Skip to main content

Palliatives to Underproduction of Nitric Oxide as Assayed by EPR Spectroscopy

  • Chapter

Abstract

Nitric oxide has been shown to be the endogenous stimulator of soluble guanylate cyclase (sGC) and as such to be the endogenous vasodilator of the smooth muscle in both the cardiovascular and cerebrovascular systems, and the digestive system. It is also an effector molecule released by macrophages, hepatocytes and other cell types after cytokine activation.1–4

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Moncada S, Palmer RMJ, Higgs EA. Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev 1991; 43:109–142.

    PubMed  CAS  Google Scholar 

  2. Stuehr DJ, Griffith OW. Mammalian nitric oxide synthases. Adv Enzymol 1992; 65:287–346.

    PubMed  CAS  Google Scholar 

  3. Nathan C. Nitric oxide as a secretory product of mammalian cells. FASEB J 1992; 6:3051–3064.

    PubMed  CAS  Google Scholar 

  4. Moncada S, Higgs EA. Molecular mechanisms and therapeutic strategies related to nitric oxide. FASEB J 1995; 9:1319–1330.

    PubMed  Google Scholar 

  5. Green LC, Ruiz de Luzuriaja K, Wagner DA et al. Nitrate biosynthesis in man. Proc Natl Acad Sci USA 1981; 78:7764–7768.

    Article  PubMed  CAS  Google Scholar 

  6. Arnold WP, Mittal CK, Katsuki S et al. Nitric oxide activates guanylate cyclase and increases guanosine 3′:5′-cyclic monophosphate levels in various tissue preparations. Proc Natl Acad Sci USA 1977; 74:3203–3207.

    Article  PubMed  CAS  Google Scholar 

  7. Craven PA, DeRubertis FR. Restoration of the responsiveness of purified guanylate cyclase to nitrosoguanidine, nitric oxide, and related activators by heme and hemopro-teins. Evidence for involvement of the paramagnetic nitrosyl-heme complex in enzyme activation. J Biol Chem 1978; 253:8433–8443.

    PubMed  CAS  Google Scholar 

  8. Craven PA, DeRubertis FR, Pratt DW. Electron spin resonance study of the role of NO· catalase in the activation of guanylate cyclase by NaN3 and NH2OH. Modulation of enzyme responses by heme proteins and their nitrosyl derivatives. J Biol Chem 1979; 254:8213–8222.

    PubMed  CAS  Google Scholar 

  9. Ignarro LJ, Adams JB, Horwitz PM et al. Activation of soluble guanylate cyclase by NO-hemoproteins involves NO-heme exchange. Comparison of heme-containing and heme-deficient enzyme forms. J Biol Chem 1986; 261:4997–5002.

    PubMed  CAS  Google Scholar 

  10. Harrisson DG, Bates JN. The nitro-vasodilators. New ideas about old drugs. Circulation 1993; 87:1461–1467.

    PubMed  Google Scholar 

  11. Bennett BM, McDonald BJ, Nigam R et al. Biotransformation of organic nitrates and vascular smooth muscle cell function. Trends in Pharmacol Sci 1994; 15:245–249.

    Article  CAS  Google Scholar 

  12. Reeves JT. Brunton’s use of amyl nitrite in angina pectoris: an historic root of nitric oxide research. News in Physiol Sci 1995; 10:141–144.

    Google Scholar 

  13. Kubrina LN, Caldwell WS, Mordvintcev PI et al. EPR evidence for nitric oxide production from guanidino nitrogens of L-arginine in animal tissues in vivo. Biochim Biophys Acta 1992; 1099:233–237.

    Article  PubMed  CAS  Google Scholar 

  14. Hishikawa K, Nakaki Y, Suzuki H et al. Role of L-arginine-nitric oxide pathway in hypertension J Hypertens 1993; 11:639–645.

    Article  PubMed  CAS  Google Scholar 

  15. Wallace GC, Gulati P, Fukuto JM. N ω -hydroxy-L-arginine: a novel arginine analog capable of causing vasorelaxation in bovine intrapulmonary artery. Biochem Biophys Res Commun 1991; 176:528–534.

    Article  PubMed  CAS  Google Scholar 

  16. Boucher J-L, Genet A, Vadon S et al. Cytochrome P450 catalyzes the oxidation of N ω-hydroxy-L-arginine by NADPH and O2 to nitric oxide and citrulline. Biochem Biophys Res Commun 1992; 187:880–886.

    Article  PubMed  CAS  Google Scholar 

  17. Renaud J-P, Boucher J-L, Vadon S et al. Particular ability of liver P450s3A to catalyze the oxidation of N ω-hydroxyarginine to citrulline and nitrogen oxides and occurrence in NO synthases of a sequence very similar to the heme-binding sequence of P450s. Biochem Biophys Res Commun 1993; 192:53–60.

    Article  PubMed  CAS  Google Scholar 

  18. Mansuy D, Boucher J-L, Clement B. On the mechanism of nitric oxide formation upon oxidative cleavage of C=N(OH) bonds by NO-synthases and cytochromes P450. Biochimie 1995; 77:661–667.

    Article  PubMed  CAS  Google Scholar 

  19. Friederich JA, Butterworth JF. Sodium nitroprusside: twenty years and counting. Anesth Analg 1995; 81:152–162.

    PubMed  CAS  Google Scholar 

  20. Shibuki K. An electrochemical microprobe for detecting nitric oxide release in brain tissue. Neurosci Res 1990; 9:69–76.

    Article  PubMed  CAS  Google Scholar 

  21. Singh RJ, Hogg N, Neese F et al. Trapping of nitric oxide formed during photolysis of sodium nitroprusside in aqueous and lipid phases: an electron spin resonance study. Photochem Photobiol 1995; 61:325–330.

    Article  PubMed  CAS  Google Scholar 

  22. Rao DNR, Elguindi S, O’Brien PJ. Reductive metabolism of nitroprusside in rat hepa-tocytes and human erythrocytes. Arch Biochem Biophys 1991; 286:30–37.

    Article  PubMed  CAS  Google Scholar 

  23. Kruszyna H, Kruszyna R, Rochelle LG et al. Effects of temperature, oxygen, heme ligands and sufhydryl alkylation on the reactions of nitroprusside and nitroglycerin with hemoglobin. Biochem Pharmacol 1993; 46:95–102.

    Article  PubMed  CAS  Google Scholar 

  24. Smith RP, Kruszyna H. Nitroprusside produces cyanide poisoning via a reaction with hemoglobin. J Pharm Exp Ther 1974; 191:557–563.

    CAS  Google Scholar 

  25. Wilcox DE, Kruszyna H, Kruszyna R et al. Effect of cyanide on the reaction of nitroprusside with hemoglobin: relevance to cyanide interference with the biological activity of nitroprusside. Chem Res Toxicol 1990; 3:71–76.

    Article  PubMed  CAS  Google Scholar 

  26. Kowaluk EA, Seth P, Fung H-L. Metabolic activation of sodium nitroprusside to nitric oxide in vascular smooth muscle. J Pharmacol Exp Ther 1992; 262:916–922.

    PubMed  CAS  Google Scholar 

  27. Rochelle LG, Kruszyna H, Kruszyna R et al. Bioactivation of nitroprusside by porcine endothelial cells. Toxicol Appl Pharmacol 1994; 128:123–128.

    Article  PubMed  CAS  Google Scholar 

  28. Zerbe NF, Wagner BK. Use of vitamine B12 in the treatment and prevention of nitroprusside-induced cyanide toxicity. Crit Care Med 1993; 21:465–467.

    Article  PubMed  CAS  Google Scholar 

  29. Brock G, Breza J, Lue TF. Intracavernous sodium nitroprusside: inappropriate impotence treatment. J Urol 1993; 150:864–867.

    PubMed  CAS  Google Scholar 

  30. Ribeiro JMC, Hazzard JMH, Nussenzveig RH et al. Reversible binding of nitric oxide by a salivary heme protein from a bloodsucking insect. Science 1993; 260:539–541.

    Article  PubMed  CAS  Google Scholar 

  31. Ribeiro JMC, Walker FA. High affinity histamine-binding and antihistaminic activity of the salivary nitric oxide-carrying heme protein (nitrophorin) of Rhodnius prolixus. J Exp Med 1994; 180:2251–2257.

    Article  PubMed  CAS  Google Scholar 

  32. Champagne DE, Nussenzveig RH, Ribeiro JMC. Purification, partial characterization and cloning of nitric oxide-carrying heme proteins (nitrophorins) from salivary glands of the blood-sucking insect Rhodnius prolixus. J Biol Chem 1995; 270:8691–8695.

    Article  PubMed  CAS  Google Scholar 

  33. Flitney FW, Megson IL, Clough T et al. Nitrosylated iron-sulphur clusters, a novel class of nitrovasodilator: studies on the rat isolated tail artery. J Physiol 1990; 430:42P–42P.

    Google Scholar 

  34. Flitney FW, Megson IL, Flitney DE et al. Iron-sulphur cluster nitrosyls, a novel class of nitric oxide generator: mechanism of vasodilator action on rat isolated tail artery. Br J Pharmacol 1992; 107:842–848.

    PubMed  CAS  Google Scholar 

  35. Ludbrook SB, Scrutton MC, Joannou CL et al. Inhibition of platelet aggregation by Roussin’s black salt, sodium nitroprusside and other metal nitrosyl complexes. Platelets 1995; 6:209–212.

    Article  PubMed  CAS  Google Scholar 

  36. Butler AR, Glidewell C, Li M-H. Nitrosyl complexes of iron-sulfur clusters. Adv Inorg Chem 1988; 32:335–393.

    Article  CAS  Google Scholar 

  37. Butler AR, Williams DLH. The physiological role of nitric oxide. Chem Soc Rev 1993; 1993:233–241.

    Article  Google Scholar 

  38. Miilsch A, Mordvintcev P, Vanin AF et al. The potent vasodilating and guanylyl cyclase activating dinitrosyl-iron(II) complex is stored in a protein-bound form in vascular tissue and is released by thiols. FEBS Lett 1991; 294:252–256.

    Article  Google Scholar 

  39. Vanin AF, Men’shikov GB, Moroz IA et al. The source of non-heme iron that binds nitric oxide in cultivated macrophages. Biochim Biophys Acta 1992; 1135:275–279.

    Article  PubMed  CAS  Google Scholar 

  40. Miilsch A, Mordvintcev P, Vanin AF et al. Formation and release of dinitrosyl iron complexes by endothelial cells. Biochem Biophys Res Commun 1993; 196:1303–1308.

    Article  Google Scholar 

  41. Furchgott RF. Studies on relaxation of rabbit aorta by sodium nitrite: the basis for the proposal that the acid-activatable inhibitory factor from bovine retractor penis is inorganic nitrite and the endothelium-derived relaxing factor is nitric oxide. In: Vanhoutte PM, ed. Vasodilatation: Vascular Smooth Muscle, Peptides, Autonomic Nerves, and Endothelium. Raven Press, Ltd., New York. 1988:401–414.

    Google Scholar 

  42. Bonnett R, Chandra S, Charalambides AA et al. Nitrosation and nitrosylation of haemoproteins and related compounds. Part 4. Pentaco-ordinate nitrosylprotohaem as the pigment of cooked cured meat. Direct evidence from ESR spectroscopy. J Chem Soc Perkin I 1980; 1706–1710.

    Google Scholar 

  43. Kruszyna R, Kruszyna H, Smith RP et al. Nitrite conversion to nitric oxide in red cells and its stabilization as a nitrosylated valency hybrid of hemoglobin. J Pharmacol Exp Therap 1987; 241:307–313.

    CAS  Google Scholar 

  44. Castro C, O’Shea SK. Activation of nitrite ion by iron(III) porphyrins. Stoichiometric oxygen transfer to carbon, nitrogen, phosphorus, and sulfur. J Org Chem 1995; 60:1922–1923.

    Article  CAS  Google Scholar 

  45. Ignarro LJ. Endothelium-derived nitric oxide: pharmacology and relationship to the actions of organic nitrate esters. Pharmaceut Res 1989; 6:651–659.

    Article  CAS  Google Scholar 

  46. Kowaluk EA, Chung S-J, Fung H-L. Nitrite ion is not an active intermediate in the vascular metabolism of organic nitrates and organic nitrites to nitric oxide. Drug Metab Dispos 1993; 21:967–968.

    PubMed  CAS  Google Scholar 

  47. Kowaluk EA, Fung H-L. Vascular nitric oxide generating activities for organic nitrites and nitrates are distinct. J Pharmacol Exp Ther 1991; 259:519–525.

    PubMed  CAS  Google Scholar 

  48. Meyer DJ, Kramer H, Özer N et al. Kinetics and equilibria of S-nitrosothiol-thiol exchange between glutathione, cysteine, penicillamines and serum albumin. FEBS Lett 1994; 345:177–180.

    Article  PubMed  CAS  Google Scholar 

  49. Brien JF, McLaughin E, Breedon TH et al. Biotransformation of glyceryl trinitrate occurs concurrently with relaxation of rabbit aorta. J Pharmacol Exp Ther 1986; 237:609–614.

    Google Scholar 

  50. Feelisch M, Noack EA. Correlation between nitric oxide formation during degradation of organic nitrates and activation of guanylate cyclase. Eur J Pharmacol 1987; 139:19–30.

    Article  PubMed  CAS  Google Scholar 

  51. Bult H, Bosmans JM, Vrints CJM et al. Isosorbidedinitrate and SIN-1 as dilators of human coronary arteries and platelet inhibitors. J Cardiovasc Pharmacol 1995; 25:572–578.

    Article  PubMed  CAS  Google Scholar 

  52. Ignarro LJ. Biosynthesis and metabolism of endothelium-derived nitric oxide. Annu Rev Pharmacol Toxicol 1990; 30:535–560.

    Article  PubMed  CAS  Google Scholar 

  53. Ignarro LJ. Signal transduction mechanisms involving nitric oxide. Biochem Pharmacol 1991; 41:485–490.

    Article  PubMed  CAS  Google Scholar 

  54. Schrör K, Förster S, Woditsch I. On-line measurement of nitric oxide release from organic nitrates in the intact coronary circulation. Naunyn-Schmiedeberg’s Arch Pharmacol 1991; 344:240–246.

    Article  Google Scholar 

  55. Salvemini D, Mollace V, Pistelli A et al. Metabolism of glyceryl trinitrate to nitric oxide by endothelial cells and smooth muscle cells and its induction by Escherichia coli lipopolysaccharide. Proc Natl Acad Sci USA 1992; 89:982–986.

    Article  PubMed  CAS  Google Scholar 

  56. Feelisch M, Brands F, Kelm M. Human endothelial cells bioactivate organic nitrates to nitric oxide: Implications for the reinforcement of endothelial defence mechanisms. Eur J Clin Invest 1995; 25:737–745.

    Article  PubMed  CAS  Google Scholar 

  57. Bennett BM, Brien JF, Nakatsu K et al. Role of hemoglobin in the differential biotransformation of glyceryl trinitrates and isosorbide dinitrate by human erythrocytes. J Pharmacol Exp Ther 1985; 234:228–232.

    PubMed  CAS  Google Scholar 

  58. Bennett BM, Kobus SM, Brien JF et al. Requirement for reduced, unliganded hemo-protein for the hemoglobin- and myo-globin-mediated biotransformation of glyceryl trinitrate. J Pharmacol Exp Ther 1986; 237:629–635.

    PubMed  CAS  Google Scholar 

  59. Kruszyna H, Kruszyna R, Smith RP et al. Red blood cell generate nitric oxide from directly acting, nitrogenous vasodilators. Toxicol Applied Pharmacol 1987; 91:429–438.

    Article  CAS  Google Scholar 

  60. Kruszyna R, Kruszyna H, Smith RP et al. Generation of valency hybrids and nitro-sylated species of hemoglobin in mice by nitric oxide vasodilators. Toxicol Applied Pharmacol 1988; 94:458–465.

    Article  CAS  Google Scholar 

  61. Kosaka H, Tanaka S, Yoshii T et al. Direct proof of nitric oxide formation from a nitrovasodilator metabolised by erythrocytes. Biochem Biophys Res Commun 1994; 204:1055–1060.

    Article  PubMed  CAS  Google Scholar 

  62. Lau DT-W, Benet LZ. Nitroglyceryl metabolism in subcellular fractions of rabbit liver. Dose dependency of glyceryl dinitrate formation and possible involement of multiple isozymes of glutathione S-transferases. Drug Metab Dispos 1990; 18:292–297.

    PubMed  CAS  Google Scholar 

  63. Schrör K, Woditsch I, Förster S. Generation of nitric oxide from organic vasodilators during passage through the coronary vascular bed and its role in coronary vasodilation and nitrate tolerance. Blood Vessels 1991; 28:62–66.

    PubMed  Google Scholar 

  64. Chung S-J, Fung H-L. Identification of the subcellular site for nitroglycerin metabolism to nitric oxide in bovine coronary smooth muscle cells. J Pharmacol Exp Ther 1990; 253:614–619.

    PubMed  CAS  Google Scholar 

  65. Marks GS, McLaughlin BE, Jimmo SL et al. Time-dependent increase in nitric oxide formation concurrent with vasodilation induced by sodium nitroprusside, 3-morpho-linosydnonimine, and S-nitroso-N-acetyl-penicillamine but not by glyceryl trinitrate. Drug Metab Dispos 1995; 23:1248–1252.

    PubMed  CAS  Google Scholar 

  66. Kohno M, Masumizu T, Mori A. ESR demonstration of nitric oxide production from nitroglycerin and sodium nitrite in the blood of rats. Free Rad Biol Med 1995; 18:451–457.

    Article  PubMed  CAS  Google Scholar 

  67. Cantilena LR, Smith RP, Frasur S et al. Nitric oxide hemoglobin in patients receiving nitroglycerin as detected by electron paramagnetic resonance spectroscopy. J Lab Clin Med 1992; 120:902–907.

    PubMed  Google Scholar 

  68. Ducrocq C, Servy C, Lenfant M. Bioconversion of glyceryl trinitrate into mononitrates by Geotrichum candidum. FEMS Microbiol Letters 1989; 65:219–222.

    Article  CAS  Google Scholar 

  69. Ducrocq C, Servy C, Lenfant M. Formation of glyceryl 2-mononitrate by regioselective bioconversion of glyceryl trinitrate: efficiency of the filamentous fungus Phanerochaete chrysosporium. Biotechnol Appl Biochem 1990; 12:325–330.

    PubMed  CAS  Google Scholar 

  70. Servent D, Ducrocq C, Henry Y et al. Nitroglycerin metabolism by Phanerochaete chrysosporium: evidence for nitric oxide and nitrite formation. Biochim Biophys Acta 1991; 1074:320–325.

    PubMed  CAS  Google Scholar 

  71. Servent D, Ducrocq C, Henry Y et al. Multiple enzymatic pathways involved in the metabolism of glyceryl trinitrate in Phanerochaete chrysosporium. Biotechnol Applied Biochem 1992; 15:257–266.

    CAS  Google Scholar 

  72. White GF, Snape JR. Microbial cleavage of nitrate esters: defusing the environment. J Gen Microbiol 1993; 139:1947–1957.

    PubMed  CAS  Google Scholar 

  73. Servent D, Delaforge M, Ducrocq C et al. Nitric oxide formation during microsomal hepatic denitration of glyceryl trinitrate: involvement of cytochrome P-450. Biochem Biophys Res Commun 1989; 163:1210–1216.

    Article  PubMed  CAS  Google Scholar 

  74. Henry Y, Ducrocq C, Drapier J-C et al. Nitric oxide, a biological effector. Electron paramagnetic resonance detection of nitrosyl-iron-protein complexes in whole cells. Eur Biophys J 1991; 20:1–15.

    Article  PubMed  CAS  Google Scholar 

  75. Delaforge M, Servent D, Wirsta P et al. Particular ability of cytochrome P-450 CYP3A to reduce glyceryl trinitrate in rat liver microsomes: subsequent formation of nitric oxide. Chem Biol Interactions 1993; 86:103–117.

    Article  CAS  Google Scholar 

  76. McDonald BJ, Bennett BM. Cytochrome P-450 mediated biotransformation of organic nitrates. Can J Physiol Pharmacol 1990; 68:1552–1557.

    Article  PubMed  CAS  Google Scholar 

  77. Mülsch A, Bara A, Mordvintcev P et al. Specificity of different organic nitrates to elicit NO formation in rabbit vascular tissues and organs in vivo. Br J Pharmacol 1995; 116:2743–2749.

    PubMed  Google Scholar 

  78. Delaforge M, Piffeteau A, Boucher J-L et al. Nitric oxide formation during the cytochrome P-450 dependent reductive metabolism of 18-nitro-oxyandrostenedione. J Pharmacol Exp Ther 1995; 274:634–640.

    PubMed  CAS  Google Scholar 

  79. Jousserandot A, Boucher J-L, Desseaux C et al. Formation of nitrogen oxides including NO from oxidative cleavage of C=NOH bonds: a general cytochrome P450-dependent reaction. Bioorg Med Chem Lett 1995; 5:423–426.

    Article  CAS  Google Scholar 

  80. Cederqvist B, Persson MG, Gustafsson LE. Direct demonstration of NO formation in vivo from organic nitrites and nitrates and correlation to effects on blood pressure and to in vitro effects. Biochem Pharmacol 1994; 47:1047–1053.

    Article  PubMed  CAS  Google Scholar 

  81. Persson MG, Agvald P, Gustafsson LE. Detection of nitric oxide in exhaled air during administration of nitroglycerin in vivo. Br J Pharmacol 1994; 111:825–828.

    PubMed  CAS  Google Scholar 

  82. Lees C, Campbell S, Jauniaux E et al. Arrest of preterm labour and prolongation of gestation with glyceryl trinitrate, a nitric oxide donor. Lancet 1994; 343:1325–1326.

    Article  PubMed  CAS  Google Scholar 

  83. DeMaster EG, Raij L, Archer SL et al. Hydroxylamine is a vasorelaxant and a possible intermediate in the oxidative conversion of L-arginine to nitric oxide. Biochem Biophys Res Commun 1989; 163:527–533.

    Article  PubMed  CAS  Google Scholar 

  84. Stamler JS, Jaraki O, Osborne J et al. Nitric oxide circulates in mammalian plasma primarily as an S-nitroso adduct of serum albumin. Proc Natl Acad Sci USA 1992; 89:7674–7677.

    Article  PubMed  CAS  Google Scholar 

  85. Stamler JS, Simon DI, Osborne JA et al. S-Nitrosylation of proteins with nitric oxide: synthesis and characterization of biologically active compounds. Proc Natl Acad Sci USA 1992; 89:444–448.

    Article  PubMed  CAS  Google Scholar 

  86. Jia L, Bonaventura C, Bonaventura J et al. S-nitrosohaemoglobin: a dynamic activity of blood involved in vascular control. Nature 1996; 380:221–226.

    Article  PubMed  CAS  Google Scholar 

  87. McAninly J, Williams DLH, Askew SC et al. Metal ion catalysis in nitrosothiols (RSNO) decomposition. J Chem Soc Chem Comm 1993; 23:1758–1759.

    Article  Google Scholar 

  88. Vanin AF. Roles of iron ions and cysteine in formation and decomposition of S-nitrosocysteine and S-nitrosoglutathione. Biochemistry (Moscow) 1995; 60:441–447.

    Google Scholar 

  89. Kowaluk EA, Fung H-L. Spontaneous liberation of nitric oxide cannot account for in vitro relaxation by S-nitrosothiols. J Pharmacol Exp Ther 1990; 255:1256–1264.

    PubMed  CAS  Google Scholar 

  90. Stamler JS, Singel DJ, Loscalzo J. Biochemistry of nitric oxide and its redox-activated forms. Science 1992; 258:1898–1902.

    Article  PubMed  CAS  Google Scholar 

  91. Lipton SA, Choi Y-B, Pan Z-H et al. A redox-based mechanism for the neuroprotective and neurodestructive effects of nitric oxide and related nitroso-compounds. Nature 1993; 364:626–632.

    Article  PubMed  CAS  Google Scholar 

  92. Arnelle DR, Stamler JS. NO+, NO, and NO donation by S-nitrosothiols: implications for regulation of physiological functions by S-nitrosylation and acceleration of dissulfide formation. Arch Biochem Biophys 1995; 318:279–285.

    Article  PubMed  CAS  Google Scholar 

  93. Maragos CM, Morley D, Wink DA et al. Complexes of NO with nucleophiles as agents for the controlled biological release of nitric oxide. Vasorelaxant effects. J Med Chem 1991; 34:3242–3247.

    Article  PubMed  CAS  Google Scholar 

  94. Saavedra JE, Dunams TM, Flippen-Anderson JL et al. Secondary amine /nitric oxide complex ions, R2N[N(O)NO]. O-functionalization chemistry. J Org Chem 1992; 57:6134–6138.

    Article  CAS  Google Scholar 

  95. Hrabie JA, Klose JR, Wink DA et al. New nitric oxide-releasing zwitterions derived from polyamines. J Org Chem 1993; 58:1472–1476.

    Article  CAS  Google Scholar 

  96. Mooradian DL, Hutsell TC, Keefer LK. Nitric oxide (NO) donor molecules: effect of NO release rate on vascular smooth muscle cell proliferation in vitro. J Cardiovasc Pharmacol 1995; 25:674–678.

    Article  PubMed  CAS  Google Scholar 

  97. Morley D, Keefer LK. Nitric oxide/ nucleophile complexes: a unique class of nitric oxide-based vasodilators. J Cardiovasc Pharmacol 1993; 22(Suppl 7):S3-S9.

    PubMed  CAS  Google Scholar 

  98. Diodati JG, Quyyumi AA, Hussain N et al. Complexes of nitric oxide with nucleophiles as agents for the controlled biological release of nitric oxide: antiplatelet effect. Thrombosis and Haemostasis 1993; 70:654–658.

    PubMed  CAS  Google Scholar 

  99. Vanderford PA, Wong J, Chang R et al. Diethylamine/nitric oxide (NO) adduct, an NO donor, produces potent pulmonary and systemic vasodilation in intact newborn lambs. J Cardiovasc Pharmacol 1994; 23:113–119.

    Article  PubMed  CAS  Google Scholar 

  100. Shimaoka M, Iida T, Ohar A et al. NOC, a nitric-oxide-releasing compound, induces dose dependent apoptosis in macrophages. Biochem Biophys Res Commun 1995; 209:519–526.

    Article  PubMed  CAS  Google Scholar 

  101. Makings LR, Tsien RY. Caged nitric oxide. Stable organic molecules from which nitric oxide can be photoreleased. J Biol Chem 1994; 269:6282–6285.

    PubMed  CAS  Google Scholar 

  102. Ferioli R, Folco GC, Ferretti C et al. A new class of furoxan derivatives as NO donors: mechanism of action and biological activity. Br J Pharmacol 1995; 114:816–820.

    PubMed  CAS  Google Scholar 

  103. Tanayama S, Nakai Y, Fujita T et al. Biotransformation of molsidomine (N-ethoxycarbonyl-morpholinosydnonimine), a new anti-anginal agent, in rats. Xenobiotica 1974; 4:175–191.

    Article  CAS  Google Scholar 

  104. Feelisch M, Ostrowski J, Noack E. On the mechanism of NO release from sydnonimines. J Cardiovasc Pharmacol 1989; 14(Suppl. 11):S13-S22.

    PubMed  CAS  Google Scholar 

  105. Gergel D, Misik V, Ondrias K et al. Increased cytotoxicity of 3-morpholinosydnonimine to HepG2 cells in the presence of superoxide dismutase. J Biol Chem 1995; 270:20922–20929.

    Article  PubMed  CAS  Google Scholar 

  106. Andronik-Lion V, Boucher J-L, Delaforge M et al. Formation of nitric oxide by cytochrome P450-catalyzed oxidation of aromatic amidoximes. Biochem Biophys Res Commun 1992; 185:452–458.

    Article  PubMed  CAS  Google Scholar 

  107. Clement B, Jung F. N-hydroxylation of the antiprotozoal drug pentamidine catalyzed by rabbit liver cytochrome P-450 2C3 or human liver microsomes, microsomal retro-reduction, and further oxidative transformation of the formed amidoximes. Possible relationship to the biological oxidation of arginine to N G-hydroxyarginine, citrulline, and nitric oxide. Drug Metab Dispos 1994; 22:486–497.

    PubMed  CAS  Google Scholar 

  108. Szekeres T, Gharehbaghi K, Fritzer M et al. Biochemical and antitumor activity of trimidox, a new inhibitor of ribonucleotide reductase. Cancer Chemother Pharmacol 1994; 34:63–66.

    Article  PubMed  CAS  Google Scholar 

  109. Sennequier N, Boucher J-L, Battioni P et al. Superoxide anion efficiently performs the oxidative cleavage of C=NOH bonds of amidoximes and N-hydroxyguanidines with formation of nitrogen oxides. Tetrahedron Lett 1995; 36:6059–6062.

    Article  CAS  Google Scholar 

  110. Kita Y, Osaki R, Sakai S et al. Antianginal effects of FK409, a new spontaneous NO releaser. Br J Pharmacol 1994; 113:1137–1140.

    PubMed  CAS  Google Scholar 

  111. Fukuyama S, Kita Y, Hirasawa Y et al. A new nitric oxide (NO) releaser: spontaneous NO release from FK409. Free Rad Res 1995; 23:443–452.

    Article  CAS  Google Scholar 

  112. Fukuyama S, Hirasawa Y, Cox D et al. Acceleration of nitric oxide (NO) release from FK409, a spontaneous NO releaser, in the presence of sulfhydryl-bearing compounds. Pharmaceut Res 1995; 12:1948–1952.

    Article  CAS  Google Scholar 

  113. Kita Y, Ohkubo K, Hirasawa Y et al. FR144420, a novel, slow, nitric oxide-releasing agent. Eur J Pharmacol 1995; 275:125–130.

    Article  PubMed  CAS  Google Scholar 

  114. Persson MG, Wiklund NP, Gustafsson LE. Endogenous nitric oxide in single exhalations and the change during exercise. Am Rev Respir Dis 1993; 148:1210–1214.

    PubMed  CAS  Google Scholar 

  115. Rimar S, Gillis CN. Selective pulmonary vasodilation by inhaled nitric oxide is due to hemoglobin inactivation. Circulation 1993; 88:2884–2887.

    PubMed  CAS  Google Scholar 

  116. Higenbottam T. Inhaled nitric oxide: a magic bullet? Quarterly J Med 1993; 86:555–558.

    CAS  Google Scholar 

  117. Pearl MD. Inhaled nitric oxide. The past, the present, and the future. Anesthesiol 1993; 78:413–416.

    CAS  Google Scholar 

  118. Goldman AP, Rees PG, Macrae DJ. Is it time to consider domiciliary nitric oxide? Lancet 1995; 345:199–200.

    Article  PubMed  CAS  Google Scholar 

  119. Lunn RJ. Inhaled nitric oxide therapy. Mayo Clin Proc 1995; 70:247–255.

    PubMed  CAS  Google Scholar 

  120. Frostell C, Fratacci M-D, Wain JC et al. Inhaled nitric oxide. A selective pulmonary vasodilator reversing hypoxic pulmonary vasoconstriction. Circulation 1991; 83:2038–2047.

    PubMed  CAS  Google Scholar 

  121. Frostell CG, Blomqvist H, Hedenstierna G et al. Inhaled nitric oxide selectively reverses human hypoxic pulmonary vasoconstriction without causing systemic vasodilation. Anesthesiol 1993; 78:427–435.

    Article  CAS  Google Scholar 

  122. Rossaint R, Falke KJ, López F et al. Inhaled nitric oxide for the adult respiratory distress syndrome. N Eng J Med 1993; 328:399–405.

    Article  CAS  Google Scholar 

  123. Gerlach H, Rossaint R, Pappert D et al. Time-course and dose-response of nitric oxide inhalation for systemic oxygenation and pulmonary hypertension in patients with adult respiratory distress syndrome. Eur J Clin Invest 1993; 23:499–502.

    Article  PubMed  CAS  Google Scholar 

  124. Gerlach H, Pappert D, Lewandowski K et al. Long-term inhalation with evaluated low doses of nitric oxide for selective improvement of oxygenation in patients with adult respiratory distress syndrome. Intensive Care Med 1993; 19:443–449.

    Article  PubMed  CAS  Google Scholar 

  125. Kinsella JP, Abman SH. Methaemoglobin during nitric oxide therapy with high-frequency ventilation. Lancet 1993; 342:615–615.

    Article  PubMed  CAS  Google Scholar 

  126. Foubert L, Fleming B, Latimer R et al. Safety guidelines for use of nitric oxide. Lancet 1992; 339:1615–1616.

    Article  PubMed  CAS  Google Scholar 

  127. Bouchet M, Renaudin M-H, Raveau C et al. Safety requirement for use of inhaled nitric oxide in neonates. Lancet 1993; 341:968–969.

    Article  PubMed  CAS  Google Scholar 

  128. Laguenie G. Measurement of nitric dioxide formation from nitric oxide by chemiluminescence in ventilated children. Lancet 1993; 341:969–969.

    Article  PubMed  CAS  Google Scholar 

  129. Miller OI, Celermajer DS, Deanfield JE et al. Guidelines for the safe administration of inhaled nitric oxide. Arch Dis Child 1994; 70:F47-F49.

    Article  CAS  Google Scholar 

  130. Stenqvist O, Kjelltoft B, Lundin S. Evaluation of a new system for ventilatory administration of nitric oxide. Acta Anaesthesiol Scand 1993; 37:687–691.

    Article  PubMed  CAS  Google Scholar 

  131. Kinsella JP, Neish SR, Shaffer E et al. Low-dose inhalational nitric oxide in persistent pulmonary hypertension of the newborn. Lancet 1992; 340:819–820.

    Article  PubMed  CAS  Google Scholar 

  132. Kinsella JP, Neish SR, Dunbar D et al. Clinical responses to prolonged treatment of persistent pulmonary hypertension of the newborn with low doses of inhaled nitric oxide. J Pediatr 1993; 123:103–108.

    Article  PubMed  CAS  Google Scholar 

  133. Adnot S, Kouyoumdjian C, Defouilloy C et al. Hemodynamic and gas exchange responses to infusion of acetylcholine and inhalation of nitric oxide in patients with chronic obstructive lung disease and pulmonary hypertension. Am Rev Resp Dis 1993; 148:310–316.

    Article  PubMed  CAS  Google Scholar 

  134. Bigatello LM, Hurford WE, Kacmarek RM et al. Prolonged inhalation of low concentrations of nitric oxide in patients with severe adult respiratory distress syndrome. Effects on pulmonary hemodynamics and oxygenation. Anesthesiol 1994; 80:761–770.

    Article  CAS  Google Scholar 

  135. Finer NN, Etches PC, Kamstra B et al. Inhaled nitric oxide in infants referred for extracorporeal membrane oxygenation: dose response. J Pediatr 1994; 124:302–308.

    Article  PubMed  CAS  Google Scholar 

  136. Young JD, Brampton WJ, Knighton JD et al. Inhaled nitric oxide in acute respiratory failure in adults. Br J Anaesth 1994; 73:499–502.

    Article  PubMed  CAS  Google Scholar 

  137. Girard C, Lehot J-J, Pannetier J-C et al. Inhaled nitric oxide after mitral valve replacement in patients with chronic pulmonary artery hypertension. Anesthesiol 1992; 77:880–883.

    Article  CAS  Google Scholar 

  138. Haydar A, Mauriat P, Pouard P et al. Inhaled nitric oxide for post operative pulmonary hypertension in patients with congenital heart defects. Lancet 1992; 340:1545–1545.

    Article  PubMed  CAS  Google Scholar 

  139. Journois D, Pouard P, Mauriat P et al. Inhaled nitric oxide as a therapy for pulmonary hypertension after operations for congenital heart defects. J Thorac Cardiovasc Surg 1994; 107:1129–1135.

    PubMed  CAS  Google Scholar 

  140. Rich GF, Murphy GD, Roos CM et al. Inhaled nitric oxide. Selective pulmonary vasodilation in cardiac surgical patients. Anesthesiol 1993; 78:1028–1035.

    Article  CAS  Google Scholar 

  141. Rich GF, Lowson SM, Johns RA et al. Inhaled nitric oxide selectively decreases pulmonary vascular resistance without impairing oxygenation during one-lung ventilation in patients undergoing cardiac surgery. Anesthesiol 1994; 80:57–62.

    Article  CAS  Google Scholar 

  142. Snow DJ, Gray SJ, Ghosh S et al. Inhaled nitric oxide in patients with normal and increased pulmonary vascular resistance after cardiac surgery. Br J Anaesth 1994; 72:185–189.

    CAS  Google Scholar 

  143. Lévêque C, Hamza J, Berg AE et al. Successful repair of a severe left: congenital diaphragmatic hernia during continuous inhalation of nitric oxide. Anesthesiol 1994; 80:1171–1175.

    Article  Google Scholar 

  144. Roberts JD, Polaner DM, Todres ID et al. Inhaled nitric oxide (NO): a selective pulmonary vasodilator for the treatment of persistent pulmonary hypertension of the newborn. Circulation 1991; 84:A1279-A1279.

    Google Scholar 

  145. Roberts JD, Polaner DM, Lang P et al. Inhaled nitric oxide in persistent pulmonary hypertension of the newborn. Lancet 1992; 340:818–819.

    Article  PubMed  CAS  Google Scholar 

  146. Roberts JD, Lang P, Bigatello LM et al. Inhaled nitric oxide in congenital heart disease. Circulation 1993; 87:447–453.

    PubMed  Google Scholar 

  147. Norman V, Keith CH. Nitrogen oxides in tobacco smoke. Nature 1965; 205:915–916.

    Article  CAS  Google Scholar 

  148. Schilling J, Holzer P, Guggenbach M et al. Reduced endogenous nitric oxide in the exhaled air of smokers and hypertensives. Eur Respir J 1994; 7:467–471.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1997 R.G. Landes Company

About this chapter

Cite this chapter

Ducrocq, C., Guissani, A. (1997). Palliatives to Underproduction of Nitric Oxide as Assayed by EPR Spectroscopy. In: Nitric Oxide Research from Chemistry to Biology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1185-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1185-0_13

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8503-8

  • Online ISBN: 978-1-4613-1185-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics