Skip to main content

Charge Density Waves in Quasi Two-Dimensional Inorganic Conductors — Molybdenum and Phosphate Tungsten Bronzes

  • Chapter
Physics and Chemistry of Low-Dimensional Inorganic Conductors

Part of the book series: NATO ASI Series ((NSSB,volume 354))

Abstract

The history of the quasi two-dimensional (2D) inorganic conductors goes back to approximately 30 years ago, when the transition metal layered dichalcogenides (TMLD) were extensively studied, mostly in relation with their strongly anisotropic anomalous conducting properties [1]. These properties were soon attributed to the Peierls instability induced by special properties of the Fermi surface combined with strong electron-phonon coupling and leading to the so-called charge density wave (CDW) state at low temperature [2, 3]. It was shown later that similar properties are found in some quasi 2D molybdenum bronzes and oxides [4, 5]. More recently, a new family, the monophosphate tungsten bronzes (PO2)4(WO3)2m [6], has provided a model system where the low-dimensional character can be modified without changing the band filling [7]. Meantime, the discovery of superconductivity at high temperature in some copper-based quasi-2D oxides has revived the interest in quasi-2D conducting oxides [8].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Wilson J.A. and Yoffe A.D., Adv. Phys. 18, 193 (1969).

    Article  CAS  Google Scholar 

  2. Wilson J.A., Di Salvo F.J. and Mahajan S., Adv. Phys. 24, 117 (1975)

    Article  CAS  Google Scholar 

  3. Friend R. and Yoffe A.D., Adv. Pys. 36, 1 (1987).

    Article  CAS  Google Scholar 

  4. Schlenker, C. Dumas J., Escribe-Filippini C, Guyot H.,Marcus J. and Fourcaudot G., Phil. Mag. B (N.F. Mott Festschrift) 52, 643 (1985).

    CAS  Google Scholar 

  5. Schlenker C. (ed.), Low dimensional properties of molybdenum bronzes and oxides, Kluwer Acad. Publ., 1989.

    Google Scholar 

  6. Greenblatt M. (ed.), Oxide bronzes, Int. J. Mod. Phys., B7, 4045 (1993).

    Google Scholar 

  7. Schlenker C, Le Touze C, Hess C, Rötger A., Dumas J., Marcus J., Greenblatt M., Teweldemedhin Z.S., Ottolenghi A., Foury P. and Pouget J.P., Synth. Metals, 70, 1263 (1995).

    Article  CAS  Google Scholar 

  8. See for example Wyder P. (ed.) Proc. Int. Conf. Materials and Mechanisms of Superconductivity — High Temperature Superconductors IV, Physica C, 235–240 (1994).

    Google Scholar 

  9. Peierls R., Quantum Theory of Solids, Oxford University Press (1955), p. 108.

    Google Scholar 

  10. Overhauser A.W., Phys. Rev., 128, 1437 (1962).

    Article  Google Scholar 

  11. McMillan W.L., Phys. Rev. B12, 1187 (1975).

    Google Scholar 

  12. Toombs G.A., Physics Reports, 40, 181 (1978).

    Article  Google Scholar 

  13. Schlenker C, Dumas J., Escribe-Filippini and Guyot H., in ref.5, p. 15

    Google Scholar 

  14. Dumas J and Schlenker C, in ref.6, p.4045.

    Google Scholar 

  15. Gruner G., Density Waves in Solids, Addison-Wesley Publ. Comp. (1994).

    Google Scholar 

  16. Tang S. and Hirsch J.E., Phys. Rev. B37, 9546 (1988).

    Google Scholar 

  17. Whangbo M.H, Canadell E., Foury P. and Pouget J.P., Science, 252, 96 (1991).

    Article  CAS  Google Scholar 

  18. Canadell E. and Whangbo M., Chem. Rev., 91, 965 (1991).

    Article  CAS  Google Scholar 

  19. Canadell E. and Whangbo M. Phys. Rev., B43, 1894 (1991).

    Google Scholar 

  20. McKenzie R.H., Phys. Rev. B51, 6249 (1995).

    Google Scholar 

  21. McMillan W.L., Phys. Rev. B14, 1496 (1976)

    Google Scholar 

  22. Jérome D. and Caron L.G. (ed.), Low-Dimensional Conductors and Superconductors, NATO ASI Series B,Vol. 155, Plenum (1987)

    Google Scholar 

  23. Liu J.N., Sun X. Fu R.T. and Nasu K., Phys. Rev. B46, 1710 (1992).

    Google Scholar 

  24. Ung K.C., Mazumdar S. and Toussaint D., Phys. Rev., B73, 2603 (1994).

    Google Scholar 

  25. Noack R.M., Scalapino D.J. and Scalettar R.T., Phys. Rev. Lett. 66, 778 (1991).

    Article  CAS  Google Scholar 

  26. Jérome D., Berthier C, Molinié and Rouxel J., J. Physique-France, C4, 125 (1976

    Google Scholar 

  27. Escribe-Filippini C, Beille J., Boujida M., Marcus J. and Schlenker C, Physica C 162–164, 427 (1989).

    Google Scholar 

  28. Whangbo M.H and Canadell E., J.Am. Chem. Soc. 114, 9587 (1992).

    Article  CAS  Google Scholar 

  29. Vincent H. and Marezio M., in ref.5, p.49.

    Google Scholar 

  30. Greenblatt M., in ref. 5, p.1

    Google Scholar 

  31. Pouget J.P., in ref. 5, p.87.

    Google Scholar 

  32. Domenges B., Studer F. and Raveau B., Mat. Res. Bull., 18, 669 (1983).

    Article  CAS  Google Scholar 

  33. Labbé P., Goreaud M. and Raveau B., J. Solid State Chem., 61 (1986) 234.

    Article  Google Scholar 

  34. Wang E., Greenblatt M., Rachidi I.E.I., Canadell E., Whangbo M.H. and Vadlamannati, Phys. Rev., B39, 12969(1989).

    Google Scholar 

  35. Hess C, Schlenker C, Buder R., Greenblatt M. and Teweldemedhin Z.S., to be published

    Google Scholar 

  36. Rötger A., Lehmann J., Schlenker C, Dumas J., Marcus J., Teweldemedhin Z.S. and Greenblatt M., Europhys. Lett., 25, 23 (1994).

    Article  Google Scholar 

  37. Canadell E. and Whangbo M.H., in ref.6, p.4405.

    Google Scholar 

  38. Lehmann J., Schlenker C., Le Touze C, Rötger A., Marcus J., Teweldemedhin Z.S. and Greenblatt M., J. de Phys. IV France, 3, 243 (1993).

    CAS  Google Scholar 

  39. Ciaessen R., Anderson R.O., Allen J.W., Olson C.G., Janowitz C, Ellis W. P., Harm S., Kalning M., Manzke R. and Skibowski M., Phys. Rev. Lett., 69, 808 (1992).

    Article  Google Scholar 

  40. Dardel D, Malterre D., Grioni M., Weibel M., Baer Y, Schlenker C. and Petroff Y., Europhysics Letters 19, 525 (1992).

    Article  CAS  Google Scholar 

  41. Foury P. and Pouget J.P., in ref. 6, p. 3973.

    Google Scholar 

  42. Ottolenghi A., Foury P., Pouget J.P., Teweldemedhin Z.S., Greenblatt M., Groult D., Marcus J. and Schlenker C., Synt. Metals, 70, 1301 (1995).

    Article  CAS  Google Scholar 

  43. Kubo Y., Phys. Rev., B50, 3181 (1994).

    Google Scholar 

  44. Rötger A., Thesis, Université Joseph Fourier, Grenoble (1993).

    Google Scholar 

  45. Le Touze C., Bonfait G., Schlenker C., Dumas J., Almeida M., Greenblatt M. and Teweldemedhin Z.S., J. Phys. I France, 5, 437 (1995).

    Article  Google Scholar 

  46. Pippard A. B., Magnetoresistance in Metals, Cambridge Univ. Press (1989).

    Google Scholar 

  47. Shoenberg D., Magnetic Oscillations in Metals, Cambridge Univ Press (1984).

    Book  Google Scholar 

  48. Sorbier J.P., Tortel H., Schlenker C. and Guyot H., J. Phys. I France, 5, 221 (1995).

    Article  CAS  Google Scholar 

  49. Tortel H., Thesis, Université de Provence, Marseille, 1995.

    Google Scholar 

  50. Esaki L., Tunneling Phenomena in Solids (Plenum Press New York, 1969).

    Google Scholar 

  51. Wolf E.L., Principles of Electron Tunneling Spectroscopy (Oxford University Press, 1985).

    Google Scholar 

  52. Fung K.K., McKernan, Steeds J.W. and Wilson J.A., J. Phys. C: Solid State Phys., 14, 5417 (1981).

    Article  CAS  Google Scholar 

  53. Chen C.H., Gibson J.M. and Fleming R.M., Phys. Rev., B26, 184 (1982).

    Google Scholar 

  54. Yan Y., Kleman M., Le Touze C, Marcus J., Schlenker C. and Buffat P.A., Europhys. Lett., 30, 49 (1995).

    Article  CAS  Google Scholar 

  55. Koyano M. and Inoue M., Solid State Comm., 84, 363 (1992).

    Article  CAS  Google Scholar 

  56. See for example: Wiesendanger R. and Anselmetti D., in Scanning Tunneling Spectroscopy I, Ed. Guntherodt H.J. and Wiesendanger R.(Springer 1992) p. 131.

    Google Scholar 

  57. Sasaki M., Tai G.X., Tamura S. and Inoue M. Phys. Rev. B, 47, 6216 (1993).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Plenum Press, New York

About this chapter

Cite this chapter

Schlenker, C. (1996). Charge Density Waves in Quasi Two-Dimensional Inorganic Conductors — Molybdenum and Phosphate Tungsten Bronzes. In: Schlenker, C., Dumas, J., Greenblatt, M., van Smaalen, S. (eds) Physics and Chemistry of Low-Dimensional Inorganic Conductors. NATO ASI Series, vol 354. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1149-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1149-2_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8449-9

  • Online ISBN: 978-1-4613-1149-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics