Skip to main content

Electroporation and Transgenic Plant Production

  • Chapter
Electrical Manipulation of Cells

Abstract

Electroporation is a well-established method for production of transgenic plants. Short high-voltage pulses can permeabilize the protoplast plasma membrane, facilitating uptake of plasmid DNA that can become expressed transiently and, eventually, be stably incorporated into the genome.

The major electrical parameters are field strength and pulse duration, which are inversely related and can be chosen within wide ranges (100–5000 V/cm and 0.01–100 msec). Stable transformation requires less rigorous electrical conditions than transient expression. Transient and stable transformation increase with plasmid DNA concentration, up to about 100 µg/mL; addition of carrier DNA lowers the amount of plasmid DNA required for transformation. Linearized plasmid DNA and heat shock enhance stable transformation. Addition of PEG stimulates transient expression and, in most cases, stable transformation. The transformation rate is also affected by protoplast size, pulse type, culture medium, and temperature.

Stable transformation frequencies are in the range 0.0001–0.1% of the electroporated protoplasts. Transgenic plants contain, on average, from one to three copies of the exogenous gene, and all copies are usually integrated into one site in the genome. The inserted plasmid DNA is often modified by rearrangement and ligation events, and the copy number does generally not correlate with expression level. Transgenic plants regenerated from electroporated protoplasts are most often fertile, and the exogenous genes appear to be inherited as a single dominant character in a Mendelian fashion.

Although the cell wall is generally regarded to be impermeable to DNA, some intact cells and tissues can be induced to take up DNA by electroporation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abdul-Baki, A. A., Saunders, J. A., Matthews, B. R, and Pittarelli, G. W. (1990). DNA uptake during electroporation of germinating pollen grains. Plant Sci. 70: 181–190.

    Article  CAS  Google Scholar 

  • Akella, V., and Lurquin, P. F. (1993). Expression in cowpea seedlings of chimeric transgenes after electroporation into seed-derived embryos. Plant Cell Rep. 12: 110–117.

    Article  CAS  Google Scholar 

  • Battraw, M., and Hall T. C. (1991). Stable transformation of Sorghum bicolor protoplasts with chimeric neomycin phosphotransferase II and β-glucuronidase genes. Theor. Appl. Genet. 82: 161–168.

    Article  CAS  Google Scholar 

  • Battraw, M., and Hall, T. C. (1992). Expression of a chimeric neomycin phosphotransferase II gene in first and second generation transgenic rice plants. Plant Sci. 86: 191–202.

    Article  CAS  Google Scholar 

  • Bekkaoui, F., Pilon, M., Laine, E., Raju, D. S. S., Crosby, L., and Dubstan, D. I. (1988). Transient gene expression in electroporated Picea glauca protoplasts. Plant Cell Rep. 7: 481–484.

    Article  CAS  Google Scholar 

  • Bellini, C., Chupeau, M.-C., Guerche, P., Vastra, G., and Chupeau, Y. (1989). Transformation of Lycopersicon peruvianum and Lycopersicon esculentum mesophyll protoplasts by electroporation. Plant Sci. 65: 63–75.

    Article  CAS  Google Scholar 

  • Benz, R., and Zimmermann, U. (1980). Relaxation studies on cell membranes and lipid bilayers in the high electric field range. Bioelectrochem. Bioenerg. 7: 723–739.

    Article  CAS  Google Scholar 

  • Boston, R. S., Becwar, M. R., Ryan, R. D., Goldsbrough, P. B., Larkins, B. A., and Hodges, T. K. (1987). Expression from heterologous promotors in electroporated carrot protoplasts. Plant Physiol. 83: 742–746.

    Article  PubMed  CAS  Google Scholar 

  • Bower, R., and Birch, R. G. (1990). Competence for gene transfer by electroporation in a subpopulation of protoplasts from uniform carrot cell suspension cultures. Plant Cell Rep. 9: 386–389.

    Article  CAS  Google Scholar 

  • Charest, P. J., Devantier, Y., Ward, C., Jones, C., Schaffer, U., and Klimaszewska, K. K. (1991). Transient expression of foreign genes in the gymnosperm hybrid larch following electroporation. Can. J. Bot. 69: 1731–1736.

    Article  Google Scholar 

  • Christou, P., Murphy, J. E., and Swain, W. F. (1987). Stable transformation of soybean by electroporation and root formation from transformed callus. Proc. Natl. Acad. Sci. USA 84: 3962–3966.

    Article  PubMed  CAS  Google Scholar 

  • Chupeau, M.-C., Bellini, C., Guerche, P., Maisonneuve, B., Vastra, G., and Chupeau, Y. (1989). Transgenic plants of lettuce (Lactuca sativa) obtained through electroporation of protoplasts. Biol. Technol. 7: 503–508.

    Google Scholar 

  • Coster, H. G. L. (1968). The role of pH in the punch-through effect in the electrical characteristics of Chara australis. Aust. J. Biol. Sci. 22: 365–374.

    Google Scholar 

  • Coster, H. G. L., and Zimmermann, U. (1975). The mechanism of electrical breakdown in the membranes of Valonia utricularis. J. Membrane Biol. 22: 73–90.

    Article  CAS  Google Scholar 

  • Dean, C., Jones, J., Favreau, M., Dunsmuir, P., and Bedbrook, J. (1988). Influence of flanking sequences on variability in expression levels of an introduced gene in transgenic tobacco plants. Nucl. Acids Res. 16: 9267–9282.

    Article  PubMed  CAS  Google Scholar 

  • Dekeyser, R. A., Claes, B., De Rycke, M. U., Habets, M. E., and Van Montagu, M. C. (1990). Transient gene expression in intact and organized rice tissues. The Plant Cell 2: 591–602.

    Article  PubMed  CAS  Google Scholar 

  • D’Halluin, K., Bonre, E., Bossut, M., De Beuckeleer, M., and Leemans, J. (1992). Transgenic maize plants by tissue electroporation. The Plant Cell 4: 1495–1505.

    Article  PubMed  Google Scholar 

  • Fennel, A., and Hauptmann, R. (1992). Electroporation and PEG delivery of DNA into maize microspores. Plant Cell Rep. 11: 567–570.

    Article  Google Scholar 

  • Frearson, E. M., Power, J. B., and Cocking, E. C. (1973). The isolation, culture and regeneration of Petunia leaf protoplasts. Dev. Biol. 33: 130–137.

    Article  PubMed  CAS  Google Scholar 

  • Fromm, M., Taylor, L. P., and Walbot, V. (1985). Expression of genes transferred into monocot and dicot plant cells by electroporation. Proc. Natl. Acad. Sci. USA 82: 5824–5828.

    Article  PubMed  CAS  Google Scholar 

  • Fromm, M., Taylor, L. P., and Walbot, V. (1986). Stable transformation of maize after gene transfer by electroporation. Nature 319: 791–793.

    Article  PubMed  CAS  Google Scholar 

  • Guerche, P., Bellini, C., Le Moullec, J.-M., and Gaboche, M. (1987a). Use of a transient expression assay for the optimization of direct gene transfer into tobacco mesophyll protoplasts by electroporation. Biochimie 69: 621–628.

    Article  PubMed  CAS  Google Scholar 

  • Guerche, P., Charbonnier, M., Jouanin, L., Tourneur, C., Paszkowski, J., and Pelletier, G. (1987b). Direct gene transfer by electroporation in Brassica napus. Plant Sci. 52: 111–116.

    Article  CAS  Google Scholar 

  • Hauptmann, R. M., Ozias-Akins, P., Vasil, V., Tabaeizadeh, Z., Rogers, S. G., Horsch, R. B., Vasil, I. K., and Fraley, R. T. (1987). Transient expression of electroporated DNA in monocotyledonous and dicotyledonous species. Plant Cell Rep. 6: 265–270.

    Article  CAS  Google Scholar 

  • Hobbs, S. L. A., Jackson, J. A., Baliski, D. S., Delong, C. M. O., and Mahon, J. D. (1990). Genotype- and promotor-induced variability in transient β-glucuronidase expression in pea protoplasts. Plant Cell Rep. 9: 17–20.

    Article  CAS  Google Scholar 

  • Horn, M. E., Shillito, R. D., Conger, B. V., and Harms, C. T. (1988). Transgenic plants of orchard grass (Dactylis glomerata L.) from protoplasts. Plant Cell Rep. 7: 469–472.

    Article  CAS  Google Scholar 

  • Huang, Y.-W. and Dennis, E. S. (1989). Factors affecting stable transformation of maize protoplasts by electroporation. Plant Cell, Tissue and Organ Cult. 18: 281–296.

    Article  CAS  Google Scholar 

  • Joersbo, M. (1990). Methods for direct gene transfer into plant protoplasts. Ph.D. Thesis, University of Aarhus, Denmark.

    Google Scholar 

  • Joersbo, M., and Brunstedt, J. (1990a). Direct gene transfer to plant protoplasts by electroporation by alternating, rectangular and exponentially decaying pulses. Plant Cell Rep. 8: 701–705.

    Article  CAS  Google Scholar 

  • Joersbo, M., and Brunstedt, J. (1990b). Quantitative relationship between parameters of electroporation. J. Plant Physiol. 137: 169–174.

    Google Scholar 

  • Joersbo, M., Jorgensen, R. B., and Olesen, P. (1990). Transient electropermeabilization of barley microspores to propidium iodide. Plant Cell Tissue Organ Cult. 23: 125–129.

    Article  CAS  Google Scholar 

  • Joersbo, M., and Brunstedt, J. (1991). Electroporation: Mechanism and transient expression, stable transformation and biological effects in plant protoplasts. Physiol. Plant. 81: 256–264.

    Article  Google Scholar 

  • Jones, H., Ooms, G., and Jones, M. G. K. 1989. Transient gene expression in electroporated Solanum protoplasts. Plant Mol. Biol. 13: 503–511.

    Article  PubMed  CAS  Google Scholar 

  • Kirches, E., Frey, N., and Schnabl, H. (1991). Transient gene expression in sunflower mesophyll protoplasts. Bot. Acta 104: 212–216.

    Google Scholar 

  • Köehler, F., Golz, C., Eapen, S., Kohn, H, and Schieder, O. (1987a). Stable transformation of moth bean Vigna aconitifolia via direct gene transfer. Plant Cell Rep. 6: 313–316.

    Article  Google Scholar 

  • Köehler, F., Golz, C., Eapen, S., and Schieder, O. (1987b). Influence of plant cultivar and plasmid-DNA on transformation rates of tobacco and moth bean. Plant Sci. 53: 87–91.

    Article  Google Scholar 

  • Krens, F. A., Molendijk, L., Wullems, G. J., and Schilperoort, R. A. (1982). In vitro transformation of plant protoplasts with Ti-plasmid DNA. Nature 296: 72–74.

    Article  CAS  Google Scholar 

  • Lindsey, K., and Jones M. G. K. (1987a). The permeability of electroporated cells and protoplasts of sugar beet. Planta 172: 346–355.

    Article  Google Scholar 

  • Lindsey, K., and Jones, M. G. K. (1987b). Transient gene expression in electroporated protoplasts and intact cells of sugar beet. Plant Mol. Biol. 10: 43–52.

    Article  CAS  Google Scholar 

  • Lindsey, K., and Jones, M. G. K. (1989). Stable transformation of sugar beet protoplasts by electroporation. Plant Cell Rep. 8: 71–74.

    Article  Google Scholar 

  • Lurquin, P. F., and Paszty, C (1988). Electroporation of tobacco protoplasts with homologous and non-homologous transformation vectors. J. Plant Physiol. 133: 332–335.

    CAS  Google Scholar 

  • Morikawa, H., Iida, A., Matsui, C., Ikegami, M., and Yamada, Y. (1986). Gene transfer into intact plant cells by electroinjection through cell walls and membranes. Gene 41: 121–124.

    Article  PubMed  CAS  Google Scholar 

  • Oard, J. H., Paige, D., and Dvorak, J. (1989). Chimeric gene expression using maize intron in cultured cells of breadwheat. Plant Cell Rep. 8: 156–160.

    Article  CAS  Google Scholar 

  • Ou-Lee, T.-M., Turgeon, R., and Wu, R. (1986). Expression of a foreign gene linked to either a plant-virus or a Drosophila promotor, after electrooration of protoplasts of rice, wheat and sorghum. Proc. Natl. Acad. Sci. USA 83: 6815–6819.

    Article  PubMed  CAS  Google Scholar 

  • Percival, F. W., Cass, L. G., Bozak, K. R., and Christoffersen, R. E. (1991). Avacado fruit protoplasts, a cellular model system for ripening studies. Plant Cell Rep. 10: 512–516.

    Article  CAS  Google Scholar 

  • Potter, H. (1988). Electroporation in biology: Methods, applications and instrumentation. Anal. Biochem. 174: 361–373.

    Article  PubMed  CAS  Google Scholar 

  • Puonti-Kaerlas, J., Ottosson, A., and Eriksson, T. (1992). Survival and growth of pea protoplasts after transformation by electroporation. Plant Cell, Tissue and Organ Cult. 30: 141–148.

    Article  Google Scholar 

  • Rathus, C., and Birch, R. G. (1992a). Optimization of conditions for electroporation and transient expression of foreign genes in sugarcane protoplasts. Plant Sci. 81: 65–74.

    Article  CAS  Google Scholar 

  • Rathus, C., and Birch, R. G. (1992b). Stable transformation of callus from electroporated sugarcane protoplasts. Plant Sci. 82: 81–89.

    Article  CAS  Google Scholar 

  • Rhodes, C. A., Pierce, D. A., Mettler, I. J., Mascarenhas, D., and Detmer, J. J. (1988). Genetically transformed maize plants from protoplasts. Science 240: 204–207.

    Article  PubMed  CAS  Google Scholar 

  • Riggs, C. D., and Bates, G. W. (1986). Stable transformation of tobacco by electroporation. Proc. Natl. Acad. Sci. USA 83: 5602–5606.

    Article  PubMed  CAS  Google Scholar 

  • Rouan, D., Montané, M.-H., Alibert, G., and Teissié (1991). Relationship between protoplast size and critical field strength in protoplast electropulsing and application to reliable DNA uptake in Brassica. Plant Cell Rep. 10: 139–143.

    Article  CAS  Google Scholar 

  • Saunders, J. A., Matthews, G. R, and Van Wert, S. L. (1992). Pollen electrotransformation for gene transfer in plants Pages 227–247. In Guide to Electroporation and Electrofusion. Chang, D. C., Chassy, B. M., Saunders, J. A., and Sowers, A. E. eds. Academic Press, New York.

    Google Scholar 

  • Sawicka, T. (1987). Membrane-bound nucleotic activity of corn root cells. Phytochem. 26: 59–63.

    Article  Google Scholar 

  • Seguin, A., and Lalonde, M. (1988). Gene transfer by electroporation in betulaceae protoplasts: Alnus incana. Plant Cell Rep. 7: 367–370.

    CAS  Google Scholar 

  • Shillito, R. D., Saul, M. W., Paszkowski, J., Mueller, M., and Potrykus, I. (1985). High efficiency direct gene transfer to plants. Biotechnol. 3: 1099–1103.

    Article  Google Scholar 

  • Shimamoto, K., Terada, R., Isawa, T., and Fujimoto, H. (1989). Fertile transgenic rice plants regenerated from transformed protoplasts. Nature 338: 274–276.

    Article  CAS  Google Scholar 

  • Tada, Y., Sakamoto, M., and Fujimura, T. (1990). Efficient gene introduction into rice by electroporation and analysis of transgenic plants: Use of electroporation lacking chloride ions. Theor. Appl. Genet. 80: 475–480.

    Article  CAS  Google Scholar 

  • Tagu, D., Bergounioux, C., Perennes, C. and Gadal, P. (1990). Inheritance of two foreign genes co-introduced into Petunia hybrida by direct gene transfer. Plant Cell, Tissue and Organ Cult. 21: 259–266.

    Article  CAS  Google Scholar 

  • Tautorus, T. E., Bekkaoui, F., Pilon, M., Datla, R. S. S., Crosby, W. L., Fowke, L. C., and Dunstan, D. I. (1989). Factors affecting transient expression in electroporated black spruce (Picea mariana) and jack pine (Pinus banksiana) protoplasts. Theor. Appl. Genet. 78: 531–536.

    Article  Google Scholar 

  • Töpfer, R., Gronenborn, B., Schell, J., and Steinbiss, H.-H. (1989). Uptake and transient expression of chimeric genes in seed-derived embryos. The Plant Cell. 1: 133–139.

    Article  PubMed  Google Scholar 

  • Toriyama, K., Arimoto, Y., Uchimiya, H., and Hinata, K. (1988). Transgenic rice plants after direct gene transfer into protoplasts. Bio/Technol. 6: 1072–1074.

    Article  CAS  Google Scholar 

  • Tsukada, M., Kusano, T., Kitagawa, Y. (1989). Introduction of foreign genes into tomato protoplasts by electroporation. Plant Cell Physiol. 30: 599–603.

    CAS  Google Scholar 

  • Tyagi, S., Spoerlein, B., Tyagi, A. K., Herrmann, R. G., and Koop, H. U. (1989). PEG- and electroporation-induced transformation in Nicotiana tabacum: Influence of genotype on transformation frequencies. Theor. Appl. Genet. 78: 287–292.

    Article  Google Scholar 

  • Widholm, J. M., Dhir, S. K., and Dhir, S. (1992). Production of transformed soybean plants by electroporation of protoplasts. Physiol. Plant. 85: 357–361.

    Article  CAS  Google Scholar 

  • Wilson, C. M. (1968a). Plant nucleases. I. Separation and purification of two ribonucleases and one nuclease from corn. Plant Physiol. 43: 1332–1338.

    Article  PubMed  CAS  Google Scholar 

  • Wilson, C. M. (1968b). Plant nucleases. II. Properties of corn ribonucleases I and II and corn nuclease I. Plant Physiol. 43: 1339–1346.

    Article  PubMed  CAS  Google Scholar 

  • Wirtz, U., Schell, J. and Czernilofsky, A. P. (1987). Recombination of selectable marker DNA in Nicotiana tabacum. DNA 6: 245–253.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, H. M., Yang, H., Rech, E. L., Golds, T. J., Davis, A. S., Mulligan, B. J., Cocking, E. C., and Davey, M. R. (1988). Transgenic rice plants produced by electroporation-mediated plasmid uptake into protoplasts. Plant Cell Rep. 7: 379–384.

    CAS  Google Scholar 

  • Zimmermann, U., and Benz, R. (1980). Dependence of the electrical breakdown on the charging time in Valonia utricularis. Membrane Biol. 53: 33–43.

    Article  Google Scholar 

  • Zimmermann, U., Pilwat, G., and Riemann, F. (1974). Dielectric breakdown of cell membranes. Biophys. J. 14: 881–899.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Chapman & Hall

About this chapter

Cite this chapter

Joersbo, M., Brunstedt, J. (1996). Electroporation and Transgenic Plant Production. In: Lynch, P.T., Davey, M.R. (eds) Electrical Manipulation of Cells. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1159-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1159-1_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8491-8

  • Online ISBN: 978-1-4613-1159-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics