Fermi and Luttinger Liquids in Low-Dimensional Metals

  • C. Castellani
  • C. Di Castro
Part of the NATO ASI Series book series (NSSB, volume 354)


The standard description of (three-dimensional) metals is based on the Landau theory of Fermi systems (Fermi Liquid theory) [1]. Within this theory all low-energy and low- temperature properties are described in terms of independent elementary excitations (quasi- particles) which behave more or less as free particles. This picture breaks down in one dimensional systems, which are instead described by the so called Luttinger Liquid theory [2]. Indeed experimental evidence suggests that Fermi Liquid theory could break down in a variety of physical situations.


Fermi Surface Ward Identity Fermi Liquid Dyson Equation Luttinger Liquid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1a.
    See for instance: P. Nozières, “Theory of interacting Fermi Systems” (Benjamin, 1964);Google Scholar
  2. 1b.
    G.Baym and C. Pethick in “The physics of liquid and solid Helium”, ed. Bennemann and Ketterson (Wiley, 1978)Google Scholar
  3. 2.
    For a review on and quasi — electronic systems, see J. Solyom, Adv. Phys. 28, 201 (1979).CrossRefGoogle Scholar
  4. 3.
    C. Castellani, C. Di Castro and W. Metzner, Phys. Rev. Lett. 72, 316 (1994).CrossRefGoogle Scholar
  5. 4.
    All energies are measured with respect to the Fermi energy.Google Scholar
  6. 5a.
    S. Tomonaga, Prog.Theor. Phys. 5, 544 (1950);CrossRefGoogle Scholar
  7. 5b.
    J. M. Luttinger, J. Math. Phys. 4, 1154 (1963);CrossRefGoogle Scholar
  8. 5c.
    D.C. Mattis and E.H. Lieb, J.Math. Phys. 6, 304 (1965).CrossRefGoogle Scholar
  9. 6.
    A. Luther and I. Peschel, Phys. Rev. B 9, 2911 (1974).CrossRefGoogle Scholar
  10. 7.
    D.C. Mattis, J.Math. Phys. 15, 609 (1974)CrossRefGoogle Scholar
  11. 8.
    F.D.M. Haldane, J. Phys. C 14, 2585 (1981).CrossRefGoogle Scholar
  12. 9.
    I. E. Dzyaloshinskii and A.I. Larkin, Sov. Phys. JETP 38, 202 (1974).Google Scholar
  13. 10.
    H.U. Everts and H. Schulz, Sol. State Comm. 15, 1413 (1974).CrossRefGoogle Scholar
  14. 11.
    F.D.M. Haldane, Phys. Rev. Lett. 45, 1358 (1980)CrossRefGoogle Scholar
  15. 12.
    C. Bourbonnais in “Highly correlated fermion systems and high Tc superconductors” ed. B. Douçot and R.Rammal (Elsevier, 1991)Google Scholar
  16. 13.
    H.J.Schulz, “The metal-insulator transition in one dimension”, in “Strongly correlated electronic materials: the Los Alamos Symposium 1993”, ed. K.S. Bedell et al. (Addison-Wesley, 1994)Google Scholar
  17. 14.
    R. Shankar, Rev.Mod.Phys. 66, 129 (1994)CrossRefGoogle Scholar
  18. 15.
    A detailed discussion of the role of conservation laws in deriving these equations is given by W. Metzner and C.Di Castro, Phys Rev. B 47, 16107 (1993)Google Scholar
  19. 16.
    Notice that eq.(14) has the suggestive form of a gauge transformation: because of eq.(13), the interactions have been gauged out apart from anomalies leading to the RPA “gauge field”.Google Scholar
  20. 17a.
    H.J. Schulz, Int.J. Mod.Phys. B 5, 57 (1991);CrossRefGoogle Scholar
  21. 17b.
    C.Bourbonnais and L.G.Caron, ibidem B 5, 1033 (1991);Google Scholar
  22. 17c.
    C.Castellani, C.Di Castro and W.Metzner, Phys.Rev.Lett. 69, 1703 (1992);CrossRefGoogle Scholar
  23. 17d .
    M.Fabrizio, A.Parola and E.Tosatti, Phys.Rev. B 46, 3159 (1992);CrossRefGoogle Scholar
  24. 17e.
    M.Fabrizio, ibidem B 48, 15838 (1993).Google Scholar
  25. 18a.
    B.Dardel, D.Malterre, M.Grioni, P.Weibel and Y.Baer, Phys. Rev. Lett. 67, 3144 (1991);CrossRefGoogle Scholar
  26. 18b.
    B.Dardel, D.Malterre, M.Grioni, P.Weibel, Y.Baer, J.Voit and D.Jérôme, Europhys.Lett. 24, 687 (1993);CrossRefGoogle Scholar
  27. 18c.
    M.Nakamura, A.Sekiyama, H.Namatame, A.Fujimori, H.Yoshihara, T.Ohtani, A.Misu and M.Takano, Phys.Rev.B 49, 16191 (1994)CrossRefGoogle Scholar
  28. 19.
    Note that the perturbation theory in 1<d<2 shows indeed the asymptotic dominance of the forward scattering we are considering [3].Google Scholar
  29. 20.
    P.W. Anderson, Phys Rev. Lett. 64, 1839 (1990).CrossRefGoogle Scholar
  30. 21.
    C.Castellani, C. Di Castro and A.Maccarone, unpublished.Google Scholar
  31. 22a.
    The same result was obtained by P. Bares and X.G.Wen, Phys. Rev. B 48, 8636 (1993);CrossRefGoogle Scholar
  32. 22b.
    see also A.Houghton, H.-J Kwon, J.B. Marston and R. Shankar, J. Phys. Condens. Matter (UK) 6, 4909 (1994)CrossRefGoogle Scholar
  33. 23.
    A.Houghton and J.B.Marston, Phys. Rev. B 48, 7790 (1993)CrossRefGoogle Scholar
  34. 24.
    A.Houghton, H.-J. Kwon and J.B. Marston, Phys. Rev. Lett. 73, 284 (1994)CrossRefGoogle Scholar
  35. 25.
    This problem has been extensively analyzed by B.L.Altshuler, L.B.Ioffe and A.J.Millis, Phys.Rev. B 50, 14048(1994).CrossRefGoogle Scholar
  36. 26.
    G. Benfatto and G. Gallavotti, J. Stat. Phys. 59, 541 (1990).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1996

Authors and Affiliations

  • C. Castellani
    • 1
  • C. Di Castro
    • 1
  1. 1.Dipartimento di FisicaUniversità La SapienzaRomaItaly

Personalised recommendations