Skip to main content

Internalization through Receptors for Immunoglobulins

  • Chapter

Abstract

All cells eat part of their environment by internalization. Mammalian cells have developed a number of different modes of internalization, which include pinocytosis (the internalization of liquid medium), endocytosis (receptor mediated internalization of soluble molecules) and phagocytosis (internalization of large particles).1 Although the primary function of internalization is nutrition, differentiated cell types have developed specific adaptations of the endocytic process which serve a variety of biological functions. Striking examples are synaptic vesicles in neuronal cells or transcytotic vesicles in epithelia, which represent specialized endocytic vesicles playing crucial roles in synaptic transmission or transport across epithelial barriers, respectively. Cells of the immune system have also developed specialization of their endocytic pathway corresponding to specialized functions related to internalization (like antigen presentation or cytotoxic defense against viral, bacterial and protozoan pathogens). Importantly, receptors for the Fc region of immunoglobulins (FcRs) are involved in most of internalization-related aspects of immune responses.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gruenberg J, Maxfield FR. Membrane transport in the endocytic pathway. Current Opinion in Biology 1995; 7:552–563.

    Article  CAS  Google Scholar 

  2. Mellman I. Endocytosis, membrane recycling and Fc receptor function. In: Pittman, ed. Memrain Recycling, Ciba Foundation Symposium. London: Evard 1982; 35–38.

    Google Scholar 

  3. Mellman I. Endocytosis and the entry of intracellular parasites. Infectious Agents and Disease 1993; 2:186–192.

    PubMed  CAS  Google Scholar 

  4. Silverstein SC, Greenberg F, Di Viglio F et al. Phagocytosis. In: Paul WE, ed. Fundamental Immunology. New York: Raven Press, 1989; 703.

    Google Scholar 

  5. Mellman I, Plutner H. Internalization and degradation of macrophage Fc receptors bound to polyvalent immune complexes. J Cell Biol 1984; 98:1170–1177.

    Article  PubMed  CAS  Google Scholar 

  6. Mellman I, Plutner H, Ukkonen P. Internalization and rapid recycling of macrophage Fc receptors tagged with monovalent antireceptor antibody: possible role of a prelysosomal compartment. J Cell Biol 1984; 98:1163–1169.

    Article  PubMed  CAS  Google Scholar 

  7. Joiner KA, Fuhrman SA, Miettinen HM et al. Toxoplasma gondii: fusion competence of parasitophorous vacuoles in Fc receptor-transfected fibroblasts. Science 1990; 249:641–646.

    Article  PubMed  CAS  Google Scholar 

  8. Matter K, Mellman I. Mechanisms of cell polarity: sorting and transport in epithelial cells. Current Opin Cell Biol 1994; 6:545–554.

    Article  CAS  Google Scholar 

  9. Mostov K. Protein traffic in polarized epithelial cells: the polymeric immunoglobulin receptor as a model system. J Cell Science 1993; 17:21–26.

    CAS  Google Scholar 

  10. Lewis VA, Koch T, Plutner H et al. A complementary DNA clone for a macrophage-lymphocyte Fc receptor [published erratum appears in Nature 1986 Dec 18–31;324(6098):702]. Nature 1986; 324:372–375.

    Article  PubMed  CAS  Google Scholar 

  11. Ravetch JV, Luster AD, Weinshank R et al. Structural heterogeneity and functional domains of murine immunoglobulin G Fc receptors. Science 1986; 234:718–725.

    Article  PubMed  CAS  Google Scholar 

  12. Ravetch JV, Kinet JP. Fc receptors. Ann Rev Immunol 1991; 9:457–492.

    Article  CAS  Google Scholar 

  13. Reth M. Antigen receptor tail clue. Nature 1989; 338:383.

    Article  PubMed  CAS  Google Scholar 

  14. Bonnerot C, Amigorena S. Murine low-affinity receptors for the Fc portion of IgG. Roles in cell activation and ligand internalization. Receptors Channels 1993; 1:73–79.

    PubMed  CAS  Google Scholar 

  15. Bonnerot C, Daeron M. Biological activities of murine low affinity Fc receptors for IgG. Immunomethods 1994; 41–47.

    Google Scholar 

  16. Ravetch JV. Fc receptors: rubor redux. Cell 1994; 78:553–560.

    Article  PubMed  CAS  Google Scholar 

  17. Amigorena S, Bonnerot C, Drake JR et al. Cytoplasmic domain heterogeneity and functions of IgG Fc receptors in B lymphocytes. Science 1992; 256:1808–1812.

    Article  PubMed  CAS  Google Scholar 

  18. Muta T, Kurosaki T, Misulovin Z et al. A 13-amino-acid motif in the cytoplasmic domain of Fc gamma RIIB modulates B cell receptor signalling [published erratum appears in Nature 1994 May 26;369(6478):340]. Nature 1994; 368:70–73.

    Article  PubMed  CAS  Google Scholar 

  19. Daeron M, Latour S, Malbec O et al. The same tyrosine-based inhibition motif, in the intracytoplasmic domain of Fc gamma RIIB, regulates negatively BCR-, TCR-, and FcR-dependent cell activation. Immunity 1995; 3:635–646.

    Article  PubMed  CAS  Google Scholar 

  20. Miettinen HM, Rose JK, Mellman I. Fc receptor isoforms exhibit distinct abilities for coated pit localization as a result of cytoplasmic domain heterogeneity. Cell 1989; 58:317–327.

    Article  PubMed  CAS  Google Scholar 

  21. Miettinen HM, Matter K, Hunziker W et al. Fc receptor endocytosis is controlled by a cytoplasmic domain determinant that actively prevents coated pit localization. JCB 1992; 116:875–888.

    Article  PubMed  CAS  Google Scholar 

  22. Amigorena S, Salamero J, Davoust J et al. Tyrosine-containing motif that transduces cell activation signals also determines internalization and antigen presentation via type III receptors for IgG. Nature 1992; 358:337–341.

    Article  PubMed  CAS  Google Scholar 

  23. Odin JA, Edberg JC, Painter CJ et al. Regulation of phagocytosis and [Ca2+]i flux by distinct regions of an Fc receptor. Science 1991; 254:1785–1788.

    Article  PubMed  CAS  Google Scholar 

  24. Mao SY, Pfeiffer JR, Oliver JM et al. Effects of subunit mutation on the localization to coated pits and internalization of cross-linked IgE-receptor complexes. J Immunol 1993; 151:2760–2774.

    PubMed  CAS  Google Scholar 

  25. Robinson MS. The role of clathrin, adaptors and dynamin in endocytosis. Curr Opin Cell Biol 1994; 6:538–544.

    Article  PubMed  CAS  Google Scholar 

  26. Robinson MS, Watts C, Zerial M. Membrane dynamics in endocytosis. Cell 1996; 84:13–21.

    Article  PubMed  CAS  Google Scholar 

  27. Trowbridge IS, Collawn J, Hopkins CR. Signal-dependent membrane protein trafficking in the endocytic pathway. Ann Rev Cell Biol 1994; 129–162.

    Google Scholar 

  28. Letourneur F, Klausner RD. A novel di-leucine motif and a tyrosine-based motif independently mediate lysosomal targeting and endocytosis of CD3 chains. Cell 1992; 69:1143–1157.

    Article  PubMed  CAS  Google Scholar 

  29. Daeron M, Malbec O, Latour S et al. Distinct intracytoplasmic sequences are required for endocytosis and phagocytosis via murine Fc gamma RII in mast cells. J Immunol 1993; 5:1393–1401.

    CAS  Google Scholar 

  30. Hunziker W, Fumey C. A di-leucine motif mediates endocytosis and basolateral sorting of macrophage IgG Fc receptors in MDCK cells. JCB 1994; 13:2963–2967.

    CAS  Google Scholar 

  31. Matter K, Yamamoto EM, Mellman I. Structural requirements and sequence motifs for polarized sorting and endocytosis of LDL and Fc receptors in MDCK cells. JCB 1994; 126:991–1004.

    Article  PubMed  CAS  Google Scholar 

  32. Budde P, Bewarder N, Weinrich V et al. Tyrosine-containing sequence motifs of the human immunoglobulin G receptors FcRIIb1 and FcRIIb2 essential for endocytosis and regulation of calcium flux in B cells. Eur J Cell Biol 1994; 269:30636–30644.

    CAS  Google Scholar 

  33. Romeo C, Kolanus W, Amiot M et al. Activation of immune system effector function by T cell or Fc receptor intracellular domains. Cold Spring Harbour Symposia on Quantitatie Biology, 1992; 57:117–125.

    CAS  Google Scholar 

  34. Felder S, Miller K, Moehren G et al. Kinase activity controls the sorting of the epidermal growth factor receptor within the multivesicular body. Cell 1990; 61:623–634.

    Article  PubMed  CAS  Google Scholar 

  35. Cresswell P. Assembly, transport, and function of MHC class II molecules. Ann Rev Immunol 1994; 12:259–293.

    Article  CAS  Google Scholar 

  36. Germain RN, Margulies DH. The biochemistry and cell biology of antigen processing and presentation. Ann Rev Immunol [Review]. 1993; 11:403–450.

    Article  CAS  Google Scholar 

  37. Lanzavecchia A. Receptor-mediated antigen uptake and its effect on antigen presentation to class II-restricted T lymphocytes. Ann Rev Immunol 1990; 8:773–793.

    Article  CAS  Google Scholar 

  38. Lanzavecchia A. Antigen-specific interaction between T and B cells. Nature 1985; 314:537–539.

    Article  PubMed  CAS  Google Scholar 

  39. Manca F, Fenoglio D, Li PG et al. Effect of antigen/antibody ratio on macrophage uptake, processing, and presentation to T cells of antigen complexed with polyclonal antibodies. J Exp Med 1991; 173:37–48.

    Article  PubMed  CAS  Google Scholar 

  40. Esposito-Farese ME, Sautes C, de la Salle H et al. Membrane and soluble Fc gamma RII/III modulate the antigen-presenting capacity of murine dendritic epidermal Langerhans cells for IgG-complexed antigens. J Immunol 1995; 155:1725–1736.

    PubMed  CAS  Google Scholar 

  41. Gosselin EJ, Wardwell K, Gosselin DR et al. Enhanced antigen presentation using human Fc gamma receptor (monocyte/macrophage)-specific immunogens. J Immunol 1992; 149:3477–3481.

    PubMed  CAS  Google Scholar 

  42. Choquet D, Partiseti M, Amigorena S et al. Cross-linking of IgG receptors inhibits membrane immunoglobulin-stimulated calcium influx in B lymphocytes. JCB 1993; 121:355–363.

    Article  PubMed  CAS  Google Scholar 

  43. Griffin Jr FM, Griffin JA, Leider JE et al. Studies on the mechanism of phagocytosis. I. Requirements for circumferential attachment of particle-bound ligands to specific receptors on the macrophage plasma membrane. J Exp Med 1975; 142:1263–1282.

    Article  PubMed  Google Scholar 

  44. Mellman I, Koch T, Healey G et al. Structure and function of Fc receptors on macrophages and lymphocytes. J Cell Science 1988; 9:45–65.

    CAS  Google Scholar 

  45. Indik ZK, Park JG, Hunter S et al. The molecular dissection of Fc gamma receptor mediated phagocytosis. Blood 1995; 86:4389–4399.

    PubMed  CAS  Google Scholar 

  46. Takai T, Li M, Sylvestre D et al. FcR gamma chain deletion results in pleiotrophic effector cell defects. Cell 1994; 76:519–529.

    Article  PubMed  CAS  Google Scholar 

  47. Axline SG, Reaven EP. Inhibition of phagocytosis and plasma membrane mobility of the cultivated macrophage by cytochalasin B. Role of subplasmalemmal microfilaments. J Exp Med 1974; 62:647–659.

    CAS  Google Scholar 

  48. Greenberg S, Burridge K, Silverstein SC. Colocalization of F-actin and talin during Fc receptor-mediated phagocytosis in mouse macrophages. J Exp Med 1990; 172:1853–1856.

    Article  PubMed  CAS  Google Scholar 

  49. Greenberg S, el Khoury J, di Virgilio F et al. Ca2+-independent F-actin assembly and disassembly during Fc receptor-mediated phagocytosis in mouse macrophages. J Cell Biol 1991; 113:757–767.

    Article  PubMed  CAS  Google Scholar 

  50. Greenberg S, Chang P, Silverstein SC. Tyrosine phosphorylation of the gamma subunit of Fc gamma receptors, p72syk, and paxillin during Fc receptor-mediated phagocytosis in macrophages. J Exp Med 1994; 269:3897–3902.

    CAS  Google Scholar 

  51. Daeron M, Malbec O, Bonnerot C et al. Tyrosine-containing activation motif-dependent phagocytosis in mast cells. J Immunol 1994; 152:783–792.

    PubMed  CAS  Google Scholar 

  52. Davis W, Harrison PT, Hutchinson MJ et al. Two distinct regions of FC gamma RI initiate separate signalling pathways involved in endocytosis and phagocytosis. EMBO J 1995; 14:432–441.

    PubMed  Google Scholar 

  53. Indik ZK, Park JG, Pan XQ et al. Induction of phagocytosis by a protein tyrosine kinase. Blood 1995; 85:1175–1180.

    PubMed  CAS  Google Scholar 

  54. Indik ZK, Pan XQ, Huang MM et al. Insertion of cytoplasmic tyrosine sequences into the nonphagocytic receptor Fc gamma RIIB establishes phagocytic function. Blood 1994; 83:2072–2080.

    PubMed  CAS  Google Scholar 

  55. Park JG, Schreiber AD. Determinants of the phagocytic signal mediated by the type IIIA Fc gamma receptor, Fc gamma RIIIA: sequence requirements and interaction with protein-tyrosine kinases. PNAS 1995; 92:7381–7385.

    Article  PubMed  CAS  Google Scholar 

  56. Greenberg S, Chang P, Wang DC et al. Clustered syk tyrosine kinase domains trigger phagocytosis. PNAS 1996; 93:1103–1107.

    Article  PubMed  CAS  Google Scholar 

  57. Aroeti B, Casanova J, Okamoto C et al. Polymeric immunoglobulin receptor. Int Res Cytology 1992; 137B:157–168.

    CAS  Google Scholar 

  58. Stuart SG, Simister NE, Clarkson SB et al. Human IgG Fc receptor (hFcRII; CD32) exists as multiple isoforms in macrophages, lymphocytes and IgG-transporting placental epithelium. EMBO J 1989; 8:3657–3666.

    PubMed  CAS  Google Scholar 

  59. Casanova JE, Apodaca G, Mostov KE. An autonomous signal for basolateral sorting in the cytoplasmic domain of the polymeric immunoglobulin receptor. Cell 1991; 66:65–75.

    Article  PubMed  CAS  Google Scholar 

  60. Okamoto CT, Shia SP, Bird C et al. The cytoplasmic domain of the polymeric immunoglobulin receptor contains two internalization signals that are distinct from its basolateral sorting signal. JCB 1992; 267:9925–9932.

    CAS  Google Scholar 

  61. Casanova JE, Breitfeld PP, Ross SA et al. Phosphorylation of the polymeric immunoglobulin receptor required for its efficient transcytosis. Science 1990; 248:742–745.

    Article  PubMed  CAS  Google Scholar 

  62. Hirt RP, Hughes GJ, Frutiger S et al. Transcytosis of the polymeric Ig receptor requires phosphorylation of serine 664 in the absence but not the presence of dimeric IgA. Cell 1993; 74:245–255.

    Article  PubMed  CAS  Google Scholar 

  63. Hunziker W, Mellman I. Expression of macrophage-lymphocyte Fc receptors in Madin-Darby canine kidney cells: polarity and transcytosis differ for isoforms with or without coated pit localization domains. JCB 1989; 3291–3302.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1997 R.G. Landes Company

About this chapter

Cite this chapter

Amigorena, S. (1997). Internalization through Receptors for Immunoglobulins. In: Cell-Mediated Effects of Immunoglobulins. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1181-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1181-2_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8501-4

  • Online ISBN: 978-1-4613-1181-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics