Soluble guanylate cyclase from bovine lung: activation with nitric oxide and carbon monoxide and spectral characterization of the ferrous and ferric states. Biochemistry 1994; 33:5636–5640.

    Article  PubMed  CAS  Google Scholar 

  84. Stone JR, Sands RH, Dunham WR et al. Electron paramagnetic resonance spectral evidence for the formation of a penta-coordinated nitrosyl-heme complex on soluble guanylate cyclase. Biochem Biophys Res Commun 1995; 207:572–577.

    Article  PubMed  CAS  Google Scholar 

  85. Stone JR, Marietta MA. Heme stoichiom-etry of heterodimeric soluble guanylate cyclase. Biochemistry 1995; 34:14668–14674.

    Article  PubMed  CAS  Google Scholar 

  86. Stone JR, Marietta MA. The ferrous heme of soluble guanylate cyclase: formation of hexacoordinate complexes with carbon monoxide and nitrosomethane. Biochemistry 1995; 34:16397–16403.

    Article  PubMed  CAS  Google Scholar 

  87. Meffert MK, Haley JE, Schuman EM et al. Inhibition of hippocampal heme oxygenase, nitric oxide synthase, and long-term potentiation by metalloporphyrins. Neuron 1994; 13:1225–1233.

    Article  PubMed  CAS  Google Scholar 

  88. Ito-Maki M, Ishikawa K, Matera KM et al. Demonstration that histidine 25, but not 132, is the axial heme ligand in rat heme oxygenase-1. Arch Biochem Biophys 1995; 317:253–258.

    Article  PubMed  CAS  Google Scholar 

  89. Ishikawa K, Takeuchi N, Takahashi S et al. Heme oxygenase-2. Properties of the heme complex of the purified tryptic fragment of recombinant human heme oxygenase-2. J Biol Chem 1995; 270:6345–6350.

    Article  PubMed  CAS  Google Scholar 

  90. Willis D, Tomlinson A, Frederick R et al. Modulation of heme oxygenase activity in rat brain and spleen by inhibitors and donors of nitric oxide. Biochem Biophys Res Commun 1995; 214:1152–1156.

    Article  PubMed  CAS  Google Scholar 

  91. Zakhary R, Gaine SP, Dinerman JL et al. Heme oxygenase-2: endothelial and neuronal localization and role in endothelium-depen-dent relaxation. Proc Natl Acad Sci USA 1996; 93:795–798.

    Article  PubMed  CAS  Google Scholar 

  92. Maines MD, Mark JA, Ewing JF. Heme oxygenase, a likely regulator of cGMP production in the brain: induction in vivo of HO-1 compensates for depression in NO synthase activity. Mol Cell Neurosci 1993; 4:398–405.

    CAS  Google Scholar 

  93. Vigne P, Feolde E, Ladoux A et al. Contributions of NO synthase and heme oxygenase to cGMP formation by cytokine and hemin treated brain capillary endothelial cells. Biochem Biophys Res Commun 1995; 214:1–5.

    Article  PubMed  CAS  Google Scholar 

  94. Christodoulides N, Durante W, Kroll MH et al. Vascular smooth muscle cell heme oxygenases generate guanylyl cyclase-stimu-latory carbon monoxide. Circulation 1995; 91:2306–2309.

    PubMed  CAS  Google Scholar 

  95. Ewing JF, Raju VS, Maines MD. Induction of heart heme oxygenase-1 (HSP32) by hyperthermia: possible role in stress-mediated elevation of cyclic 3′-5′-guanosine monophosphate. J Pharmacol Exp Ther 1994; 271:408–414.

    PubMed  CAS  Google Scholar 

  96. Motterlini R, Foresti R, Vandegriff K et al. Oxidative-stress response in vascular endothelial cells exposed to acellular hemoglobin solutions. Am J Physiol 1995; 269:H648–H655.

    PubMed  CAS  Google Scholar 

  97. Hunter K, Mascia M, Eudaric P et al. Evidence that carbon monoxide is a mediator of critical illness. Cell Mol Biol 1994; 40:507–510.

    PubMed  CAS  Google Scholar 

  98. Tsai A, Hsi LC, Kulmacz RJ et al. Characterization of the tyrosyl radicals in ovine prostaglandin H synthase-1 by isotope replacement and site-directed mutagenesis. J Biol Chem 1994; 269:5085–5091.

    PubMed  CAS  Google Scholar 

  99. Karthein R, Nastainczyk W, Ruf HH. EPR study of ferric prostaglandin H synthase and its ferrous NO derivative. Eur J Biochem 1987; 166:173–180.

    Article  PubMed  CAS  Google Scholar 

  100. Tsai A, Wei C, Kulmacz RJ. Interaction between nitric oxide and prostaglandin H synthase. Arch Biochem Biophys 1994; 313:367–372.

    Article  PubMed  Google Scholar 

  101. Kanner J, Harel S, Granit R. Nitric oxide, an inhibitor of lipid oxidation by lipoxygenase, cyclooxygenase and hemoglobin. Lipids 1992; 27:46–49.

    Article  PubMed  CAS  Google Scholar 

  102. Lassmann G, Odenwaller R, Curtis JF et al. Electron spin resonance investigation of tyrosyl radicals of prostaglandin H synthase. Relation to enzyme catalysis. J Biol Chem 1991; 266:20045–20055.

    PubMed  CAS  Google Scholar 

  103. Vane JR, Mitchell JA, Appleton I et al. Inducible isoforms of cyclooxygenase and nitric-oxide synthase in inflammation. Proc Natl Acad Sci USA 1994: 91:2046–2050.

    Article  PubMed  CAS  Google Scholar 

  104. Lonchampt MO, Schulz J, Mabille K et al. Interleukin-1 activates preferentially cyclooxygenase rather than NO synthase pathway in human smooth muscle cells. Agents Actions 1994; 41:C164-C165.

    Google Scholar 

  105. Misko TP, Trotter JL, Cross AH. Mediation of inflammation by encephalitogenic cells: interferon-γ induction of nitric oxide synthase and cyclooxygenase-2. J Neuroimmunol 1995; 61:195–204.

    Article  PubMed  CAS  Google Scholar 

  106. Tetsuka T, Daphna-Iken D, Srivastava SK et al. Cross-talk between cyclooxygenase and nitric oxide pathways: prostaglandin E2 negatively modulates induction of nitric oxide synthase by interleukin 1. Proc Natl Acad Sci USA 1994; 91:12168–12172.

    Article  PubMed  CAS  Google Scholar 

  107. Rettori V, Gimeno M, Lyson K et al. Nitric oxide mediates norepinephrine-induced prostaglandin E2 release from the hypothalamus. Proc Natl Acad Sci USA 1992; 89:11543–11546.

    Article  PubMed  CAS  Google Scholar 

  108. Franchi A, Chaud M, Rettori V et al. Role of nitric oxide in eicosanoid synthesis and uterine mobility in estrogen-treated rat uteri. Proc Natl Acad Sci USA 1994; 91:539–543.

    Article  PubMed  CAS  Google Scholar 

  109. Salvemini D, Misko TP, Masferrer JL et al. Nitric oxide activates cyclooxygenase enzymes. Proc Natl Acad Sci USA 1993; 90:7240–7244.

    Article  PubMed  CAS  Google Scholar 

  110. Corbett JA, Kwon G, Turk J et al. IL-lβ induces the coexpression of both nitric oxide synthase and cyclooxygenase by islets of Langerhans: activation of cyclooxygenase by nitric oxide. Biochemistry 1993; 32:13767–13770.

    Article  PubMed  CAS  Google Scholar 

  111. Molina-Hidalgo F, Lledo A, Guaza C. Evidence for cyclooxygenase activation by nitric oxide in astrocytes. Glia 1995; 15:167–172.

    Article  Google Scholar 

  112. Davidge ST, Baker PN, McLaughlin MK et al. Nitric oxide produced by endothelial cells increases production of eicosanoids through activation of prostaglandin H synthase. Circ Res 1995; 77:274–283.

    PubMed  CAS  Google Scholar 

  113. Stadler J, Harbrecht BG, DiSilvio M et al. Endogenous nitric oxide inhibits the synthesis of cyclooxygenase products and interleukin-6 by rat Kupffer cells. J Leuk Biol 1993; 53:165–172.

    CAS  Google Scholar 

  114. Nakatsuka M, Osawa Y. Selective inhibition of the 12-lipoxygenase pathway of arachidonic acid metabolism by L-arginine or sodium nitroprusside in intact human platelets. Biochem Biophys Res Commun 1994; 200:1630–1634.

    Article  PubMed  CAS  Google Scholar 

  115. Maccarrone M, Corasaniti MT, Guerrieri P et al. Nitric oxide-donor compounds inhibit lipoxygenase activity. Biochem Biophys Res Commun 1996; 219:128–133.

    Article  PubMed  CAS  Google Scholar 

  116. Ma Z, Ramanadham S, Corbett JA et al. Interleukin-1 enhances pancreatic islet arachidonic acid 12-lipoxygenase product generation by increasing substrate availability through a nitric oxide-dependent mechanism. J Biol Chem 1996; 271:1029–1042.

    Article  PubMed  CAS  Google Scholar 

  117. Brown GC. Reversible binding and inhibition of catalase by nitric oxide. Eur J Biochem 1995; 232:188–191.

    Article  PubMed  CAS  Google Scholar 

  118. Rinaldo JE, Clark M, Parinello J et al. Nitric oxide inactivates xanthine dehydrogenase and xanthine oxidase in interferon-γ-stimu-lated macrophages. Am J Respir Cell Mol Biol 1994; 11:625–630.

    PubMed  CAS  Google Scholar 

  119. Fukahori M, Ichimori K, Ishida H et al. Nitric oxide reversibly suppresses xanthine oxidase activity. Free Rad Res 1994; 21:203–212.

    Article  CAS  Google Scholar 

  120. Ribeiro JMC, Hazzard JMH, Nussenzveig RH et al. Reversible binding of nitric oxide by a salivary heme protein from a bloodsucking insect. Science 1993; 260:539–541.

    Article  PubMed  CAS  Google Scholar 

  121. Ribeiro JMC, Nussenzveig RH. Nitric oxide synthase activity from a hematophagous insect salivary gland. FEBS Lett 1993; 330:165–168.

    Article  PubMed  CAS  Google Scholar 

  122. Ribeiro JMC, Walker FA. High affinity histamine-binding and antihistamine activity of the salivary nitric oxide-carrying heme protein (nitrophorin) of Rhodnius proxilus. J Exp Med 1994; 180:2251–2257.

    Article  PubMed  CAS  Google Scholar 

  123. Garcia ES, Mello CB, Azambuja P et al. Rhodnius proxilus: salivary antihemostatic components decrease with Trypanosoma rangeli infection. Exp Parasitol 1994; 78:287–293.

    Article  PubMed  CAS  Google Scholar 

  124. Champagne DE, Nussenzveig RH, Ribeiro JMC. Purification, partial characterization, and cloning of nitric oxide-carrying heme proteins (nitrophorins) from salivary glands of the blood-sucking insect Rhodnius proxilus. J Biol Chem 1995; 270:8691–8695.

    Article  PubMed  CAS  Google Scholar 

  125. Nussenzveig RH, Bentley DL, Ribeiro JMC. Nitric oxide loading of the salivary nitric oxide-carrying hemoproteins (nitrophorins) in the blood-sucking bug Rhodnius proxilus. J Exp Biol 1995; 198:1093–1098.

    PubMed  CAS  Google Scholar 

  126. Valenzuela JG, Walker FA, Ribeiro JMC. A salivary nitrophorin (nitric oxide-carrying hemoprotein) in the bedbug Cimex lectularius. J Exp Biol 1995; 198:1519–1526.

    PubMed  CAS  Google Scholar 

  127. Wennmalm Å, Lanne B, Petersson AS. Detection of endothelial-derived relaxing factor in human plasma in the basal state and following ischemia using electron paramagnetic resonance spectrometry. Anal Biochem 1990; 187:359–363.

    Article  PubMed  CAS  Google Scholar 

  128. Keim M, Feelisch M, Spahr R et al. Quantitative and kinetic characterisation of nitric oxide and EDRF released from cultured endothelial cells. Biochem Biophys Res Commun 1988; 154:236–244.

    Article  Google Scholar 

  129. Malinski T, Taha Z, Grunfeld S et al. Diffusion of nitric oxide in the aorta wall monitored in situ by porphyrinic micro-sensors. Biochem Biophys Res Commun 1993; 193:1076–1082.

    Article  PubMed  CAS  Google Scholar 

  130. Kiechle FL, Malinski T. Nitric oxide. Biochemistry, pathophysiology, and detection. Am J Clin Pathol 1993; 100:567–575.

    PubMed  Google Scholar 

  131. Kanai AJ, Strauss HC, Truskey G A et al. Shear stress induces ATP-independent transient nitric oxide release from vascular endothelial cells, measured directly with a porphyrinic microsensor. Circ Res 1995; 77:284–293.

    PubMed  CAS  Google Scholar 

  132. Lantoine F, Brunet A, Bedioui F et al. Direct measurement of nitric oxide production in platelets: relationship with cytosolic Ca2+ concentration. Biochem Biophys Res Commun 1995; 215:842–848.

    Article  PubMed  CAS  Google Scholar 

  133. Vallance P, Patton S, Baghat K et al. Direct measurement of nitric oxide in human beings. Lancet 1995; 346:153–154.

    Article  PubMed  CAS  Google Scholar 

  134. Malinski T, Czuchajowski L. Nitric oxide measurements by electrochemical methods. In: Feelisch M, Stamler JS. Methods in Nitric Oxide research. John Wiley & Sons, 1996:319–339.

    Google Scholar 

  135. Cespuglio R, Burlet S, Marinesco S et al. NO voltammetric detection in the rat brain. Variations of the signal throughout the sleep-waking cycle. C R Acad Sci Paris 1996; 319:191–200.

    PubMed  CAS  Google Scholar 

  136. Buguet A, Burlet S, Auzelle F et al. Dual intervention of NO in experimental African trypanosomiasis. C R Acad Sci Paris 1996; 319:201–207.

    PubMed  CAS  Google Scholar 

  137. Shibuki K. An electrochemical microprobe for detecting nitric oxide release in brain tissue. Neurosci Res 1990; 9:69–76.

    Article  PubMed  CAS  Google Scholar 

  138. Greenberg SS, Wilcox DE, Rubanyi GM. Endothelium-derived relaxing factor released from canine femoral artery by acetylcholine cannot be identified as free nitric oxide by electron paramagnetic resonance spectroscopy. Circ Res 1990; 67:1446–1452.

    PubMed  CAS  Google Scholar 

  139. Wennmalm Å, Benthin G, Edlund A et al. Metabolism and excretion of nitric oxide in humans. An experimental and clinical study. Circ Res 1993; 73:1121–1127.

    PubMed  CAS  Google Scholar 

  140. Hayon J, Ozer D, Rishpon J et al. Spectroscopic and electrochemical response to nitrogen monoxide of a cationic iron porphyrin immobilized in nafion-coated electrodes or membranes. J Chem Soc, Chem Commun 1994; 619–620.

    Google Scholar 

  141. Blyth DJ, Aylott JW, Richardson DJ et al. Sol-gel encapsulation of metalloproteins for the development of optical biosensors for nitrogen monoxide and carbon monoxide. Analyst 1995; 120:2725–2730.

    Article  CAS  Google Scholar 

  142. Feelisch M, Stamler JS. Methods in Nitric Oxide Research. John Wiley and Sons, Chichester, UK. 1996, 712 pages.

    Google Scholar 

  143. Schmidt K, Klatt P, Mayer B. Reaction of peroxynitrite with oxyhemoglobin: interference with photochemical determination of nitric oxide. Biochem J 1994; 301:645–647.

    PubMed  CAS  Google Scholar 

  144. Moshage H, Kok B, Huizenga JR et al. Nitrite and nitrate determinations in plasma: a critical evaluation. Clin Chem 1995; 41:892–896.

    PubMed  CAS  Google Scholar 

  145. Lepoivre M, Chenais B, Yapo A et al. Alterations of ribonucleotide reductase activity following induction of the nitrite-generating pathway in adenocarcinoma cells. J Biol Chem 1990; 265:14143–14149.

    PubMed  CAS  Google Scholar 

  146. Lepoivre M, Flaman J-M, Henry Y. Early loss of the tyrosyl radical in ribonucleotide reductase of adenocarcinoma cells producing nitric oxide. J Biol Chem 1992; 267:22994–23000.

    PubMed  CAS  Google Scholar 

  147. Lepoivre M, Flaman J-M, Bobé P et al. Quenching of the tyrosyl free radical of ribonucleotide reductase by nitric oxide. Relationship to cytostasis induced in tumor cells by cytotoxic macrophages. J Biol Chem 1994; 269:21891–21897.

    PubMed  CAS  Google Scholar 

  148. Zhang J, Snyder SH. Nitric oxide stimulates auto-ADP-ribosylation of glyceralde-hyde-3-phosphate dehydrogenase. Proc Natl Acad Sci USA 1992; 89:9382–9385.

    Article  PubMed  CAS  Google Scholar 

  149. Molina y Vedia L, McDonald B, Reep B et al. Nitric oxide-induced S-nitrosylation of glyceraldehyde-3 -phosphate dehydrogenase inhibits enzymatic activity and increases endogenous ADP-ribosylation. J Biol Chem 1992; 267:24929–24935.

    PubMed  CAS  Google Scholar 

  150. McDonald B, Reep B, Lapetina EG et al. Glyceraldehyde-3 -phosphate dehydrogenase is required for the transport of nitric oxide in platelets. Proc Natl Acad Sci USA 1993; 90:11122–11126.

    Article  PubMed  CAS  Google Scholar 

  151. Zhang J, Dawson VL, Dawson TM et al. Nitric oxide activation of poly(ADP-ribose) synthetase in neurotoxicity. Science 1994; 263:687–689.

    Article  PubMed  CAS  Google Scholar 

  152. Michetti M, Salamino F, Melloni E et al. Reversible inactivation of calpain isoforms by nitric oxide. Biochem Biophys Res Commun 1995; 207:1009–1014.

    Article  PubMed  CAS  Google Scholar 

  153. Forrester K, Ambs S, Lupoid SE et al. Nitric oxide-induced p53 accumulation and regulation of inducible nitric oxide synthase expression by wild-type p53. Proc Natl Acad Sci USA 1996; 93:2442–2447.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1997 R.G. Landes Company

About this chapter

Cite this chapter

Henry, Y.A. (1997). General Discussion: Crossregulations of Metalloenzymes Triggered by Nitric Oxide. In: Nitric Oxide Research from Chemistry to Biology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1185-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1185-0_15

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8503-8

  • Online ISBN: 978-1-4613-1185-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics