Novel Lipids and Cancer

Isoprenoids and Other Phytochemicals
  • Charles E. Elson
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 399)


The focus of studies of diet/cancer interrelationships is shifting from the roles nutrients play to the chemopreventive actions of plant-derived, non-nutrient dietary constituents (indoles, coumarins, phthalides, organosulfur compounds, phytoestrogens, isothiocy-anates, bioflavonoids and protease inhibitors). Our interest in this aspect of diet/health relationships has roots in findings that products of plant mevalonate pathways both suppress hepatic mevalonate synthesis with a concomitant lowering of serum LDL cholesterol level and suppress the growth of chemically-initiated and transplanted tumors.1–4 Some of the more effective end products derived from the sequential mevalonate pathway intermediates, geranyl pyrophosphate, farnesyl pyrophosphate and geranylgeranyl pyrophosphate, are listed on Figure 1.1, 2 The pathway provides essential dietary components, specifically phylloquinone, β-carotene and a-tocopherol. The monoterpenes and sesquiterpenes have no nutritional impact. Never the less each of the products listed on Figure 1 has been shown to have an impact on HMG CoA reductase activity, blood cholesterol level and tumor cell proliferation.1–4


Rice Bran Mevalonate Pathway Mevalonic Acid Perillyl Alcohol Mevalonate Synthesis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Elson, C.E. & Yu, S.G. (1994) The chemoprevention of cancer by mevalonate-derived constituents of fruits and vegetables. J. Nutr. 124: 607–614.PubMedGoogle Scholar
  2. 2.
    Elson, C.E. (1995) Suppression of mevalonate pathway activities by dietary isoprenoids: Protective roles in cancer and cardiovascular disease. J. Nutr. 125: 1666s-1672sPubMedGoogle Scholar
  3. 3.
    Elson, C.E. & Qureshi, A.A. (1995) Coupling the cholesterol-and tumor-suppressive actions of palm oil to the impact of its minor constituents on 3-hydroxy-3-methylglutaryl coenzyme A reductase activity. Prostaglandins Leukotrienes Essent. Fatty Acids: 52:205–208CrossRefGoogle Scholar
  4. 4.
    Elson, C.E., Yu, S.G. & Qureshi, A.A. The cholesterol-and tumor-suppressive actions of palm oil isoprenoids. Lipids: (in press)Google Scholar
  5. 5.
    Block, G., Patterson, B. & Subar, A., Fruit, vegetables, and cancer prevention: A review of the epidemiological evidence. Nutr. Cancer, 18:1–29, 1992.PubMedGoogle Scholar
  6. 6.
    Heinonen, O.P. & Albanes, D. (The Alpha-Tocopherol, Beta Carotene Cancer Prevention Study Group) The effects of vitamin E and beta carotene on the incidence of lung cancer and other cancers in male smokers. NEJM, 330:1029–1035, 1994.CrossRefGoogle Scholar
  7. 7.
    Goldstein, J.S. & Brown, M.S. (1990) Regulation of the mevalonate pathway. Nature (London) 343: 425–430.CrossRefGoogle Scholar
  8. 8.
    Ram, Z., Samid, D., Walbridge, S., Oshiro, E.M., Viola, J.J., Tao-Cheng, J.H., Shack, S., Thibault, A., Myers, C.E. & Oldfield, E.H. (1994) Growth inhibition, tumor maturation, and extended survival in experimental brain tumors in rats treated with phenylacetate. Cancer Res. 54:2923–7.PubMedGoogle Scholar
  9. 9.
    Cuthbert, J.A. & Lipsky, P.E. (1995) Suppression of the proliferation of Ras-transformed cells by fluoromevalonate, an inhibitor of mevalonate metabolism. Cancer Res. 55:1732–40.PubMedGoogle Scholar
  10. 10.
    Zammit, V.A. & Easom, R.A. (1987) Regulation of hepatic HMG-CoA reductase in vivo by reversible phosphorylation. Biochim. Biophys. Acta 927:223–228.PubMedCrossRefGoogle Scholar
  11. 11.
    Correll, G.C & Edwards, P.A. (1994) Mevalonic acid-dependent degradation of 3-hydroxy-3-methylglu-taryl-coenzyme A reductase in vivo and in vitro. J. Biol. Chem., 269:633–638.PubMedGoogle Scholar
  12. 12.
    Correll, C.C., Ng, L. & Edwards, P.A. (1994). Identification of farnesol as the non-sterol derivative of mevalonic acid required for the accelerated degradation of 3-hydroxy-3-methylglutaryl coenzyme A reductase. J. Biol. Chem. 269:17390–17393.PubMedGoogle Scholar
  13. 13.
    Forman, B.M., Goode, E., Chen, J., Oro, A.E., Bradley, D.J., Perlmann, T., Noonan, D.J., Burka, L.T., Mc Morris, T., Lamph, W.W., Evans, R.M. & Weinberger, C, Identification of a nuclear receptor that is activated by farnesol metabolites. Cell, 81:687–693, 1995.PubMedCrossRefGoogle Scholar
  14. 14.
    Stermer, B.A., Bianchini, G.M. & Korth, K.L. (1994) Review: Regulation of HMG-CoA reductase activity in plants. J. Lipid Res. 35:1133–1140.PubMedGoogle Scholar
  15. 15.
    Siperstein, M.D. & Fagan, V.M. (1964) Deletion of the cholesterol-negative feedback system in liver tumors. Cancer Res. 24:1108–1115.PubMedGoogle Scholar
  16. 16.
    Yachnin, S., Toub, D.B. & Mannickarottu, V. (1984) Divergence in cholesterol biosynthetic rates and 3-hydroxy-3-methylglutaryl-CoA reductase activity as a consequence of granulocyte versus monocyte-macrophage differentiation in HL-60 cells. Proc. Natl. Acad. Sci. USA 81:894–897.PubMedCrossRefGoogle Scholar
  17. 17.
    Bruscalalupi, G., Leoni, S., Mangiantini, M.T., Minieri, M., Spagnuolo, S. & Trentlanc, A. (1985) True uncoupling between cholesterol synthesis and 3-hydroxy-3-methylglutaryl coenzyme A reductase in an early stage of liver generation. Cell. Molec. Biol. 31:365–368.Google Scholar
  18. 18.
    Engstrom, W. & Schofield, P.N. (1987) Expression of the 3-hydroxy-3-methyl-glutaryl coenzyme A-reductase and LDL-receptor genes in human embryonic tumors and in normal fetal tissues. Anticancer Res. 7:337–342.PubMedGoogle Scholar
  19. 19.
    Azrolan, N.I. & Coleman, P.S. (1989) A discoordinant increase in the cellular amount of 3-hydroxy-3-methylglutaryl-CoA reductase results in the loss of rate-limiting control over cholesterogenesis in a tumor cell-free system. Biochem. J. 258:421–425.PubMedGoogle Scholar
  20. 20.
    Bennis, F., Favre, G., Le Gaillard, F. & Soula, G. (1993) Importance of mevalonate-derived products in the control of HMG-CoA reductase activity in the growth of human lung adenocarcinoma cell line A549. Int. J. Cancer 55:640–645.PubMedCrossRefGoogle Scholar
  21. 21.
    Sinenski, M. & Logel, J. (1985) Defective macromolecule biosynthesis and cell cycle progression in a mammalian cell starved for mevalonate. Proc. Natl. Acad. Sci. USA 82:3257–3261.CrossRefGoogle Scholar
  22. 22.
    Langan, T.J. & Volpe, J.J. (1987) Cell cycle-specific requirement for mevalonate but not for cholesterol, for DNA synthesis in glial primary cultures. J. Neurochem. 49:513–521.PubMedCrossRefGoogle Scholar
  23. 23.
    Doyle, J.W. & Kandutsche, A.A. (1988) Requirement for mevalonate in cycling cells: quantitative and temporal aspects. J. Cell. Physiol. 137:133–140.PubMedCrossRefGoogle Scholar
  24. 24.
    Fairbanks, K.D., Barbu, V.D., Witte, L.D., Weinstein, I.B. & Goodman, D.S. (1986) Effects of mevinolin and mevalonate on cell growth in several transformed cell lines. J. Cell Physiol. 127:216–222.PubMedCrossRefGoogle Scholar
  25. 25.
    Maltese, W.A. & Sheridan, K.M. (1987) Isoprenylated proteins in cultured cells: Subcellular distribution and changes related to altered morphology and growth arrest induced by mevalonate deprivation. J. Cell. Physiol. 133:471–481.PubMedCrossRefGoogle Scholar
  26. 26.
    Panini, S.R., Schnitzer-Polokoff, R., Spencer, T.A. & Sinenski, M. (1989) Sterol-independent regulation of 3-hydroxy-3-methylglutaryl-CoA reductase by mevalonate in Chinese hamster ovary cells. J. Biol. Chem. 264:11044–11052.PubMedGoogle Scholar
  27. 27.
    Schmidt, R.A., Schneider, C.J. & Glomset, J.A. (1984) Evidence for post-translational incorporation of a product of mevalonic acid into Swiss 3T3 cell proteins. J. Biol. Chem. 259:10175–10180.PubMedGoogle Scholar
  28. 28.
    Hancock, J.F., Magee, A.I., Childs, J.E. & Marshall, C.J. (1989) All ras proteins are polyisoprenylated but only some are palmitoylated. Cell 57:1167–1177.PubMedCrossRefGoogle Scholar
  29. 29.
    Schafer, W.R., Kim, R., Sterne, R., Thorner, J., Kim. S-H. & Rine, J. (1989) Genetic and pharmacological suppression of oncogenic mutations in ras genes of yeast and humans. Science 245:379–385.PubMedCrossRefGoogle Scholar
  30. 30.
    Rilling, H.C., Bruenger, E., Leining, L.M., Buss, J.E. & Epstein. W.W. (1993) Differential prenylation of proteins as a function of mevalonate concentration in CHO cells. Arch. Biochem. Biophys. 301:210–215.PubMedCrossRefGoogle Scholar
  31. 31.
    Qureshi, A.A., Burger, W.C., Peterson, D.A. & Elson. C.E. (1986) The structure of an inhibitor of cholesterol biosynthesis isolated from barley. J. Biol. Chem. 261:10544–10550.PubMedGoogle Scholar
  32. 32.
    Yu, S.G., Abuirmeileh, N.M., Qureshi, A.A. & Elson, C.E. (1994). Dietary.β-ionone suppresses hepatic 3-hydroxy-3-methylglutaryl coenzyme A reductase activity J. Agric. Food Chem. 42:1493–1496.CrossRefGoogle Scholar
  33. 33.
    Clegg, R.J., Middleton, B., Bell, G.D. & White, D. A. (1982) The mechanism of cyclic monoterpene inhibition of 3-hydroxy-3-methylglutaryl coenzyme A reductase in vivo in the rat. J. Biol. Chem. 257:2294–2299.PubMedGoogle Scholar
  34. 34.
    Qureshi, A.A., Mangels, A.R., Din, Z.Z. & Elson, C.E. (1988) Inhibition of hepatic mevalonate biosynthesis by the monoterpene, d-limonene. J. Agric. Food Chem. 36:1220–1224.CrossRefGoogle Scholar
  35. 35.
    Fitch, M.E., Mangels, A.R., Altmann, W.A., El Hawry, M., Qureshi, A.A. & Elson, C.E. (1989) Microbiological screening of mevalonate-suppressive minor plant constituents. J. Agric. Food Chem. 37:687–691.CrossRefGoogle Scholar
  36. 36.
    Elson, C.E., Underbakke, G.L., Hanson, P., Shrago, E., Wainberg, R. & Qureshi, A. (1989) Impact of lemongrass oil, an essential oil, on serum cholesterol. Lipids 24:677–679.PubMedCrossRefGoogle Scholar
  37. 37.
    Pearce, B.C., Parker, R.A., Deason, M.E., Qureshi, A.A.& Wright, J.J.K. (1992) Hypocholesterolemic activity of synthetic and natural tocotrienols. J. Med. Chem. 35:3595–3606.PubMedCrossRefGoogle Scholar
  38. 38.
    Parker, R.A., Pearce, B.C., Clark, R.W., Gordan, D.A. & Wright, J.J.K. (1993) Tocotrienols regulate cholesterol production in mammalian cells by post-transcriptional suppression of 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase. J. Biol. Chem. 268, 11230–11238.PubMedGoogle Scholar
  39. 39.
    Moreno, F., Rossiello, M.R., Manjeshwar, S., Nath, R., Rao, P.M., Rajalakshmi, S. & Sama, D.S.R. (1994) Effect of β-carotene on the expression of 3-hydroxy-3-methylglutaryl coenzyme A reductase in rat liver. Proc. AACR 35: 142 (abs.).Google Scholar
  40. 40.
    Bradfute, D.L. & Simoni, R.D. (1994) Non-sterol compounds that regulate cholesterogenesis. Analogues of farnesyl pyrophosphate reduce 3-hydroxy-3-methylglutaryl-coenzyme A reductase levels. J. Biol. Chem. 269:6645–6650.PubMedGoogle Scholar
  41. 41.
    Gonzales-Pacanowska, D., Arisan, B., Havel, CM. & Watson, J.A. (1988) Isopentenoid synthesis in isolated embryonic Drosophilacells. Farnesl catabolism and omega oxidation. J. Biol. Chem. 263:1301–1306.Google Scholar
  42. 42.
    Christophe, J. & Popják, G. (1961) Studies on the biosynthesis of cholesterol: XIV. the origin of prenoic acids from allyl pyrophosphates in liver enzyme systems. J. Lipid Res. 2:244–257, 1961.Google Scholar
  43. 43.
    Case, G.L., He, L., Mo, H. & Elson, C.E. Induction of geranyl-pyrophosphate pyrophosphatase activity by cholesterol-suppressive isoprenoids. Lipids 30:357–359, 1995.PubMedCrossRefGoogle Scholar
  44. 44.
    Bansal, V.S., & Vaidya, S. Characterization of two distinct allyl pyrophosphatase activities from rat liver microsomes. Arch. Biochem. Biophys. 315:393–399.Google Scholar
  45. 45.
    Qureshi, A.A., Qureshi, N., Wright, J.J.K., Shen, S., Kramer, G., Gabor, A., Chong, Y.H., DeWitt, G., Ong, A.S.H., Peterson, D. & Bradlow, B.A. (1991b) Lowering of serum cholesterol in hyper-cholesterolemic humans by tocotrienols (Palmvitee). Am. J. Clin. Nutr. 53: 1021S-1026S.PubMedGoogle Scholar
  46. 46.
    Tan, D.T.S., Khor, H.T., Low, W.H., Ali, A. & Gapor, A. (1991) Effect of a palm-oil-vitamin E concentrate on the serum and lipoprotein lipids of humans. Am. J. Clin. Nutr. 53: 1027S-1030S.PubMedGoogle Scholar
  47. 47.
    Wahlqvist, M.L., Krivokuca-Bogetic, Z., Lo, C.H., Hage, B., Smith, R. & Lukito, W. (1992) Differential serum responses to tocopherols and tocotrienols during vitamin E supplementation in hypercholestero-laemic individuals without change in coronary risk factors. Nutr. Res. 12: S181-S201.CrossRefGoogle Scholar
  48. 48.
    Yu, S.G., Anderson, P.J. & Elson, C.E. (1995) The efficacy of β-ionone in the chemoprevention of rat mammary carcinogenesis. J. Agric. Food Chem. in pressGoogle Scholar
  49. 49.
    Gould, M.N., Haag, J. D., Kennan, W. S., Tanner, M.A. & Elson, C.E. (1991) A comparison of tocopherol and tocotrienol for the chemoprevention of chemically-induced mammary tumors. Am. J Clin. Nutr. 53:1068S-1070S.PubMedGoogle Scholar
  50. 50.
    Tan, B. (1992) Antitumor effects of palm carotenes and tocotrienols in HRS/J hairless female micc. Nutr. Res. 12:S163-S173.CrossRefGoogle Scholar
  51. 51.
    Ngah, W.Z.W., Jarien, Z., San, M.M., Marzuki, A., Top, G.M., Shamaan, N.A. & Kadir, K.A. (1991) Effect of tocotrienols on hepatocarcinogenesis induced by 2-acetylaminofhiorene in rats. Am. J. Clin. Nutr. 53:1076S-1081S.PubMedGoogle Scholar
  52. 52.
    Komiyama, K., Iizuka, K., Yamaoka, M., Watanabe, H., Tsuchiya, N. & Umezawa, I. (1989) Studies on the biological activity of tocotrienols. Chem. Pharm. Bull. 37:1369–1371.PubMedGoogle Scholar
  53. 53.
    Guthrie, N., Gapor, A., Chambers, A.F. & Carroll, K.K. (1994) Inhibition of proliferation of MDA-MB-435 human breast cancer cells by individual tocotrienols from palm oil. Proc. AACR 35: 629 (abs.).Google Scholar
  54. 54.
    Carroll, K.K., Guthrie, N., Gapor, A., & Chambers, A.F. (1995) In vitro inhibition of proliferation of MDA-MB-435 human breast cancer cells by combinations of tocotrienols and flavanoids. FASEB J. 9:A686.Google Scholar
  55. 55.
    Guthrie, N., Chambers, A.F., Gapor, A. & Carroll, K.K. (1995) In vitro inhibition of proliferation of receptor-positive MCF-7 human breast cancer cells by palm oil tocotrienols. FASEB J. 9:A998.Google Scholar
  56. 56.
    Goh, S.H., Hew, N.F., Norhanom, A.W. & Yadav, M. (1994) Inhibition of tumor promotion by various pal-oil tocotrienols. Int. J. Cancer 57:529–531.PubMedCrossRefGoogle Scholar
  57. 57.
    Shoff, S.M., Grummer, M., Yatvin, M.B. & Elson, CE. 1991) Concentration-dependent increase in murine P388 and B16 population doubling time by the acyclic monoterpene geraniol. Cancer Res. 51:37–42.PubMedGoogle Scholar
  58. 58.
    Crowell, P.L., Chang, R.R., Ren, Z., Elson, C.E.& Gould, M.N. (1991) Selective inhibition of isopreny-lation of 21–26-kDa proteins by the anticarcinogen d-limonene and its metabolites. J. Biol. Chem.266:17679–17685.PubMedGoogle Scholar
  59. 59.
    Schulz, S., Buhling, F. & Ansorge, S. (1994) Prenylated proteins and lymphocyte proliferation: Inhibition by d-limonene and related monoterpenes. Eur. J. Immunol. 24: 301–307.PubMedCrossRefGoogle Scholar
  60. 60.
    Bronfen, J.H., Stark, M.J. & Crowell, P.L. (1994) Inhibition of human pancreatic carcinoma cell proliferation by perillyl alcohol. Proc. AACR 35: 431 (abs.).Google Scholar
  61. 61.
    Kawata. S., Nagase, T., Yamasaki, E., Ishiguro, H. & Matsuzawa. Y (1994) Modulation of the mevalonate pathway and cell growth by pravastatin and d-limonene in a human hepatoma cell line (Hep G2). Br. J. Cancer 69:1015–1020.PubMedCrossRefGoogle Scholar
  62. 62.
    Crowell P.L., Ren, Z., Lin, S., Vedejs, E. & Gould, M.N. (1994) Structure-activity relationships among monoterpene inhibitors of protein isoprenylation and cell proliferation. Biochem. Pharmacol. 47:1405–1415PubMedCrossRefGoogle Scholar
  63. 63.
    Hohl, R.J. & Lewis, K. (1995) Differential effects of monoterpenes and lovastatin on RAS processing. J. Biol. Chem. 270:17508–17512.PubMedCrossRefGoogle Scholar
  64. 64.
    Kelloff, G.J., Boone, C.W., Steele, V.E., Crowell J.A., Lubet, R. & Sigman, C.C. (1994). Progress in cancer prevention: Perspectives on agent selection and short-term clinical intervention trials. Cancer Res. 54:2015s-2024s.PubMedGoogle Scholar
  65. 65.
    Ruch, R.J. & Sigler, K. (1994) Growth inhibition of rat liver epithelial tumor cells by monoterpenes does not involve ras plasma membrane association. Carcinogensis 15:787–789.CrossRefGoogle Scholar
  66. 66.
    DeClue, J.E., Vass, W.C., Papageorge, A.G., Lowy, D.R. & Willumsen, B.M. (1991) Inhibition of cell growth by lovastatin is independent of ras function. Cancer Res. 51:712–717.PubMedGoogle Scholar
  67. 67.
    Beck, L., Hosick, T.J. & Sinensky, M. (1988) Incorporation of a product of mevalonic acid metabolism into proteins of Chinese hamster ovary cell nuclei. J. Cell Biology 107:1307–1316.CrossRefGoogle Scholar
  68. 68.
    White, E. (1993) Death-defying acts: a meeting review on apoptosis. Genes & Dev. 7:2277–2284.CrossRefGoogle Scholar
  69. 69.
    Stewart, B.W. (1994) Mechanisms of apoptosis: Integration of genetic, biochemical, and cellular indicators. JNCI 86:1286–1296.PubMedGoogle Scholar
  70. 70.
    Fisher, D.E. (1994) Apoptosis in cancer therapy: Crossing the threshold. Cell 78:539–542.PubMedCrossRefGoogle Scholar
  71. 71.
    Hotz, M.A., Gong, J., Traganos, F. & Darzynkiewicz, Z. (1994) Flow cytometric detection of apoptosis: Comparison of the assays of in situ DNA degradation and chromatin changes. Cytometry 15:237–244.PubMedCrossRefGoogle Scholar
  72. 72.
    Perez-Sala, D. & Mollinedo, F. (1994) Inhibition of isoprenoid biosynthesis induces apoptosis in human promelocytic HL-60 cells. Biochem. Biophys. Res. Commun. 199:1209–1215.PubMedCrossRefGoogle Scholar
  73. 73.
    Voziyan, P.A., Haug, J.S. & Melnykovych, G. (1995) Mechanism of farnesol cytotoxity: Further evidence for the role of PKC-dependent signal transduction in farnesol-induced apoptopic cell death. Biochem. Biophys. Res. Commun. 212:479–486.PubMedCrossRefGoogle Scholar
  74. 74.
    Clegg, R.J., Middleton, B., Bell, G.D. & White, D.A. (1980) Inhibition of hepatic cholesterol synthesis and 3-hydroxy-3-methylglutaryl coenzyme A reductase by mono and bicyclic monoterpenes administered in vivo: Biochem Pharmacol 29:2125–2127.Google Scholar
  75. 75.
    Russin, W.A., Hoesly, J.D., Elson, C.E., Tanner, M.A. & Gould, M.N. (1989) Inhibition of rat mammary carcinogenesis by monoterpenoids. Carcinogenesis 10:2161–2164.PubMedCrossRefGoogle Scholar
  76. 76.
    Maltese, W.A., Defendi,R., Greene, R.A., Sheridan, K.M. & Donley, D.K. (1985). Suppression of murine neuroblastoma growth in vivo by mevinolin, a competitive inhibitor of 3-hydroxy-3-methylglutaryl coenzyme A reductase. J. Clin. Invest. 76:1748–1754.PubMedCrossRefGoogle Scholar
  77. 77.
    Sumi, S., Beauchamp, R. D., Townsend, C. M. Jr., Uchida, T., Murakami, M., Rajaraman, S., Ishizuka, J. & Thompson, J. C. (1992) Inhibition of pancreatic adenocarcinoma cell growth by lovastatin. Gastroenterology 103:982–989.PubMedGoogle Scholar
  78. 78.
    Blanock, K., Jani, J.P., Specht, S., Stemmler, N., Singh, S.V., Gupta, V., and Katoh, A. (1994) Anti-me-tastatic potential of lovastatin, a cholesterol lowering drug. Proc. AACR 35: 51 (abs).Google Scholar
  79. 79.
    Kawata, S., Kakimoto, H., Ishiguro, H., Yamasaki, E., Inui, Y. & Matsuzawa, Y (1992) Effect of pravastatin, a potent 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitor, on survival of AH130 hepatoma-bearing rats. Jpn. J. Cancer Res. 83:1120–1123.PubMedGoogle Scholar
  80. 80.
    Shack, S., Prasanna, P., Hudgins, W. R., Liu, L., Myers, C. E. & Samid, D. (1994) Experimental therapies for malignant gliomas: Targeting the mevalonate pathway of cholesterol synthesis. Proc. AACR 35: 409 (abs.).Google Scholar
  81. 81.
    Thibault, A., Cooper, M.R., Figg, W.D., Weinberger, M.S., Tompkins, A.C., Trepei, J., Samid. D., and Myers, C.E. (1994) A phase I trial of high-dose lovastatin shows activity against malignant astrocytes. Proc. AACR 35: 226 (abs).Google Scholar
  82. 82.
    Narisawara, T., Fukaura, Y, Terada, K., Umezawa, A., Tanida, N., Yazawa, K. & Ishikawa, C (1994) Prevention of 1,2-dimethylhydrazine-induced colon tumorigenesis by HMG-CoA reductase inhibitors, pravastatin and simvastatin, in ICR mice. Carcinogenesis 15:2045–2048.CrossRefGoogle Scholar
  83. 83.
    Anonymous. Lovastatin Study Groups I-IV. (1993) Lovastatin 5-year safety and efficacy study. Arch. Int. Med. 153, 1079–1087.CrossRefGoogle Scholar
  84. 84.
    Melman, M. F., Gabriel, E. D., Eskander, W. E. D. & Rao, K. N. (1987) Cholestyramine promotes 7,12-dimethylbenzanthracene induced mammary cancer in Wistar rats. Br. J. Cancer 56: 45–48.CrossRefGoogle Scholar
  85. 85.
    Arakawa, S., Ito, M. & Tejima, S. (1988) Promoter function of carrageenan on development of colonic tumors induced by 1,2-dimethylhydrazine in rats. J. Nutr. Sci. Vitaminol. 34: 577–585.PubMedGoogle Scholar
  86. 86.
    Coni, P., Pang, J., Pichiri-Coni, G., Hsu, S., Rao, P. M., Rajalakshimi, S. & Sarma, D. S. R. (1992) Hypomethylation of β-hydroxy-β-methylglutaryl coenzyme A reductase gene and its expression during hepatocarcinogenesis in the rat. Carcinogenesis 13:497–499.PubMedCrossRefGoogle Scholar
  87. 87.
    Rossiello, M. R., Rao, P. M., Rajalakshmi, S. & Sarma, D. S. R. (1994) Similar patterns of hypomethylation in the b-hydroxy-b-methylglutaryl coenzyme A reductase gene in hepatic nodules induced by different carcinogens. Molec. Carcinogenesis 10:237–245.CrossRefGoogle Scholar
  88. 88.
    Vasudevan, S., Laconi, E., Khandelwal, M., Ackerman, P., Jones, W., Rao, P. M., Rajalakshmi, S., Marcon, N. & Sarma, D. S. R. (1994) Hypomethylation of β-hydroxy-β-methylglutaryl coenzyme A (HMG CoA) reductase gene in polyps and cancers of human colon. FASEB J. 8:A647 (abs.)Google Scholar
  89. 89.
    Wilson, D.M., Gueldner, R.C, McKinney, J.K., Lievsay, R.H., Evans, B.D.& Hill, R.A. (1981) Effect of β-ionone on Aspergillus flavus and Aspergillus parasiticus growth, sporulation, morphology and anatoxin production. JAOCS 58:959A-961 A.CrossRefGoogle Scholar
  90. 90.
    Winterhalter, P., Herderich, M.& Schrier, P. (1990) 4-Hydroxy-7,8-dihydro-β-ionone and isomeric megastigma-6,8-dien-4-ones: new C13 norisoprenoids in quince (Cydonia oblonga, Mill) fruit. J. Agric. Food Chem. 38:796–799.CrossRefGoogle Scholar
  91. 91.
    Charles, D.J., Simon, J.E. & Widerlechner, M.P. (1991) Characterization of essential oil of Agastache species. J. Agric. Food Chem. 39:1946–1949.CrossRefGoogle Scholar
  92. 92.
    Krammer, G., Winterhalter, P., Schwab, M. & Schreier P. (1991) Glycosidically bound aroma compounds in the fruits of Prunus species. J. Agric. Food. Chem. 39:778–781.CrossRefGoogle Scholar
  93. 93.
    Pabst, A., Barron, D., Etievant, P. & Schreier, P. (1991) Studies on the enzymatic hydrolysis of bound aroma constituents from raspberry fruit pulp. J. Agric. Food Chem. 39:173–175.CrossRefGoogle Scholar
  94. 94.
    Takeoka, G.R., Flath, R.A., Mon, T.R., Teranishi, R. & Guenter, M. (1990) Volatile constituents of apricots (Prunus armeniaca). J. Agric. Food Chem. 38:471–477.CrossRefGoogle Scholar
  95. 95.
    Buttery, R.G., Teranishi, R., Flath, R.A. & Ling, L.C. (1989) Fresh tomato volatiles: Composition and sensory studies. ACS Symp. Ser. 388:213–222. Am. Chem. Soc, Washington, DC.CrossRefGoogle Scholar
  96. 96.
    Etoh, H., Ina, K. & Iguchi, M. (1990) 3S-(+)-3,7-dimethyl-1,5-octadiene-3,7-diol and ionone derivatives from tea. Agric. Biochem. 44:2999–3000.Google Scholar
  97. 97.
    Fujimori, T., Kasuga, R., Noguchi, M. & Kaneko, H. (1974) Isolation of R-(-)-3-hydroxy-β-ionone from Burley tobacco. Agric. Biol. Chem. 38:891–892.CrossRefGoogle Scholar
  98. 98.
    Sefton, M.A. & Williams, R.J. (1991) Generation of oxidation artifacts during the hydrolysis of noriso-prenoid glycosides by fungal enzyme preparations. J. Agric. Food Chem. 39:1994–1997.CrossRefGoogle Scholar
  99. 99.
    Weeks, W.W. (1986) Carotenoids: a source of flavor and aromas, in Biogeneration of Aromas. ACS Symp. Ser. 317:157–166. Am. Chem. Soc, Washington, DC.CrossRefGoogle Scholar
  100. 100.
    Voilley, A., Beghin, V., Charpentier, C. & Peyron, D. (1991) Interactions between aroma substances and macromolecules in a model wine. Lebensmittel-Wissencschaft Technol. 24:469–472.Google Scholar
  101. 101.
    Humpf, H.U., Winterhalter, P. & Schreier, P. (1991) 3,4-Dihydroxy-7,8-dihydro-β-ionone β-D-glucopyra-noside: Natural precursor of 2,2,6,8-tetramethyl-7,11-dioxatricyclo[]undec-4-ene (Riesling Acetal) and l,l,6-trimethyl-1.2-dihydronaphthalene in red currant (Ribes rubrum L.) leaves. J. Agric. Food Chem. 39:1833–1836.CrossRefGoogle Scholar
  102. 102.
    Salt, S.D., Tuzun, S. & Kuc, J. (1986) Effects of β-ionone and abscisic acid on the growth of tobacco and resistance to blue mold. Mimcry of effects of stem infection by Peronospora tabacina Adam. Physiol. Molec. Plant Path. 28:287–297.CrossRefGoogle Scholar
  103. 103.
    Norman, S.M., Poling, S.M., Maier, V.R & Nelson, M.D. (1985) Ionones and β-ionylideneacetic acids: Their influence on abscisic acid biosynthesis by Cercospora rosicola. Agric. Biol. Chem. 49:2887–2892.CrossRefGoogle Scholar
  104. 104.
    Wei, C-I., Tan, H., Fernando, S. & Ko, N-J. (1986) Inhibitory effect of β-ionone on growth and anatoxin production by Aspergillus parasiticus on peanuts. J. Food Protect. 49:515–518.Google Scholar
  105. 105.
    Feofilova, E.F. & Arbuzov, V.A. (1975) Mechanism of the action of β-ionone on carotene synthesizing enzymes of Blakeslea trispora. Microbiology 44:351–354.Google Scholar
  106. 106.
    Eslava, A.P., Alvarez, M.I. & Cerda-Olmedo, E. (1974) Regulation of carotene biosynthesis in Phycomy-ces by vitamin A and β-ionone. Eur. J. Biochem. 48:617–623.CrossRefGoogle Scholar
  107. 107.
    Lewis, M.J., Ragot, N., Berlant, M.C. & Miranda, M. (1990) Selection of astaxanthin-producing mutants of Phaffia rhodozyma with β-ionone. Appl. Environ. Microbiol. 56:2944–2945.PubMedGoogle Scholar
  108. 108.
    Donaldson, J.M.I., Mc Govern, T. & Ladd, T.L. Jr. (1990) Floral attractants for Cetoniinae and Rutelinae (Coleoptera: Scarabaeidae). J. Econ. Entomol. 83:1298–1305.Google Scholar
  109. 109.
    Lampman, R.L. & Metcalf, R.L. (1988) The comparative response of Diabrotica species (Coleoptera: Chrysomeladae) to volatile attractants. Environ. Entomol. 17:644–648.Google Scholar
  110. 110.
    Peterson, D.M.& Qureshi, A.A. (1993) Genotype and environmental effects on tocols of barley and oats. Cereal Chem. 70:157–162.Google Scholar
  111. 111.
    Slover, H.T., Lehmann, J.,Valis, R.J. (1969) Nutrient composition of selected wheats and wheat products. III. Tocopherols. Cereal Chem. 46:635–641.Google Scholar
  112. 112.
    Piironen, V.; Syvaeoja, E.L., Varo, P., Salminen, K. & Koivistoinen, P. (1986) Tocopherols and to-cotrienols in cereal products from Finland. Cereal Chem. 63:78–81.Google Scholar
  113. 113.
    Hakkarainen, R.V., Tyopponen, J.T., Hassan, S., Bengtsson, S.G., Jonsson, S.R. & Lindberg, P.O. (1984) Biopotency of vitamin E in barley. Br. J. Nutrit. 52:335–349.CrossRefGoogle Scholar
  114. 114.
    Barnes, P.J. (1983) Cereal tocopherols. Develop. Food Sci. 5B: 1095–1100.Google Scholar
  115. 115.
    Slover, H.T. (1971) Tocopherols in foods and fats. Lipids 6:291–296.CrossRefGoogle Scholar
  116. 116.
    Rao, M.K.G. & Perkins, E.G. (1972) Identification and estimation of tocopherols and tocotrienols in vegetable oils using gas chromatography-mass spectrometry J. Agric. Food Chem. 20:240–245.CrossRefGoogle Scholar
  117. 117.
    Hassapidou,M.N. & Manoukas,A.G. (1993) Tocopherol and tocotrienol compositions of raw table olive fruit. J. Sci. Food Agric. 61:277–280.CrossRefGoogle Scholar
  118. 118.
    Jacobsberg, B., Deldime, P. & Gapor, A. (1978) Tocopherols and tocotrienols in palm oil. Consideration on their role as antioxidants and practical determinations. Oleagineux 33:239–247.Google Scholar
  119. 119.
    Goh, S.H., Choo, Y.M. & Ong, A.S.H. (1985). Minor constituents of palm oil. JAOCS 62:237–240.CrossRefGoogle Scholar
  120. 120.
    Anderson, J.W., Gilinsky, N.H., Deakins, D.A., Smith, S.F., O’Neal, D.S., Dillon, D.W. & Oeltgen, P.R. (1991) Lipid responses of hypercholesterolemic men to oat-bran and wheat-bran intake. Am. J. of Clin. Nutr. 54:678–683.Google Scholar
  121. 121.
    Kelley, M.J. & Story, J.A. (1987) Short-term changes in hepatic HMG-CoA reductase in rats fed diets containing cholesterol or oat bran. Lipids 22:1057–1059.PubMedCrossRefGoogle Scholar
  122. 122.
    Marlett, J.A., Hosig, K.B., Vollendorf, N.W., Shinnick, F.L., Haack, VS. & Story, J.A. (1994) Mechanism of serum cholesterol reduction by oat bran. Hepatology 20:1450–1457.PubMedCrossRefGoogle Scholar
  123. 123.
    Newman, R.K., Newman, C.W., Hofer, R.J. & Barnes, A.E. (1991) Growth and lipid metabolism as affected by feeding of hull-less barleys with and without supplemental beta-glucanase. Plant Foods for Human Nutrition 41:371–80.PubMedCrossRefGoogle Scholar
  124. 124.
    Randall, J.M., Sayre, R.N., Schultz, W.G., Fong, R.Y, Mossman, A.P., Tribelhorn, R.E. & Saunders, R.M. (1985) Rice bran stabilization by extrusion cooking for extraction of edible oil. J. Food Sci. 50:361–363.CrossRefGoogle Scholar
  125. 125.
    Saunders, R.M. (1985) Rice bran: Composition and potential food use. Food Rev. Int. 1:465–495.CrossRefGoogle Scholar
  126. 126.
    Kahlon, T.S., Saunders, R.M., Chow, F.I., Chiu, M.M. & Betschart, A.A. (1990) Influence of rice bran, oat bran, and wheat bran on cholesterol and triglycerides in hamsters. Cereal Chem. 67:439–441.Google Scholar
  127. 127.
    Seetharamaiah, G.S. & Chandrasekhara, N. (1989) Studies of the hypocholesterolemic activity of rice bran. Atherosclerosis 78:219–223.PubMedCrossRefGoogle Scholar
  128. 128.
    Hegsted, M., Windhauser, M.M., Morris, S.S.K. & Lester, S.B. (1993) Stabilized rice bran and oat bran lower cholesterol in humans. Nutr. Res. 13:387–398.CrossRefGoogle Scholar
  129. 129.
    Suyama, K., Yeow, T. & Nakai, S. (1983) Vitamion A oxidation products responsible for haylike flavor production in nonfat dry milk. J. Agric. Food Chem. 31:22–36.PubMedCrossRefGoogle Scholar
  130. 130.
    Dufour, E. & Haertle, T. (1990) Binding affinities of β-ionone and related flavor compounds to β-lactoglobulin: Effects of chemical modification. Biochim. Biophys. Acta 38:1691–1695.Google Scholar
  131. 131.
    Criqui, M.H. & Ringel, B.L. (1994) Does diet or alcohol explain the French paradox? Lancet 344:1719–1723.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1996

Authors and Affiliations

  • Charles E. Elson
    • 1
  1. 1.Department of Nutritional SciencesUniversity of Wisconsin-MadisonMadisonUSA

Personalised recommendations