Skip to main content

Electromagnetic Cell Stimulation

  • Chapter
Electrical Manipulation of Cells

Abstract

Electromagnetic field (ELF) stimulation of biological tissues has been, and remains, a contentious issue in the scientific world. Many of the experiments have not been reproducible in other laboratories, and many appear not to have been thoroughly conducted. Several experiments, however, do appear to meet these criteria, and the data from these experiments should be taken seriously. The physical laws behind these ELF effects are unclear. Until a theoretical physical framework is constructed, the use of electromagnetic fields experimentally will be fraught with methodological dangers. It seems that new ideas in physics and new approaches in biology are needed to account for most of the biological effects reported. Thus, the construction of artifact-free experimental systems will be difficult. A critical review of the current theories of action is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adey, W. R. (1981). Ionic non-equilibrium phenomena in tissue interactions with nonionizing electromagnetic fields. Page 271. In Biological Effects of Nonionizing Radiation. Illinger, K. H., ed. Washington, American Chemical Society, Symposium Ser. No. 157.

    Chapter  Google Scholar 

  • Adey, W. R. (1988). Physiological signalling access cell membranes and cooperative influences of extremely low-frequency electromagnetic fields. Pages 148–170. In Biological Coherence and Response to External Stimuli. Fröhlich, H., ed. Springer-Verlag, Berlin.

    Google Scholar 

  • Adey, W. R. (1990a). Nonlinear electrodynamics in cell membrane transductive coupling. Pages 1–27. In Membrane Transport and Information Storage, Alan R. Liss, New York.

    Google Scholar 

  • Adey, W. R. (1990b). Electromagnetic fields and the essence of living systems. Pages 1–36. In Modern Radio Science. Andersen, J. B., ed. Oxford University Press, Oxford.

    Google Scholar 

  • Arendse, M. C. (1978). Magnetic field detection is distinct from light detection in the invertebrates Tenebrio and Talitrus. Nature 24: 358–362.

    Article  Google Scholar 

  • Barker, A. T., Dixon, R. A, Sharrard, W. J. W, and Sutcliffe, M. L. (1984). Pulsed magneticfield therapy for tibial non-union. The Lancet May 5, 994–996.

    Article  Google Scholar 

  • Baker, R. R., Mather, J. G., and Kennaugh, J. H. (1983). Magnetic bones in human sinuses. Nature 301: 78–90.

    Article  CAS  Google Scholar 

  • Bassett, C. A. L., and Becker, R. O. (1962). Generation of electric potentials by bone in response to mechanical stress. Science 137: 1063–1064.

    Article  PubMed  CAS  Google Scholar 

  • Bassett, C. A. L., Choksi, H. R., Hernandez, E., Pawluk, R. J., and Strop, M. (1979a). The effect of pulsing electromagnetic fields on cellular calcium and calcification of non-unions. In Electrical Properties of Bone and Cartilage. Brighton, C. T., Black, J., and Pollack, S. R., eds. Grune & Stratton, New York.

    Google Scholar 

  • Bassett, C. A. L., and Hess, K. (1984) Synergistic effects of PEMF and fresh canine cancellons bone grafts. Trans. O.R.S. 30: 49.

    Google Scholar 

  • Bassett, C. A. L., Mitchell, J. N., and Gaston, S. R. (1981). Treatment of ununited tibial diaphyseal fractures with pulsing electromagnetic fields. J. Bone and Joint Surgery 36-A: 511–523.

    Google Scholar 

  • Bassett, C, Mitchell, S., and Gaston, S. (1982). Pulsing electromagnetic treatment in ununited fractures and failed arthrodeses, J. Am. Med. Assoc. 247: 623.

    Article  CAS  Google Scholar 

  • Bassett, C. A. L., Pawluk, R. J., and Pilla, A. A. (1974). Argumentation of bone repair by inductively coupled electromagnetic fields. Science 184: 575–577.

    Article  PubMed  CAS  Google Scholar 

  • Bassett, L. S., Tzitzikalakis, R. S., Pawluk, R. J., Bassett, C. A. L. (1979b). Presentation of disuse osteoporosis in the rut by means pulsing magnetic fields. Pages 311–331. In Electrical Properties of Bone Cartilage: Experimental Effects and Clinical Applications. Brighton, C. T., Block, J., and Pollack, J. R., eds. Grune & Stratton, New York.

    Google Scholar 

  • Bawin, S. M., and Adey, W. R. (1976). Sensitivity of calcium binding in cerebral tissue to weak electric fields oscillating at low frequency. Proc. Natl. Acad. Sci. USA 73: 1999.

    Google Scholar 

  • Bawin, S. M., Adey, W. R., and Sabbot, I. M. (1978b). Ionic Factors in release of 45 Ca2+ from chick cerebral tissue by electromagnetic fields. Proc. Natl. Acad. Sci. USA 75: 6314.

    Article  PubMed  CAS  Google Scholar 

  • Bawin, S. M., Kaczmarek, L. K., and Adey, W. R. (1975). Effects of modulated VHF fields on the central nervous system. Ann. N.Y. Acad. Sci. 247: 74.

    Article  PubMed  CAS  Google Scholar 

  • Bawin, S. M., Sheppard, A. R., and Adey, W. R. (1978a). Possible mechanisms of weak electromagnetic field coupling in brain tissue. Bioelectrochem. Bioenerg. 45: 67.

    Article  Google Scholar 

  • Beischer, D. E. (1968). Biomagnetics. Ann. N.Y. Acad. Sci. 134: 454–468.

    Google Scholar 

  • Binder, A., Paw, G., Hazleman, B., and Fitton-Jackson, S. (1984). Pulsed electromagneticfield therapy of persistent rotator cuff tendonitis a double blind controlled Assessment. The Lancet, March 31.

    Google Scholar 

  • Bioelectromagnetics Society Newsletter (1990). September/October, 96: 8–9.

    Google Scholar 

  • Blackman, C. F., Benane, S. G., House, D. E., and Joines, W. T. (1985a). Effects of ELF (1–120HZ) and modulated (50 Hz) RF fields on the efflux of calcium ions from brain tissue, in vitro. Bioelectromagnetics 6: 1.

    Article  PubMed  CAS  Google Scholar 

  • Blackman, C. F., Benane, S. G., Kinney, L. S., Joines, W. T., and House, D. E. (1982). Effects of ELF fields on calcium ion efflux from brain tissue, in vitro. Radiat. Res. 92: 510.

    Article  PubMed  CAS  Google Scholar 

  • Blackman, C. F., Benane, S. G., Rabinowitz, J. R., House, D. E., and Joines, W. T. (1985b). A role for the magnetic field in the radiation-induced efflux of calcium ions from brain tissue in vitro. Bioelectromagnetics. 6: 327.

    Article  PubMed  CAS  Google Scholar 

  • Blackman, C. F., Elder, J. A., Weil, C. M., Benane, S. G., Eichinger, D. C, and House, D. E. (1979). Induction of calcium ion efflux from brain tissue by radio frequency radiation. Radio Sci. 14: 93.

    Article  CAS  Google Scholar 

  • Blakemore, R. P. (1975). Magnetotactic bacteria. Science 190: 377–379.

    Article  PubMed  CAS  Google Scholar 

  • Blank, M. (1982). The surface compartment model (SCM): Role of surface charge in membrane permeability changes. Bioelectrochem. Bioenerg. 9: 615–624.

    Article  Google Scholar 

  • Blank, M. (1983). The surface compartment model (SCM) with a voltage sensitive channel. Bioelectrochem. Bioenerg. 10: 451–465.

    Article  Google Scholar 

  • Blank, M. (1984). Properties of ion channels inferred from the surface compartment model (SCM). Bioelectrochem. Bioenerg. 13: 93–101.

    Article  CAS  Google Scholar 

  • Blank, M. (1987). Ionic processes at membrane surfaces: The role of electrical double layers in electrically stimulated ion transport. Pages 1–13. In Mechanistic Approaches to Interactions of Electric and Electromagnetic Fields with Living Systems. Blank, M., and Findl, E., eds. Plenum Press, New York.

    Google Scholar 

  • Blank, M., and Kavanaugh, W. P. (1982). The surface compartment model (SCM) during transients. Bioelectrochem. Bioenerg. 9: 427–438.

    Article  Google Scholar 

  • Blank, M., Kavanaugh, W. P., and Cerf, G. (1982). The surface compartment model: Voltage clamp. Bioelectrochem. Bioenerg. 9: 439–458.

    Article  Google Scholar 

  • British Medical Journal Secretariat (1980). Editorial: Electricity in Bones. Brit. Med. J. 16th August, 1980.

    Google Scholar 

  • Bruce, G. K., Howlett, C. R., and Huckstep, R. L. (1987). Effect of a static magnetic field on fracture healing in a rabbit radius. Clin. Orthop. Rel. Res. 222: 300–306.

    Google Scholar 

  • Byus, C. V., Lundak, R. L., Fletcher, R. M., and Adey, W. R. (1984). Alterations in protein kinase activity following exposure of cultured human lymphocytes to modulated microwave fields. Bioelectromagnetics 5: 341–351.

    Article  PubMed  CAS  Google Scholar 

  • Carson, J. J. L., Prato, F. S, Drost, D. J., Diesborg, L. D., and Dixon, S. J. (1990). Time-varying magnetic fields increase cytosolic free Ca2+ in HL60 cells. Paper E-2–4, Page 48. Abstracts Twelfth Annual Meeting, Bioelectromagnetics Society, San Antonio, TX.

    Google Scholar 

  • Chiabrera, A., and Bianco, B. (1987). The role of the magnetic field in the EM interaction with the ligand binding. Pages 79–95. In Mechanistic Approaches to Interactions of Electric and Electromagnetic Fields with Living Systems. Blank, M., and Findl, E., eds. Plenum Press, New York.

    Google Scholar 

  • Conley, C. C. (1969). Effects of near-zero magnetic fields upon biological systems. In Biological Effects of Magnetic Fields, vol. 2. Barnothy, M. F., ed. Plenum Press, New York.

    Google Scholar 

  • Cooper, M. S. (1984). Gap junctions increase the sensitivity of tissue cells to exogenous electric fields. J. Theor. Biol. 111: 123–130.

    Article  PubMed  CAS  Google Scholar 

  • Digby, P. S. B. (1966). Mechanism of calcification in mammalian bone. Nature 212: 1250–1252.

    Article  PubMed  CAS  Google Scholar 

  • Dixey, R., and Rein, G. (1982). 3H noradrenaline release potention in a clonal nerve cell by low intensity pulsed magnetic fields. Nature 296: 253–256.

    Article  PubMed  CAS  Google Scholar 

  • Durney, C. H., Rushforth, C. K., and Anderson, A. A. (1988). Resonant AC-DC magnetic fields: Calculated response. Bioelectromagnetics 9: 315–336.

    Article  PubMed  CAS  Google Scholar 

  • Farndale, R. W., and Murray, J. C. (1985). Pulsed electromagnetic fields promote collagen production in bone marrow fibroblasts via athermal mechanisms. Calcif. Tissue Int. 37: 178–182.

    Article  CAS  Google Scholar 

  • Fitzsimmons, R. J., Farley, J., Adey, W. R., Baylink, D. J. (1986). Embryonic bone matrix formation is increased after exposure to a low amplitude capacitively coupled electric field in vitro. Biochim. Biophys. Acta 882: 51–56.

    CAS  Google Scholar 

  • Foster, K. R., and Pickard, W. F. (1987). Microwaves: The risks of risk research. Nature 330: 531–532.

    Article  PubMed  CAS  Google Scholar 

  • Fukada, E., and Yasuda, I. (1957). On the piezoelectric effect in bone. J. Phys. Soc. Jpn. 12: 1158.

    Article  Google Scholar 

  • Goodman, R., Bassett, C. A. L., and Henderson, A. S. (1983). Pulsing electromagnetic fields induce cellular transcription. Science 220: 1283–1285.

    Article  PubMed  CAS  Google Scholar 

  • Goodman, R., and Henderson, A. (1986a). Some biological effects of electromagnetic fields. Bioelectrochem. Bioenerget. 15: 39.

    Article  CAS  Google Scholar 

  • Goodman, R., and Henderson, A. (1986b). Sine waves induce cellular transcription. Bioelectromagnetics 7: 23.

    Article  PubMed  CAS  Google Scholar 

  • Goodman, R., and Henderson, A. (1987a). Transcriptional patterns in the X-chro-mosome of Sciara coprophila following exposure to magnetic fields. Bioelectromagnetics 8: 1.

    Article  PubMed  CAS  Google Scholar 

  • Goodman, R., and Henderson, A. (1987b). Patterns of transcription and translation in cells exposed to EM fields: A review. Page 217. In Mechanistic Approaches to Interactions of Electric and Electromagnetic Fields with Living Systems. Blank, M., and Findl, E., eds. Plenum, New York.

    Google Scholar 

  • Jaffe, L., and Poo, M. M. (1979). Neurites grow faster towards the cathode than the anode in a steady field. J. Exp, Zool. 209: 115–117.

    CAS  Google Scholar 

  • Jones, D. B. (1984). The Effect of PEMF on cAMP metabolism in cultured chick embryo tibiae. J. Bioelectricity 3: 427–451.

    CAS  Google Scholar 

  • Jones, D. B., Bolwell, G. P., and Gilliatt, G. (1986a). Amplification, by PEMF, of plant growth regulator induced phenylalanine ammonialyase during differentiation in suspension cultured plant cells. J. Bioelectricity 5: 1–12.

    CAS  Google Scholar 

  • Jones, D. B., Pedley, R. B., and Ryaby, J. T. (1986b). The Effects of PEMF on differentiation and growth in cloudman S91 murine melanoma cells in vitro. J. Bioelectricity 5: 145–169.

    Google Scholar 

  • Jones, D. B., and Ryaby, J. T. (1987). Low-energy, time-varying electromagnetic field interactions with cellular control mechanisms. In Mechanistic Approaches to Interactions of Electric and Electromagnetic Fields with Living Systems. Blank, M., and Findl, E., eds. Plenum Press, New York.

    Google Scholar 

  • Jones, D. B., Ryaby, J. T., and Pilla, A. A. (1987). GTP-binding proteins may be the regulatory site of interaction of PEMF in melanoma cells. J. Orthop. Res. Trans. BRAGS 6: 45.

    Google Scholar 

  • Law, H. T., Annan, I. D., Hugmes, S. P. F., Stead, A. C, Camburn, M. A., and Montgomery, H. (1985). The effect of induced electric currents on bone after experimental osteotomy in sheep. J. B. J. Surg. 67B 3: 463–469.

    Google Scholar 

  • Lawrence, A. F., McDaniel, J. C, Chang, D. B., and Birge, R. R. (1987). The nature of phonons and solitary waves in alpha-helical proteins. Biophys. J. 51: 785.

    Article  PubMed  CAS  Google Scholar 

  • Lednev, L. L. (1990). Possible mechanism for the influence of weak magnetic fields on biological systems. Bioelectromagnetics 12: 71–75.

    Article  Google Scholar 

  • Liboff, A. R. (1985). Cyclotron resonance in membrane transport. In Interactions Between Electromagnetic Fields and Cells. Page 281. Chibrera, A., Nicol-ini, C, and Schwan, H. P., eds. Plenum, London.

    Google Scholar 

  • Liboff, A. R. (1990). Interaction mechanisms of low-level electromagnetic fields in living systems. Ramel, C, and Norden, B., eds. Oxford Press, Oxford.

    Google Scholar 

  • Liboff, A. R., and McLeod, B. R. (1987). Kinetics of channelized membrane ions in magnetic fields. Bioelectromagnetics 9: 39–51.

    Article  Google Scholar 

  • Liboff, A. R., McLeod, B. R., and Smith, S. D. (1989). Ion cyclotron resonance effects of ELF fields in biological systems. Page 251. In Extremely Low Frequency Fields: The Question of Cancer. Wilson, B. W., Stevens, R. G., and Anderson, L. E., eds. Battelle Press, Columbus, OH.

    Google Scholar 

  • Liboff, A. R., McLeod, B. R., and Smith, S. D. (1990). Ion cyclotron resonance effects of ELF fields in biological systems. In Extremely Low Frequency Electromagnetic Fields: The Question of Cancer. Pages 251–290. Wilson, W. B., Stevens, R. G., and Anderson, L. E., eds. Baltelle Press, Columbus, OH.

    Google Scholar 

  • Liboff, A. R., Smith, S. D., and McLeod, B. R. (1987). Experimental evidence for ion cyclotron resonance mediation of membrane transport. Page 109. In Mechanistic Approaches to Interactions of Electromagnetic Fields with Living Systems. Blank, M., and Findl, E., eds. Plenum Press, New York.

    Google Scholar 

  • Luben, R. A., Cain, C. D., Chen, C-Y., Rosen, D. M., and Adey, W. R. (1982). Effects of electromagnetic stimulation on bone and bone cells in vitro: Inhibition of response to parathyroid hormone by low energy low frequency fields. Proc. Natl. Acad. Sci. USA 79: 4180–4148.

    Article  PubMed  CAS  Google Scholar 

  • Lyle, D. B., Ayotte, R. D., Wang, Z., Sheppard, A. R., and Adey, W. R. (1989). Activation and proliferation of normal and leukemic T-Lymphocytes exposed to magnetic fields under calcium cyclotron resonance conditions. Paper B-3-3, Page 13. Abstracts Eleventh Annual Meeting, Bioelectromagnetics Society, Tucson, AZ.

    Google Scholar 

  • McLeod, B. R., and Liboff, A. R. (1986). Dynamical characteristics of membrane ions in multi-field configurations at low frequencies. Bioelectromagnetics 7: 177–189.

    Article  PubMed  CAS  Google Scholar 

  • McLeod, B. R., and Liboff, A. R. (1992). Electromagnetic gating in ion channels. J. Theor. Biol. 158: 15–31.

    Article  PubMed  CAS  Google Scholar 

  • McLeod, B. R., Liboff, A. R., and Smith, S. D. (1989a). A theoretical model that predicts frequency, amplitude and harmonic resonances in cell channels. Paper E-4-3. Eleventh Annual Meeting of the Bioelectromagnetics Society, Tucson, AZ.

    Google Scholar 

  • McLeod, B. R., Liboff, A. R., and Smith, S. D. (1989b). A mathematical model incorporating membrane channel parameters that exhibits frequency, amplitude and harmonic windows. Page 51. Ninth Annual Meeting of the Bioelectrical Repair and Growth Society, Cleveland, OH.

    Google Scholar 

  • McLeod, B. R., Smith, S. D., and Liboff, A. R. (1987). Ion cyclotron resonance frequencies enhance Ca2+ dependent motility in diatoms. J. Bioelectricity 6: 1–12.

    CAS  Google Scholar 

  • Mulier, J. C, and Spaas, F. (1980). Out-patient treatment of surgically resistant non-unions by induced pulsing current-clinical results. Arch. Orthop. Traumat. Surg. 97: 293–29.

    Article  CAS  Google Scholar 

  • Murray, J. C, and Farndale, R. W. (1985). Modulation of collagen production in cultured fibroblasts by a low-frequency pulsed magnetic field. Biochim. Biophys. Acta 838: 98–105.

    PubMed  CAS  Google Scholar 

  • Raybourn, M. S. (1983). The effects of direct-current magnetic fields on Turtle retinas in vitro. Science 220: 715–717.

    Article  PubMed  CAS  Google Scholar 

  • Reuss, S., and Olcese, J. (1986). Magnetic field effects on the rat pineal gland: Role of retinal activation by light. Neurosci. Lett. 64: 97–101.

    Article  PubMed  CAS  Google Scholar 

  • Reuss, S., Semm, P., and Vollrath, L. (1984). Different types of magnetically sensitive cells in the rat pineal gland. Neurosci. Lett. 40: 23–26.

    Google Scholar 

  • Rooze, M., and Hinsenkamp, M. (1985). In vivo modifications induced by electroagnetic stimulation of chicken embryos. Reconstr. Surg. Traumat. 19: 87–92.

    CAS  Google Scholar 

  • Ross, S. M. (1988). Effects of sinusoidal electromagnetic fields on proliferation of rabbit ligament fibroblasts. Page 68. Translations of the Eighth Annual Meeting, Bioelectrical Repair and Growth Society, Washington, D.C.

    Google Scholar 

  • Rozek, R. J., Sherman, M. L., Liboff, A. R., McLeod, B. R., and Smith, S. D. (1987). Nifedipine is an antogonist to cyclotron resonance enhancement of — 45Ca incorporation in human lymphocytes. Cell Calcium 8: 413–427.

    Article  PubMed  CAS  Google Scholar 

  • Shulten, K. (1982). Magnetic field effects in chemistry and biology. Festkorperprobleme 22: 61–83.

    Google Scholar 

  • Shulten, K. (1986). Magnetic field effects in chemical and biological photoprocesses. Proc. Workshop on Biophysical Effects of Steady Magnetic Fields, Les Houches. Springer-Verlag, Heidelberg.

    Google Scholar 

  • Shulten, K., and Wolynes, P. G. (1978). J. Chem. Phys. 68: 3292–3295.

    Article  Google Scholar 

  • Sisken, B. R, and Smith, S. D. (1975). The effects of minute direct electrical currents on cultured chick embryo trigeminal ganglia. J. Embryol. Exp. Morphol. 33: 29–34.

    PubMed  CAS  Google Scholar 

  • Smith, S. D., McLeod, B. R., Liboff, A. R., and Cooksey, K. E. (1987). Calcium cyclotron resonance and diatom motility. Bioelectromagnetics 8: 215–227.

    Article  PubMed  CAS  Google Scholar 

  • Smith, R. L., and Nagel, D. A. (1983). Effects of pulsing electromagnetic fields on bone growth and articular cartilage. Clin. Orthop. Rel. Res. 181: 277–282.

    CAS  Google Scholar 

  • Thurm, U. (1983). Mechano-electric transduction. Pages 666–671. In Biophysics. Hoppe, W., Lohmann, W., Markl, H., and Ziegler, H., eds. Springer Verlag, Berlin, Heidelberg.

    Google Scholar 

  • Toyoshima, C, and Unwin, N. (1988). Ion channel of acetylcholine receptor reconstructed from images of postsynaptic membranes. Nature 336: 247.

    Article  PubMed  CAS  Google Scholar 

  • Walheczek, J., and Liburdy, R. P. (1990). Combined DC/AC magnetic fields alter Ca2+ metabolism in activated rat thymic lymphocytes, Paper D-2-1, Page 39. Abstracts Twelfth Annual Meeting, Bioelectromagnetics Society, San Antonio, TX.

    Google Scholar 

  • Weaver, J. C, and Astumian, R. D. (1990). The response of living cells to very weak electric fields: The thermal noise limit. Science 247: 459–462.

    Article  PubMed  CAS  Google Scholar 

  • Weller, A., Staerk, H., and Treichel, R. (1984). Magnetic-field effects on geminate radical-pair recombination. Farday Discuss. Chem. Soc. 78: 271–278.

    CAS  Google Scholar 

  • Yamada, S., Guenther, H. L., and Fleisch, H. (1985). The effect of PEMF on bone cell metabolism and cavaria resorption in vitro and on calcium metabolism in the live rat. Int. Orthopaedics 9: 129–134.

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Chapman & Hall

About this chapter

Cite this chapter

Jones, D., McLeod, B. (1996). Electromagnetic Cell Stimulation. In: Lynch, P.T., Davey, M.R. (eds) Electrical Manipulation of Cells. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1159-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1159-1_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8491-8

  • Online ISBN: 978-1-4613-1159-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics