Stimulation of Plant Cell Division and Organogenesis by Short-Term, High-Voltage Electrical Pulses

  • M. R. Davey
  • N. W. Blackhall
  • K. C. Lowe
  • J. B. Power


High-voltage, short-duration electrical pulses stimulate DNA synthesis in isolated higher plant protoplasts. They also promote the growth of protoplast-derived cells, and shoot regeneration from protoplast-derived tissues. Such effects of electrostimulation persist over many cell generations. This enhancement of growth and organogenesis has application in the multiplication of elite individuals and in maximizing the recovery of genetically engineered plants following somatic hybridization and transformation. Detailed knowledge of the precise mechanisms of action of electrical pulses on the stimulation of growth and morphogenesis in plant cells are still lacking. The possible synergistic effects of electrical and chemical parameters require further investigation.


Shoot Regeneration Somatic Hybrid Electrical Pulse Plant Protoplast Protoplast Viability 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anthony, P., Davey, M. R., Power, J. B., and Lowe, K. C. (1994b). Image analysis assessments of perfluorocarbon- and surfactant-enhanced protoplast division. Plant Cell, Tiss. Org. Cult. 38: 39–43.CrossRefGoogle Scholar
  2. Anthony, P., Davey, M. R., Power, J. B., Washington, C, and Lowe, K. C. (1994a). Synergistic enhancement of protoplast growth by oxygenated perfluorocarbon and Pluronic F-68. Plant Cell Rep. 13: 251–255.CrossRefGoogle Scholar
  3. Barth, S., Voeste, D., Wingender, R., and Schnabl, H. (1993). Plantlet regeneration from electrostimulated protoplasts of sunflower (Helianthus annuus L.). Botanica Acta 106: 220–222.Google Scholar
  4. Chand, P. K., Ochatt, S. J., Rech, E. L., Power, J. B., and Davey, M. R. (1988). Electroporation stimulates plant regeneration from protoplasts of the woody medicinal species Solarium dulcamara L. J. Exp. Bot. 206: 1267–1274.CrossRefGoogle Scholar
  5. Chand, P. K., Rech, E. L, Golds, T. J, Power, J. B., and Davey, M. R. (1989). Electroporation stimulates transformation of freshly isolated cell suspension protoplasts of Solarium dulcamara by Agrobacterium. Plant Cell Rep. 8: 86–89.CrossRefGoogle Scholar
  6. Davey, M. R., and Kumar, A. (1983). Higher plant protoplasts—retrospect and prospect. Pages 219–299. In Plant Protoplasts. Internalt. Rev. Cytol. Suppl. 16. Giles, K. L., ed. Academic Press, New York, London.Google Scholar
  7. d’Utra Vaz, F. B., Slamet, I. H., Khatun, A., Cocking, E. C, and Power, J. B. (1992). Protoplast culture in high molecular oxygen atmospheres. Plant Cell Rep. 11: 416–418.Google Scholar
  8. Fromm, M. E., Taylor, L. P., and Walbot, V. (1986). Stable transformation of maize after gene transfer by electroporation. Nature 319: 791–793.PubMedCrossRefGoogle Scholar
  9. Gupta, H. S., Rech, E. L., Cocking, E. C, and Davey, M. R. (1988). Electroporation and heat shock stimulate division of protoplasts of Pennisetum squamulatum. J. Plant Physiol. 133: 457–459.Google Scholar
  10. Hashimoto, H., Morikawa, H., Yamada, Y., and Kimura, A. (1985). A novel method for transformation of intact yeast cells by electroinjection of plasmid DNA. Appl. Microbiol. Biotechnol. 21: 336–339.Google Scholar
  11. Joersbo, M., and Brunstedt, J. (1990). Direct gene transfer to plant protoplasts by electroporation by alternating, rectangular and exponentially decaying pulses. Plant Cell Rep. 8: 701–705.CrossRefGoogle Scholar
  12. Jones, B., Antonova-Kosturkova, G., Vieira, M. L. C, Rech, E. L., Power, J. B., and Davey, M. R. (1993). High transient gene expression, with conserved viability, in electroporated protoplasts of Glycine, Medicago and Stylosan-thes species. Plant Tissue Cult. 3: 59–65.Google Scholar
  13. Jones, B. J., Lynch, P. T., Handley, G. J., Malaure, R. S., Blackhall, N. W., Hammatt, N., Power, J. B., Cocking, E. C, and Davey, M. R. (1994). Equipment for the large-scale electromanipulation of plant protoplasts. BioTechniques 16: 312–321.PubMedGoogle Scholar
  14. Khatun, A, Davey, M. R., Power, J. B., and Lowe, K. C. (1993). Stimulation of shoot regeneration from jute cotyledons cultured with non-ionic surfactants and relationship to physico-chemical properties. Plant Cell Rep. 13: 49–53.CrossRefGoogle Scholar
  15. Libbof, A. R., Williams, T., Strong, D. M., and Wistar, R. (1984). Time-varying magnetic fields: Effect on DNA synthesis. Science 223: 818–819.CrossRefGoogle Scholar
  16. Lowe, K. C, Davey, M. R., Laouar, L., Khatun, A, Ribeiro, R. C. S., Power, J. B., and Mulligan B. J. (1994). Surfactant stimulation of growth in cultured plant cells, tissues and organs. Pages 234–244. In Physiology, Growth and Development of Plants in Culture. Lumsden, P. J., Nicholas, J. R., and Davies, W. J., eds. Kluwer Academic Publishers, Dordrecht, The Netherlands.Google Scholar
  17. Lowe, K. C, Davey, M. R., Power, J. B., and Mulligan, B. J. (1993). Surfactant supplements in plant culture systems. Agro-Food Indust. Hi-Tech. Jan /Feb. 1993: 9–13.Google Scholar
  18. Montane, M. H., and Teissie, J. (1992). Electrostimulation of plant protoplast division. Part 1. Experimental results. Bioelectrochem. and Bioenerget. 29: 59–70.CrossRefGoogle Scholar
  19. Mordhorst, A. P., and Lőrz, H. (1992). Electrostimulated regeneration of plantlets from protoplasts derived from cell suspensions of barley (Hordeum vulgare). Physiol. Plant. 85: 289–294.CrossRefGoogle Scholar
  20. Neumann, E., Schaefer-Rider, M., Wang, Y., and Hofschneider, P. H. (1982). Gene transfer into mouse lyoma cells by electroporation in high electric fields. EMBO J. 1: 841–845.PubMedGoogle Scholar
  21. Ochatt, S. J., Chand, P. K., Rech, E. L., Davey, M. R., and Power, J. B. (1988a). Electroporation-mediated improvement of plant regeneration from Colt cherry (Prunus avium x pseudocerasus) protoplasts. Plant Sci. 54: 165–169.CrossRefGoogle Scholar
  22. Ochatt, S. J., Patat-Ochatt, E. M., Rech, E. L., Davey, M. R., and Power, J. B. (1988b). Somatic hybridization of sexually incompatible top-fruit tree root-stocks, wild pear (Pyrus communis var. pyraster L.) and Colt cherry (Prunus avium x pseudocerasus). Theor. Appl. Genet. 78: 35–41.CrossRefGoogle Scholar
  23. Ochatt, S. J., Rech, E. L., Davey, M. R., and Power, J. B. (1988c). Long-term effect of electroporation on enhancement of growth and plant regeneration of Colt cherry (Prunus avium x pseudocerasus) protoplasts. Plant Cell Rep. 7: 393–395.CrossRefGoogle Scholar
  24. Rathore, K. S., and Goldsworthy, A. (1985a). Electrical control of growth in plant tissue cultures. Bio/Technol. 3: 253–254.CrossRefGoogle Scholar
  25. Rathore, K. S., and Goldsworthy, A. (1985b). Electrical control of shoot regeneration in plant tissue cultures. Bio/Technol. 3: 1107–1109.CrossRefGoogle Scholar
  26. Rech, E. L., Ochatt, S. J., Chand, P. K., Davey, M. R., Mulligan, B. J., and Power, J. B. (1988). Electroporation increases DNA synthesis in cultured plant protoplasts. Bio/Technol. 6: 1091–1093.CrossRefGoogle Scholar
  27. Rech, E. L., Ochatt, S. J., Chand, P. K., Power, J. B., and Davey, M. R. (1987). Electro-enhancement of division of plant protoplast-derived cells. Proto-plasma 141: 169–176.Google Scholar
  28. Reiss, M., Jastreboff, M. M., Bertino, J. R., and Narayanan, R. (1986). DNA-medi-ated gene transfer into epidermal cells using electroporation. Biochem. Biophys. Res. Commun. 137: 244–249.Google Scholar
  29. Rodan, G. A., Bourret, L. A., and Norton, L. A. (1978). DNA synthesis in cartilage cells is stimulated by oscillating electric fields. Science 199: 690–692.PubMedCrossRefGoogle Scholar
  30. Saunders, J., Mathews, B. F., and Miller, P. D. (1989). Plant gene transfer using electrofusion and electroporation. Pages 343–354. In Electroporation and electrofusion in cell biology. Neumann, E., Sowers, H. E., and Jordan, C. A., eds. Plenum Press, New York.Google Scholar
  31. Shillito, R. D., Saul, M. W., Paszkowski, J., Műller, M., and Potrykus, I. (1985). High efficiency direct gene transfer to plants. Bio/Technol. 3: 1099–1103.CrossRefGoogle Scholar
  32. Takahashi, K., Kaneko, I., Date, M., and Fukuda, E. (1986). Effect of pulsing electromagnetic fields on DNA synthesis in mammalian cells in culture. Experientia 42: 185–186.PubMedCrossRefGoogle Scholar
  33. Toneguzzo, F., and Keating, A. (1986). Stable expression of selectable genes introduced into human hematopoietic stem cells by electric-field mediated DNA transfer. Proc. Natl. Acad. Sci. USA 83: 3496–3499.PubMedCrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1996

Authors and Affiliations

  • M. R. Davey
  • N. W. Blackhall
  • K. C. Lowe
  • J. B. Power

There are no affiliations available

Personalised recommendations