Skip to main content

Part of the book series: NATO ASI Series ((NSSB,volume 354))

  • 610 Accesses

Abstract

The standard description of (three-dimensional) metals is based on the Landau theory of Fermi systems (Fermi Liquid theory) [1]. Within this theory all low-energy and low- temperature properties are described in terms of independent elementary excitations (quasi- particles) which behave more or less as free particles. This picture breaks down in one dimensional systems, which are instead described by the so called Luttinger Liquid theory [2]. Indeed experimental evidence suggests that Fermi Liquid theory could break down in a variety of physical situations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. See for instance: P. Nozières, “Theory of interacting Fermi Systems” (Benjamin, 1964);

    Google Scholar 

  2. G.Baym and C. Pethick in “The physics of liquid and solid Helium”, ed. Bennemann and Ketterson (Wiley, 1978)

    Google Scholar 

  3. For a review on and quasi — electronic systems, see J. Solyom, Adv. Phys. 28, 201 (1979).

    Article  Google Scholar 

  4. C. Castellani, C. Di Castro and W. Metzner, Phys. Rev. Lett. 72, 316 (1994).

    Article  CAS  Google Scholar 

  5. All energies are measured with respect to the Fermi energy.

    Google Scholar 

  6. S. Tomonaga, Prog.Theor. Phys. 5, 544 (1950);

    Article  Google Scholar 

  7. J. M. Luttinger, J. Math. Phys. 4, 1154 (1963);

    Article  CAS  Google Scholar 

  8. D.C. Mattis and E.H. Lieb, J.Math. Phys. 6, 304 (1965).

    Article  CAS  Google Scholar 

  9. A. Luther and I. Peschel, Phys. Rev. B 9, 2911 (1974).

    Article  CAS  Google Scholar 

  10. D.C. Mattis, J.Math. Phys. 15, 609 (1974)

    Article  Google Scholar 

  11. F.D.M. Haldane, J. Phys. C 14, 2585 (1981).

    Article  Google Scholar 

  12. I. E. Dzyaloshinskii and A.I. Larkin, Sov. Phys. JETP 38, 202 (1974).

    Google Scholar 

  13. H.U. Everts and H. Schulz, Sol. State Comm. 15, 1413 (1974).

    Article  Google Scholar 

  14. F.D.M. Haldane, Phys. Rev. Lett. 45, 1358 (1980)

    Article  CAS  Google Scholar 

  15. C. Bourbonnais in “Highly correlated fermion systems and high Tc superconductors” ed. B. Douçot and R.Rammal (Elsevier, 1991)

    Google Scholar 

  16. H.J.Schulz, “The metal-insulator transition in one dimension”, in “Strongly correlated electronic materials: the Los Alamos Symposium 1993”, ed. K.S. Bedell et al. (Addison-Wesley, 1994)

    Google Scholar 

  17. R. Shankar, Rev.Mod.Phys. 66, 129 (1994)

    Article  Google Scholar 

  18. A detailed discussion of the role of conservation laws in deriving these equations is given by W. Metzner and C.Di Castro, Phys Rev. B 47, 16107 (1993)

    Google Scholar 

  19. Notice that eq.(14) has the suggestive form of a gauge transformation: because of eq.(13), the interactions have been gauged out apart from anomalies leading to the RPA “gauge field”.

    Google Scholar 

  20. H.J. Schulz, Int.J. Mod.Phys. B 5, 57 (1991);

    Article  Google Scholar 

  21. C.Bourbonnais and L.G.Caron, ibidem B 5, 1033 (1991);

    Google Scholar 

  22. C.Castellani, C.Di Castro and W.Metzner, Phys.Rev.Lett. 69, 1703 (1992);

    Article  Google Scholar 

  23. M.Fabrizio, A.Parola and E.Tosatti, Phys.Rev. B 46, 3159 (1992);

    Article  Google Scholar 

  24. M.Fabrizio, ibidem B 48, 15838 (1993).

    Google Scholar 

  25. B.Dardel, D.Malterre, M.Grioni, P.Weibel and Y.Baer, Phys. Rev. Lett. 67, 3144 (1991);

    Article  CAS  Google Scholar 

  26. B.Dardel, D.Malterre, M.Grioni, P.Weibel, Y.Baer, J.Voit and D.Jérôme, Europhys.Lett. 24, 687 (1993);

    Article  CAS  Google Scholar 

  27. M.Nakamura, A.Sekiyama, H.Namatame, A.Fujimori, H.Yoshihara, T.Ohtani, A.Misu and M.Takano, Phys.Rev.B 49, 16191 (1994)

    Article  CAS  Google Scholar 

  28. Note that the perturbation theory in 1<d<2 shows indeed the asymptotic dominance of the forward scattering we are considering [3].

    Google Scholar 

  29. P.W. Anderson, Phys Rev. Lett. 64, 1839 (1990).

    Article  Google Scholar 

  30. C.Castellani, C. Di Castro and A.Maccarone, unpublished.

    Google Scholar 

  31. The same result was obtained by P. Bares and X.G.Wen, Phys. Rev. B 48, 8636 (1993);

    Article  CAS  Google Scholar 

  32. see also A.Houghton, H.-J Kwon, J.B. Marston and R. Shankar, J. Phys. Condens. Matter (UK) 6, 4909 (1994)

    Article  CAS  Google Scholar 

  33. A.Houghton and J.B.Marston, Phys. Rev. B 48, 7790 (1993)

    Article  CAS  Google Scholar 

  34. A.Houghton, H.-J. Kwon and J.B. Marston, Phys. Rev. Lett. 73, 284 (1994)

    Article  Google Scholar 

  35. This problem has been extensively analyzed by B.L.Altshuler, L.B.Ioffe and A.J.Millis, Phys.Rev. B 50, 14048(1994).

    Article  CAS  Google Scholar 

  36. G. Benfatto and G. Gallavotti, J. Stat. Phys. 59, 541 (1990).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Plenum Press, New York

About this chapter

Cite this chapter

Castellani, C., Di Castro, C. (1996). Fermi and Luttinger Liquids in Low-Dimensional Metals. In: Schlenker, C., Dumas, J., Greenblatt, M., van Smaalen, S. (eds) Physics and Chemistry of Low-Dimensional Inorganic Conductors. NATO ASI Series, vol 354. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1149-2_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1149-2_20

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8449-9

  • Online ISBN: 978-1-4613-1149-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics