Charge Density Wave Dynamics in the Blue Bronzes A0.30MoO3(A=K, Rb)

  • J. Dumas
Part of the NATO ASI Series book series (NSSB, volume 354)


Quasi-one dimensional conductors exhibit a rich variety of response to an applied electric field, which involves many internal degrees of freedom. The depinning of the CDW occurs above a finite threshold field and gives rise to an excess conductivity, the so-called Fröhlich conductivity first reported by Monceau et al. in NbSe3 in 1976 [1]. Since this discovery, several other materials of the family of trichalcogenides and halogenated tetrachalcogenides have been shown to exhibit CDW non-linear conductivity. In a structurally different class of materials, namely the so-called blue bronzes A0.30MoO3 (A=K, Rb, T1), a CDW conductivity has also been observed [2,3] which has generated considerable renewal of interest for these materials [4]. This material was the first quasi-one dimensional oxide which shows non-linear conductivity due to CDW motion. The blue bronzes show a Peierls transition at 180K towards an incommensurate CDW state. The CDW wave vector is found smaller than 0.75b* and approaches this commensurate value when the temperature is lowered below approximately 100K [5].


Electron Paramagnetic Resonance Electron Paramagnetic Resonance Spectrum Voltage Response Threshold Field Excess Conductivity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Monceau P., Ong N.P., Portis A.M., Meerschaut A., Rouxel J., Phys. Rev. Lett. 37, 602 (978).Google Scholar
  2. 2.
    Dumas J., Schlenker C, Marcus J., Buder R., Phys. Rev. Lett. 50, 757 (1983).CrossRefGoogle Scholar
  3. 3a.
    Ganne M., Boumaza A., Dion M., Dumas J., Mat. Res. Bull. 20, 1297 (1985);CrossRefGoogle Scholar
  4. 3b.
    Collins B.T., Ramanu-jachary K.V., Greenblatt M., Waszczak J.V., Solid State Commun. 56, 1023 (1985).CrossRefGoogle Scholar
  5. 4a.
    For a review, see: “Low Dimensional Electronic Properties of Molybdenum Bronzes and Oxides”, ed. by Schlenker C, Kluwer Acad. Pub. 1989;Google Scholar
  6. 4b.
    Dumas J., Schlenker C, Int. J. Mod. Phys. B 7, 4045 (1993).CrossRefGoogle Scholar
  7. 5a.
    Pouget J.P., Solid State Commun. 56 ,p. 87, 1989;Google Scholar
  8. 5b.
    Rouzière S., Ravy S., Pouget J.P., Synth. Metals 70, 1259 (1995).CrossRefGoogle Scholar
  9. 6.
    Mihaly G., Beauchène P., Dumas J., Marcus J., Schlenker C, Phys. Rev. B 37, 1047 (1988).CrossRefGoogle Scholar
  10. 7.
    De Boer J., private communication.Google Scholar
  11. 8.
    Dumas J., Arbaoui A., Daudin B., Dubus M., Lopes E.B., Almeida M., Synth. Metals 43, 3813 (1991).CrossRefGoogle Scholar
  12. 9.
    Dumas J., Layadi B., Buder R., Phys. Rev. B 40, 2968 (1989).CrossRefGoogle Scholar
  13. 10.
    Fogle W., Perlstein J.H., Phys. Rev. B 6, 1402 (1972).CrossRefGoogle Scholar
  14. 11.
    Peinke J., Kittel A., Dumas J., Europhys. Lett. 18, 125 (1992).CrossRefGoogle Scholar
  15. 12.
    Jamet J.P., Bouchiat H., Dumas J., Schlenker C, Europhys. Lett. 18, 195 (1992).CrossRefGoogle Scholar
  16. 13.
    Itkis M.E., Ya Nad F., Monceau P., Synth. Metals 41–43, 4037 (1991).CrossRefGoogle Scholar
  17. 14.
    Dumas J., Schlenker C, in Lecture Notes in Physics, Springer Verlag, Vol. 217, p. 439, (1985).Google Scholar
  18. 15.
    Beauchêne P., Thesis, Université Joseph Fourier, Grenoble, 1987; see also ref. 6.Google Scholar
  19. 16a.
    Fleming R.M., Cava R.J., , Int. J. Mod. Phys. B 7 259, 1993Google Scholar
  20. 16b.
    Wang Xue-Mei, Zhang-Dian Lin, Phys. Rev. B 57, 4792 (1995).CrossRefGoogle Scholar
  21. 17.
    Beauch00EAne P., Dumas J., Janossy A., Marcus J., Schlenker C, Physica 143 B, 126 (1986).Google Scholar
  22. 18.
    Janossy A., Berthier C, Ségransan P., Butaud P., Phys. Rev. Lett. 59, 2348 (1987).CrossRefGoogle Scholar
  23. 19.
    Fleming R.M., Schneemeyer L.F., Phys. Rev. B 28, 6996 (1983).CrossRefGoogle Scholar
  24. 20.
    Fleming R.M., Schneemeyer L.F., Phys. Rev. B 33, 2930 (1986).CrossRefGoogle Scholar
  25. 21a.
    Dumas J., Arbaoui A., J. Physique I, Vol. 3, 179 (1993);Google Scholar
  26. 21b.
    Dumas J., Schlenker C, Int. J. Mod. Phys. B 7, 23–24,4045 (1993).CrossRefGoogle Scholar
  27. 22.
    Arbaoui A., Dumas J., Lopes E.B., Almeida M., Solid State Commun. 81, 567 (1992).CrossRefGoogle Scholar
  28. 23.
    Chen T., Mihaly L., Grüner G., Phys. Rev. Lett. 60, 464 (1988).CrossRefGoogle Scholar
  29. 24a.
    Fisher D.S., Phys. Rev. B 31, 1396 (1985);CrossRefGoogle Scholar
  30. 24b.
    Wang Z.Z., Ong N.P., Phys. Rev. Lett. 58, 2375 (1987).CrossRefGoogle Scholar
  31. 25a.
    Littlewood PB., in Lecture Notes in Physics, Springer Verlag, Vol. 217, p. 369, (1985);Google Scholar
  32. 25b.
    Fukuyama H., Lee P.A., Phys. Rev.B 17, 535 (1977);CrossRefGoogle Scholar
  33. 25c.
    Lee P.A., Rice T.M., Phys. Rev. B 19, 3970 (1979).CrossRefGoogle Scholar
  34. 26.
    Dumas J., Feinberg D., Europhys. Lett. 2, 555 (1986).CrossRefGoogle Scholar
  35. 27.
    Bjelis A., Physica Scripta, T29, 62 (1989).CrossRefGoogle Scholar
  36. 28.
    Ong N.P., Maki K., Phys. Rev. B 32, 6582 (1985).CrossRefGoogle Scholar
  37. 29.
    Zaitsev-Zotov S.V., Synth. Metals 29, F433 (1989).CrossRefGoogle Scholar
  38. 30.
    Gill J.C., Europhys. Lett. 11, 175 (1990).CrossRefGoogle Scholar
  39. 31.
    Saint-Lager M.C., Monceau P., Renard M., Europhys. Lett. 9, 585 (1989).CrossRefGoogle Scholar
  40. 32.
    Janossy A., Mihaly G., Pekker S., Roth S., Solid State Commun. 61, 33 (1987).CrossRefGoogle Scholar
  41. 33.
    Csiba T., Kriza G., Janossy A., Phys. Rev. B 40, 10088 (1989).CrossRefGoogle Scholar
  42. 34a.
    Gill J.C., Phys. Rev. Lett. 70, 331 (1993);CrossRefGoogle Scholar
  43. 34b.
    DiCarlo D., Sweetland E., Sutton M., Brock J.D., Thome R.E., Phys. Rev. Lett. 70, 845 (1993).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1996

Authors and Affiliations

  • J. Dumas
    • 1
  1. 1.Laboratoire d’Etudes des Propriétés Electroniques des Solides, CNRSUniversité Joseph FourierGrenoble Cedex 9France

Personalised recommendations