Advertisement

Antibody Production

  • S. S. Deshpande

Abstract

The production and large scale availability of antibody of desired affinity and specificity and/or cross-reactivity are fundamental to the process of developing sensitive, precise, and specific immunoassay products for use in the diagnostics industry. Although the primary objectives of this phase of immunoassay product development appear to be quite simple, i.e., to elicit an immune response, and to select and purify antibodies that have the necessary specificity and sensitivity required for the end-use application, a bewildering variety of approaches and choices may complicate the process of antibody production. Irrespective of the strategy chosen, the process needs to yield an antibody having all the desired properties. Although there are no definitive guidelines or procedures that guarantee an ideal product to meet all requirements, certain principles nevertheless must be followed to produce an effective and workable antibody. Factors that primarily govern the production of a desirable antibody are described in this chapter.

Keywords

Antibody Production Carrier Protein Keyhole Limpet Hemocyanin Booster Injection Test Bleed 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allen, L. 1967. Lymphatics and lymphoid tissues. Ann. Rev. Physiol. 29:197–224.CrossRefGoogle Scholar
  2. Bienenstock, J., and Befus, A. D. 1980. Mucosal immunity. Immunology 41:249–270.PubMedGoogle Scholar
  3. Blizzard, C. D., and Garramone, S. 1995. Antibody purification by selective precipitation with polymers. Amer. Biotech. Lab. 13(3):71–72.Google Scholar
  4. Briles, D. E., and Davie, J. M. 1980. Clonal nature of the immune response. II. The effect of immunization on clonal commitment. J. Exp. Med. 152:151–160.PubMedCrossRefGoogle Scholar
  5. Brown, G., and Ling, N. R. 1988. Murine monoclonal antibodies. In Antibodies. Vol. I. A Practical Approach, ed., D. Catty, pp. 81–104, IRL Press, Oxford.Google Scholar
  6. Burrin, J., and Newman, D. J. 1991. Production and assessment of antibodies. In Principles and Practice of Immunoassay, eds. C. P. Price and D. J. Newman, pp. 19–52, Stockton Press, New York.Google Scholar
  7. Catty, D. 1988. Antibodies. Vol. I. A Practical Approach. IRL Press, Oxford.Google Scholar
  8. Catty, D., and Raykundalia, C. 1988. Production and quality control of polyclonal antibodies. In Antibodies. Vol. I. A Practical Approach, ed., D. Catty, pp. 19–80, IRL Press, Oxford.Google Scholar
  9. Chard, T. 1978. An Introduction to Radioimmunoassay and Related Techniques. North-Holland, Amsterdam.Google Scholar
  10. Clausen, J. 1988. Immunochemical Techniques for the Identification and Estimation of Macromolecules. Elsevier, Amsterdam.Google Scholar
  11. Cook, C. E.; Twine, M. E.; Myers, M.; Amerson, E.; Kepler, J. A.; and Taylor, G. F. 1976. Theophylline radioimmunoassay. Synthesis of antigen and characterization of antiserum. Res. Commun. Chem. Pathol. Pharmacol. 13:497–504.PubMedGoogle Scholar
  12. Eisen, H. N., and Siskind, G. W. 1964. Variations in affinities of antibodies during the immune response. Biochemistry 3:996–1008.PubMedCrossRefGoogle Scholar
  13. Emit ® Theophylline Assay. 1978. Package insert, Syva Co., Palo Alto, CA.Google Scholar
  14. Erlanger, B. F. 1980. The preparation of antigenic hapten-carrier conjugates. A survey. Methods Enzymol. 70:85–104.PubMedCrossRefGoogle Scholar
  15. FDA. 1987. Points to Consider in the Manufacture and Testing of Monoclonal Antibody Products for Human Use. Office of Biologics Research and Review, Center for Drugs and Biologies, Food and Drug Administration, Bethesda, MD.Google Scholar
  16. Findlay, J. W. A.; Butz, R. F.; and Welch, R. M. 1976. A codeine radioimmunoassay exhibiting insignificant cross-reactivity with morphine. Life Sci. 19:389–393.PubMedCrossRefGoogle Scholar
  17. Findlay, J. W. A.; Butz, R. F.; and Welch, R. M. 1977. Specific radioimmunoassays for codeine and morphine. Metabolism of codeine to morphine in the rat. Res. Commun. Chem. Pathol. Pharmacol. 17:595–603.PubMedGoogle Scholar
  18. Gagnon, P.; Cartier, P. G.; Maikner, J. J.; Eksteen, R.; and Kraus, M. 1993. A systematic approach to the purification of monoclonal antibodies. LCGC 11(l):26–34.Google Scholar
  19. Galfre, G., and Milstein, C. 1981. Preparation of monoclonal antibodies. Strategies and procedures. Methods Enzymol. 73:3–46.PubMedCrossRefGoogle Scholar
  20. Goding, J. W. 1986. Monoclonal Antibodies. Principles and Practice. Academic Press, London.Google Scholar
  21. Gordon, J. 1988. Human monoclonal antibodies. In Antibodies. Vol. I. A Practical Approach, ed. D. Catty, pp. 105–112, IRL Press, Oxford.Google Scholar
  22. Grandics, P. 1994a. Monoclonal antibody purification guide. Part 1. Amer. Biotech. Lab. 12(6):58,60,62.Google Scholar
  23. Grandics, P. 1994a. Monoclonal antibody purification guide. Part 1. Amer. Biotech. Lab. 12(6):60,Google Scholar
  24. Grandics, P. 1994a. Monoclonal antibody purification guide. Part 1. Amer. Biotech. Lab. 12(6):62.Google Scholar
  25. Grandics, P. 1994b. Monoclonal antibody purification guide. Part 2. Amer. Biotech. Lab. 12(7):12–14.Google Scholar
  26. Grandics, P. 1994c. Monoclonal antibody purification guide. Part 3. Amer. Biotech. Lab. 12(8):16,Google Scholar
  27. Grandics, P. 1994c. Monoclonal antibody purification guide. Part 3. Amer. Biotech. Lab. 12(8):8.Google Scholar
  28. Gregory, R. L.; Michalek, S. M.; Richardson, G.; Harmon, C. C; Hilton, T.; and Mcghee, J. R. 1986. Characterization of immune response to oral administration of Streptococcus sobrinus ribosomal preparations in liposomes. Infect. Immunol. 54:780–786.Google Scholar
  29. Gross, S. J.; Grant, J. D.; Wong, S. R.; Schuster, R.; Lomax, P.; and Campbell, D. H. 1974. Critical antigenic determinants for production of antibody to distinguish morphine from heroin, codeine and dextromethorphan. Immunochemistry 11:453–456.PubMedCrossRefGoogle Scholar
  30. Gushaw, J. B.; Hu, M. W.; Singh, P.; Miller, J. G.; and Schneider, R. S. 1977. Homogeneous enzyme immunoassay for theophylline in serum. Clin. Chem. 23:1144 (Abstr.).Google Scholar
  31. Harlow, E., and Lane, D. 1988. Antibodies. A Laboratory Manual. Cold Spring Harbor Laboratory Press, New York.Google Scholar
  32. Herbert, W. J., and Fristensen, F. 1986. Laboratory animal techniques for immunology. In Handbook of Experimental Immunology, eds. D.M. Weir, L.A. Herzenberg, C. Black-well, and L.A. Herzenberg, pp. 133.1–133.36, Blackwell Scientific, Oxford.Google Scholar
  33. Jaklitsch, A. 1985. Separation-free enzyme immunoassay for haptens. In Enzyme-Mediated Immunoassay, eds. T. T. Ngo and H. M. Lenhoff, pp. 33–56, Plenum Press, New York.Google Scholar
  34. Klinman, N. R. 1972. Mechanism of antigenic stimulation of primary and secondary clonal precursor cells. J. Exp. Med. 136:241–260.PubMedCrossRefGoogle Scholar
  35. Kohler, G., and Milstein, C. 1975. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature (London) 256:495–497.CrossRefGoogle Scholar
  36. Kohler, G., and Milstein, C. 1976. Derivation of specific antibody-producing tissue culture and tumor lines by cell fusion. Eur J. Immunol. 6:511–519.PubMedCrossRefGoogle Scholar
  37. Landsteiner, K. 1945. The Specificity of Serological Reactions. Harvard University Press, Boston, MA.Google Scholar
  38. Laterre, E. C, and Heremans, J. F. 1963. A note on proteins aparently specific for cerebrospinal fluid (CSF). Clin. Chim. Acta 8:220–226.CrossRefGoogle Scholar
  39. Morris, B. A. 1985. Principles of immunoassay. In Immunoassays in Food Analysis, eds. B. A. Morris and M. N. Clifford, pp. 21–52, Elsevier Applied Science Publishers, London.Google Scholar
  40. Morris, B. A.; Robinson, J. D.; Piall, E.; Aherne, G. W.; and Marks, V. 1974. Development of a radioimmunoassay for morphine having minimal cross-reactivity with codeine. J. Endocrinol. 64:6P–7P.Google Scholar
  41. Nakamura, R. M. 1983. Monoclonal antibodies. Methods and applications. Clin. Physiol. Biochem. 1:160–172.PubMedGoogle Scholar
  42. Nakamura, R. M. 1992. General principles of immunoassays. In Immunochemical Assays and Biosensor Technology for the 1990s, eds. R. M. Nakamura, Y. Kasahara, and G. A. Rechnitz, pp. 3–22, Am. Soc. Microbiol., Washington, D.C.Google Scholar
  43. Neese, A. L., and Soyka, L. F. 1977. Development of a radioimmunoassay for theophylline. Application to studies in premature infants. Clin. Pharmacol. Ther. 21:633–641.PubMedGoogle Scholar
  44. Paraf, A., and Peltre, G. 1991. Immunoassays in Food and Agriculture. Kluwer Academic Publishers, Dordrecht, The Netherlands.CrossRefGoogle Scholar
  45. Pierce Chemical Co. 1994. Life Science and Analytical Research Products Catalog and Handbook. Rockford, IL.Google Scholar
  46. Poole, T. B. 1987. The UFAW Handbook on the Care and Management of Laboratory Animals. 6th ed., Longman, London.Google Scholar
  47. Roitt, I. M., Brostoff, J.; and Male, D. 1989. Immunology. Gower Medical Publishing, London.Google Scholar
  48. Rubenstein, K. E.; Schneider, R. S.; and Ullman, E. F. 1972. “Homogeneous” enzyme immunoassay. A new immunochemical technique. Biochem. Biophys. Res. Commun. 47:846–851.PubMedCrossRefGoogle Scholar
  49. Schmidt, C. 1989. The purification of large amounts of monoclonal antibodies. J. Biotech. 11:235–252.CrossRefGoogle Scholar
  50. Schneider, R. S.; Lindquist, P.; Wong, E. T.; Rubenstein, K. E.; and Ullman, E. F. 1973. Homogeneous enzyme immunoassay for opiates in urine. Clin. Chem. 19:821–825.PubMedGoogle Scholar
  51. Sela, M. 1973–1982. The Antigens. Vols. 1–6, Academic Press, New York.Google Scholar
  52. Siddle, K. 1985. Properties and applications of monoclonal antibodies. In Alternative Immunoassays, ed. W. P. Collins, pp. 13–33, John Wiley, New York.Google Scholar
  53. Spector, S., and Parker, C. W. 1970. Morphine radioimmunoassay. Science 168: 1347–1348.PubMedCrossRefGoogle Scholar
  54. Spector, S.; Berkowitz, B.; Flynn, E. J.; and Peskar, B. 1973. Antibodies to morphine, barbiturates and serotonin. Pharmacol. Rev. 25:281–291.PubMedGoogle Scholar
  55. Spier, R., and Griffiths, B. 1985. Adjuvants in Animal Cell Biotechnology. Vols. 1 and 2, Academic Press, New York.Google Scholar
  56. Steward, M. W. 1984. Antibodies. Their Structure and Function. Chapman & Hall, New York.Google Scholar
  57. Tijssen, P. 1985. Practice and Theory of Enzyme Immunoassays. Elsevier, Amsterdam.Google Scholar
  58. Van Weeman, B. K., and Schuurs, A. H. W. M. 1971. Immunoassay using haptenenzyme conjugates. FEBS Lett. 15:232–236.CrossRefGoogle Scholar
  59. Van Weeman, B. K. and Schuurs, A. H. W. M. 1975. The influence of heterologous combinations of antiserum and enzyme-labeled estrogen on the characteristics of estrogen enzyme immunoassays. Immunochemistry 12:667–670.PubMedCrossRefGoogle Scholar
  60. Warr, G. W. 1982. Preparation of antigens and principles of immunization. In Antibody as a Tool, eds. J. J. Marchalonis and G. W. Warr, pp. 21–58, John Wiley, New York.Google Scholar
  61. Williams, C. A., and Chase, M. A. 1967. Methods in Immunology and Immunochemistry, vols. I and II, Academic Press, New York.Google Scholar
  62. Zola, H. 1987. Monoclonal Antibodies. A Manual of Techniques. CRC Press, Boca Raton, FL.Google Scholar

Copyright information

© Chapman & Hall 1996

Authors and Affiliations

  • S. S. Deshpande
    • 1
  1. 1.Idetek, Inc.USA

Personalised recommendations