Skip to main content

Electrofusion and Electroporation Equipment

  • Chapter
Electrical Manipulation of Cells

Abstract

This chapter discusses ways of manipulating electrical output to permeabilize and to fuse cells and provides a historical summary of the development of electromanipulation equipment. It also discusses the merits and limitations of both commercially and noncommercial systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bates, G. W., Saunders, J. A., and Sowers, A. E. (1987). Electrofusion: Principles and applications. Pages 367–395. In Cell Fusion. Sowers, A. E., ed. Plenum Press, New York.

    Google Scholar 

  • Blangero, C., and Teissié, J. (1985). Ionic modulation of electrically induced fusion of mammalian cells. J. Membr. Biol. 86: 247–253.

    Article  PubMed  CAS  Google Scholar 

  • Chang, D. C. (1989). Cell fusion and cell portion by pulsed radio-frequency electric fields. Pages 215–227. In Electroporation and electrofusion in cell biology. Neumann, E., Sowers, H. E. and Jordan, C. A., eds. Plenum Press, New York.

    Google Scholar 

  • Chapel, M., Moutane, M. H., Ranty, R., Teissie, J., and Alibert, G. (1986). Viable somatic hybrids are obtained by direct current electrofusion of chemically aggregated plant protoplasts. FEBS Lett. 196: 79–84.

    Article  CAS  Google Scholar 

  • Finch, R. P., Slamet, I. H., and Cocking, E. C. (1990). Production of heterokaryons by the fusion of mesophyll protoplasts of Porteresia coarctata and cell suspension-derived protoplasts of Oryza sativa: A new approach to somatic hybridization in rice. J. Plant Physiol. 136: 592–598.

    Google Scholar 

  • Fromm, M. E., Taylor, L. P., and Walbot, V. (1985). Expression of genes transferred into monocot and dicot plant cells by electroporation. Proc. Natl. Acad. Sci., USA. 82: 5824–5828.

    Article  PubMed  CAS  Google Scholar 

  • Glaser, R. W., Wagner, A., and Donath, E. (1986). Volume and ionic composition changes in erythrocytes after electric breakdown. Bioelectrochem. And Bioenerget. 16: 455–467.

    Article  CAS  Google Scholar 

  • Joersbo, M., and Brunstedt, J. (1990). Direct gene transfer to plant protoplasts by electroporation by alternating, rectangular and exponentially decaying pulses. Plant Cell Rep. 8: 701–705.

    Article  CAS  Google Scholar 

  • Jones, B., Antonova-Kosturkova, G., Vieira, M. L. C., Rech, E. L., Power, J. B., and Davey, M. R. (1993). High transient gene expression, with conserved viability, in electroporated protoplasts of Glycine, Medicago and Stylosanthes species. Plant Tissue Cult. 3: 59–65.

    Google Scholar 

  • Jones, B., Lynch, P. T., Handley, G. J., Malaure, R. S., Blackhall, N. W., Hammatt, N., Power, J. B., Cocking, E. C., and Davey, M. R. (1994). Equipment for the large-scale electromanipulation of plant protoplasts. BioTechniques 16: 312–321.

    PubMed  CAS  Google Scholar 

  • Kinosita, K., and Tsong, T. Y. (1977a). Hemolysis of human erythrocytes by a transient electric field. Proc. Natl. Acad. Sci., USA. 74: 1923–1927.

    Article  PubMed  CAS  Google Scholar 

  • Kinosita, K., and Tsong, T. Y. (1977b). Formation and resealing of pores of controlled sizes in human erythrocyte membranes. Nature 268: 438–441.

    Article  PubMed  Google Scholar 

  • Kramer, D., Hsu, S., Miller, I., Riley, J., and Reporter, M. (1987). Circuit for the electromanipulation of plant protoplasts. Anal. Biochem. 163: 464–469.

    Article  PubMed  CAS  Google Scholar 

  • Lo, M. S. S., and Tsong, Y. T. (1989). Producing monoclonal antibodies by electrofusion. Pages 259–270. In Electroporation and electrofusion in cell biology. Neumann, E., Sowers, H. E., and Jordan, C. A., eds. Plenum Press, New York.

    Google Scholar 

  • Lo, M. S. S., Tsong, T. Y., Conrad, M. K., Strittmatter, S. M., Hester, L. D., and Snyder, S. H. (1984). Monoclonal antibody production by receptor—mediated electrically induced cell fusion. Nature 310: 794–796.

    Article  Google Scholar 

  • Mischke, S., Saunders, J. A., and Owens, L. (1986). A versatile low-cost apparatus for cell electrofusion and other electrophysiological treatments. J. Biochem. Biophys. Methods 13: 65–75.

    Article  PubMed  CAS  Google Scholar 

  • Neumann, E., Gerish, G., and Opatz, K., (1980). Cell fusion induced by high electric impulses applied to Dictyostelium. Naturwissenschaften 67: 414–415.

    Article  Google Scholar 

  • Pietrzak, M., Shillito, R. D., Hohn, T., and Potrykus, I. (1986). Expression in plants of two bacterial antibiotic resistance genes after protoplast transformation with a new plant expression vector. Nucleic Acids Res. 14: 5857–5868.

    Article  PubMed  CAS  Google Scholar 

  • Pohl, H. A. (1951). The motion and precipitation of suspensoids in divergent electric fields. J. Appl. Phys. 22: 869–871.

    Article  CAS  Google Scholar 

  • Pohl, H. A. (1958). Some effects of nonuniform electric fields on dielectrics. J. Appl. Phys. 29: 1182–1189.

    Article  Google Scholar 

  • Pohl, H. A. (1978). Dielectrophoresis. Cambridge University Press, London.

    Google Scholar 

  • Rand, R. P. (1981). Interacting phospholipid bilayers: Measured forces and induced structural changes. Ann. Rev. Biophys. Bioeng. 10: 277–314.

    Article  CAS  Google Scholar 

  • Rech, E. L., Alves, E. S., and Davey, M. R. (1989). Electroporation: A circuit diagram and computer program for assessment of physical parameters on eucaryotic cells. Technique 1: 125–129.

    Google Scholar 

  • Saunders, J., Mathews, B. F., and Miller, P. D. (1989). Plant gene transfer using electrofusion and electroporation. Pages 343–354. In Electroporation and electrofusion in cell biology. Neumann, E., Sowers, H. E., and Jordan, C. A, eds. Plenum Press, New York.

    Google Scholar 

  • Schwan, H. P. (1989). Dielectrophoresis and rotation of cells. Pages 3–21. In Electroporation and electrofusion in cell biology. Neumann, E., Sowers, H. E., and Jordan, C. A, eds. Plenum Press, New York.

    Google Scholar 

  • Senda, M., Takeda, J., Abe, S., and Nakamura, T., (1979). Induction of cell fusion of plant protoplasts by electrical stimulation. Plant Cell Physiol. 20: 1441–1443.

    CAS  Google Scholar 

  • Sowers, A. E. (1984). Characterization of electric field-induced fusion in erythrocyte ghost membranes. J. Cell Biol. 99: 1989–1996.

    Article  PubMed  CAS  Google Scholar 

  • Sowers, A. E. (1985). Movement of a fluorescent lipid label from a labelled erythrocyte membrane to an unlabelled erythrocyte membrane following electric field-induced fusion. Biophys. J. 47: 519–525.

    Article  PubMed  CAS  Google Scholar 

  • Sowers, A. E. (1989). The mechanism of electroporation and electrofusion in erythrocyte membranes. Pages 229–256. In Electroporation and electrofusion in cell biology. Neumann, E., Sowers, H. E., and Jordan, C. A., eds. Plenum Press, New York.

    Google Scholar 

  • Teissié, J., Knutson, V. P., Tsong, T. Y., and Lane, M. D. (1982). Electric pulse-induced fusion of 3T3 cells in monolayer culture. Science 216: 537–538.

    Article  Google Scholar 

  • Teissié, J., and Rols, M. P. (1986). Fusion of mammalian cells in culture is obtained by creating the contact between cells after their electropermeabilization. Biochem. Biophys. Res. Commun. 140: 258–266.

    Article  Google Scholar 

  • Tempelaar, M. J., and Jones, M. G. K. (1985). Fusion characteristics of plant protoplasts in electric fields. Planta 165: 205–216.

    Article  Google Scholar 

  • Watts, J. W., and King, J. M. (1984). A simple method for the large-scale electrofusion and culture of plant protoplasts. Biosci. Rep. 4: 335–342.

    Article  PubMed  CAS  Google Scholar 

  • Weber, H., Forster, W., Berg, H., and Jacob, M. E. (1981). Parasexual hybridization of yeasts by electric field stimulated fusion of protoplasts. Curr. Genet. 4: 165–166.

    Article  Google Scholar 

  • Zachrisson, A., and Bornman, C. H. (1984). Application of electric field fusion in plant tissue culture. Physiol. Plant. 61: 314–320.

    Article  Google Scholar 

  • Zimmermann, U., and Scheurich, P. (1981). Fusion of Avena sativa mesophyll cell protoplasts by electrical breakdown. Biochim. Biophys. Acta. 641: 160–165.

    Article  PubMed  CAS  Google Scholar 

  • Zimmermann, U., and Vienken, J. (1982). Electric field-induced cell-to-cell fusion. J. Membrane Biol. 67: 165–182.

    Article  CAS  Google Scholar 

  • Zimmermann, U., Vienken, J., Halfmann, J., and Emis, C. C. (1985). Electrofusion: A novel hybridization technique. Advances in Biotechnol. Processes 4: 79–150.

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Chapman & Hall

About this chapter

Cite this chapter

Jones, B., Lynch, P.T., Power, J.B., Davey, M.R. (1996). Electrofusion and Electroporation Equipment. In: Lynch, P.T., Davey, M.R. (eds) Electrical Manipulation of Cells. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1159-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1159-1_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8491-8

  • Online ISBN: 978-1-4613-1159-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics