Structural and Dynamical Aspects of the Charge Density Wave Instability

  • J. P. Pouget
Part of the NATO ASI Series book series (NSSB, volume 354)


It was shown more than 40 years ago that a half-filled one-dimensional (1D) metal submitted either to a dimerization of its ionic periodicity (Peierls 1955) or to an antiferro-magnetic ordering of its electronic spins (Slater 1951) undergoes a transition towards a non conducting ground state. More generally it is now proved that such a gap opening occurs if a lattice or a spin modulation introduces the periodicity 2π/2kF in the structure, where 2kF is twice the Fermi wave vector of the 1D electron gas. These ground states, where either the charge or the spin density is modulated, are now observed in many metals exhibiting anisotropic electronic properties. These modulations are called charge or spin density waves, following the general concept introduced by Overhauser (1962).


Fermi Surface Charge Density Wave Peierls Transition Interchain Coupling Satellite Reflection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    For a simple derivation see Berlinsky A.J., Contemp. Physics 17, 331 (1976); see also the lecture of Gruner G.CrossRefGoogle Scholar
  2. 2.
    Comes R., Lambert M., Launois H. and Zeller H.R., Phys. Rev. B8, 751 (1973)Google Scholar
  3. 3.
    Pouget J.P., Noguera C, Moudden A.H. and Moret R., J. Phys. (France) 46, 1731 (1985)CrossRefGoogle Scholar
  4. 4.
    Aubry S., Abramovici G. and Raimbault J.L., J. Stat. Phys. 67, 675 (1992)CrossRefGoogle Scholar
  5. 5. (a).
    Van Aalst W., Den Hollander J., Peterse W.J.A.M. and De Wolff P.M. Acta Cryst, S32, 47 (1976). (b) Paciorek W.A. and Chapuis G, “Generalized Bessel Functions in Incommensurate Structure Analysis”, to be published.Google Scholar
  6. 6.
    Blinc R., Phys. Rep. 79, 331 (1981)CrossRefGoogle Scholar
  7. 7a.
    Butaud P., Segransan P., Janossy A. and Berthier C, J. de Physique (France) 51, 59 (1990)CrossRefGoogle Scholar
  8. 7b.
    Ross J.H., Jr. Wang Z. and Slichter C.P., Phys. Rev. Lett. 56, 663 (1986)CrossRefGoogle Scholar
  9. 7c.
    Ross J.H., Jr. Wang Z. and Slichter C.P. and Phys. Rev. B 41, 2722 (1990)Google Scholar
  10. 8.
    Dai Z., Slough C.G. and Coleman R.V., Phys. Rev. Lett. 66, 1318 (1991) see also the lecture of Whangbo M.H.CrossRefGoogle Scholar
  11. 9.
    Pouget J.P., Khanna S.K., Denoyer F, Comès R, Garito A.F. and Heeger A.J., Phys. Rev. Lett. 37, 437 (1976)CrossRefGoogle Scholar
  12. 10.
    See for example Schulz H.J. in “Strongly Correlated Electronic Materials. The Los Alamos Symposium 1993”.Ed. by Bedell K.S, Wang Z., Meltzer D.E., Balatsky A.V. and Abrahams E. (Addison-Wesley 1994) p 187.Google Scholar
  13. 11.
    Pouget J.P. in “Highly Conducting Quasi One Dimensional Organic Crystals” Semiconductors and Semimetal Vol 27, Edited by Conwell E.M. (Academic Press 1988) p 87.CrossRefGoogle Scholar
  14. 12.
    Epstein A.J., Miller J.S., Pouget J.P. and Comès R., Phys. Rev. Lett. 47, 741 (1981)CrossRefGoogle Scholar
  15. 13.
    Another source of interchain coupling arises if the bare frequency (or the constant K) of the 3D phonons presents a strong dispersion with the transverse wave vector component q⊥.Google Scholar
  16. 14.
    Saub K., Barisic S. and Friedel J., Phys. Lett. A 56, 302 (1976).Google Scholar
  17. 15.
    Schulz H.J. in “Low Dimensional Conductors and Superconductors” Ed. by Jérome D. and Caron L.G. (Nato ASI B 155, Plenum Press 1986) p95.Google Scholar
  18. 16(a).
    Underhill A.E. et al., J. Phys. Cond. Matt. 3, 933 (1991).CrossRefGoogle Scholar
  19. 16(b).
    Doublet M.L. et al. J. Phys. Cond. Matt. 7, 4673(1995)Google Scholar
  20. 17.
    Canadell E., Whangbo M.H., Chem. Rev. 91, 965 (1991)CrossRefGoogle Scholar
  21. 19(a).
    Canadell E. et al., J. Phys. France 50, 2967 (1989).CrossRefGoogle Scholar
  22. 19. (b).
    Ravy S., Pouget J.P., Valade L. and Legros J.P., Europhys. Letters 9, 391 (1989)CrossRefGoogle Scholar
  23. 20.
    Whangbo M.H., Canadell E., Foury P. and Pouget J. P., Science 252, 96 (1991)CrossRefGoogle Scholar
  24. 21.
    Foury P. and Pouget J.P, Int. Journ. of Modern Physics B7, 3973 (1993)CrossRefGoogle Scholar
  25. 22a.
    Halperin B.I. and Rice T.M., Rev. Mod Phys. 40, 755 (1968)CrossRefGoogle Scholar
  26. 22b.
    Halperin B.I. and Rice T.M. and Solid State Physics Vol 21, Ed. Seitz F., Turnbull D. and Ehrenreichs H. (Academic Press New York 1968) p 115.Google Scholar
  27. 23a.
    Scalapino D.J., Sears M. and Ferrell R.A., Phys. Rev., B 6, 3409 (1972).Google Scholar
  28. 23b.
    See also Dieterich W., Adv. Phys. 25,615(1976)Google Scholar
  29. 24.
    However in the case of materials made of weakly coupled layers high resolution experiments show that a LRO is not achieved at Tp (temperature at which electronic properties show a singularity) in the interlayer direction (ax for TTF-TCNQ, 2ax-cx for K0.3MoO3 and cx for NbSe3)Google Scholar
  30. 25a.
    (Pouget J.P. et al. J. Phys. Lett. 44, L 113 (1983)).CrossRefGoogle Scholar
  31. 25b.
    (see the structural refinement of Schutte W.J. and de Boer J. L., Acta Cryst. B 49, 579 (1993))Google Scholar
  32. 26.
    Barisic S., Mol. Cryst. Liq. Cryst. 119, 413 (1985)CrossRefGoogle Scholar
  33. 27.
    Comès R. and Shirane G., in “Highly Conducting One Dimensional Solids” Ed. by Devreese J.T. Evrard R.P. and Van Doren V.E. (Plenum Press 1979) p. 17Google Scholar
  34. 28.
    Pouget J.P, Hennion B., Escribe-Filippini C. and Sato M., Phys. Rev. B 43, 8421 (1991)CrossRefGoogle Scholar
  35. 29.
    Hennion B., Pouget J.P. and Sato M., Phys. Rev. Lett. 68, 2374 (1992)CrossRefGoogle Scholar
  36. 30.
    Tutis F. and Barisic S., Europhys. Lett. 8, 155 (1989)CrossRefGoogle Scholar
  37. 31.
    Tutis E. and Barisic S., Phys. Rev. B 43, 8431 (1991)Google Scholar
  38. 32.
    Sham L.J., inref 27., p. 227Google Scholar
  39. 33.
    Bak P. and Brazovsky S.A., Phys. Rev. B 17, 3154 (1978)Google Scholar
  40. 34.
    Currat R., Lorenzo-Diaz J.E., Monceau P., Hennion B. and Levy F, Journal de Physique IV, Colloque C 2, 209 (1993)Google Scholar
  41. 35.
    Moncton D.E., Axe J.D. and Di Salvo F.J., Phys. Rev. B 16, 801 (1977)Google Scholar
  42. 36.
    Le Daeron P.Y. and Aubry S., Journal de Physique Colloque 44, C3–1573 (1983)Google Scholar
  43. 37.
    Barisic S. and Bjelis A., in “Theoretical Aspects of Band Structures and Electronic Properties of Pseudo One-Dimensional Solids”, Ed. by Kanimura H. (Dordrecht, Reidel 1985) p. 49CrossRefGoogle Scholar
  44. 38a.
    Fukuyama H. and Lee P.A., Phys. Rev. B 17, 535 (1978)Google Scholar
  45. 38a.
    Lee P.A. and Rice T. M., Phys. Rev. B 19, 3970 (1979)Google Scholar
  46. 39a.
    Abe S., J. Phys. Soc. Japan 54, 3498 (1985);Google Scholar
  47. 39b.
    55, 1987 (1986)Google Scholar
  48. 39c.
    Tutto I. and Zawadowski A., Phys. Rev. B 32, 2449 (1985)Google Scholar
  49. 39d.
    Baldea I., Phys. Rev. B 51, 1495 (1995)Google Scholar
  50. 40.
    Forro L., Zuppiroli, L., Pouget J.P. and Bechgaard K., Phys. Rev. B 27, 7600 (1983)Google Scholar
  51. 41.
    Di Carlo D., Thome R.E., Sweetland E., Sutton M. and Brock J.D., Phys. Rev. B 50, 8288 (1994)Google Scholar
  52. 42.
    Ravy S. and Pouget J.P, Journal de Physique IV Colloque C2, 109 (1993)Google Scholar
  53. 43.
    Ravy S., Pouget J.P. and Comès R., Journal de Physique I, 2, 1173 (1992)Google Scholar
  54. 44.
    Rouzière S., Ravy S. and Pouget J.P, Synth. Metals 70, 1259 (1995)CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1996

Authors and Affiliations

  • J. P. Pouget
    • 1
  1. 1.Laboratoire de Physique des Solides (CNRS URA 02)Université de Paris SudOrsay CedexFrance

Personalised recommendations