Skip to main content

Part of the book series: NATO ASI Series ((NSSB,volume 352))

  • 883 Accesses

Abstract

I describe our understanding of the strong interactions at the end of the 1960’s and the impact of the experiments on deep inelastic scattering. I recall the steps that lead from the attempts to understand these experiments to the discovery of asymptotic freedom in 1973, the notion of confinement and the subsequent rapid emergence, development and acceptance of the non-Abelian gauge theory of color (QCD) as the theory of the strong interactions. I end with a discussion of the implications of asymptotic freedom.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Landau, L. D., Fundamental Problems, in Pauli Memorial Volume, pg. 245, (Interscience, New York, 1960).

    Google Scholar 

  2. Feynman, R., in The Quantum Theory of Fields — The 12 th Solvay Conference, 1961 (Interscience, New York).

    Google Scholar 

  3. Landau, L. D. and I. Pomeranchuk, Dokl. Akad. Nauk SSSR 102, 489 (1955).

    MathSciNet  MATH  Google Scholar 

  4. Landau, L. D.,in Niels Bohr and the Development of Physics, (ed. W. Pauli), p. 52. (Pergamon Press, London, 1955).

    Google Scholar 

  5. Johnson, K.,spi The Physics of Asymptotic Freedom, in Asymptotic Realms of Physics, ed. A. Guth (MIT Press, 1983).

    Google Scholar 

  6. Terent’ev, M. V. and Vanyashin, V.S., The Vacuum Polarization of a Charged Vector Field, Soviet Physics JETP 21, 380 (1965).

    MathSciNet  Google Scholar 

  7. Chew, G.,in S-Matrix Theory, (W. A. Benjamin Inc, 1963).

    Google Scholar 

  8. Chew, G. in The Quantum Theory of Fields: The 12th Solvay Conference, 1961 (Interscience, New York).

    Google Scholar 

  9. Goldberger, M. in The Quantum Theory of Fields: The 12th Solvay Conference, 1961 (Interscience, New York).

    Google Scholar 

  10. Low, F.,in Proceedings of the International Conference on High Energy Physics 1966, pg. 249 (1966).

    Google Scholar 

  11. Low, F, Suppl. al Nuovo Cimento Vol. IV,2,379 (1964).

    Google Scholar 

  12. Gell-Mann, M., Current Algebra: Quarks and What Else?, in Proceedings of the XVI Int’l Conference on High Energy Physics, Vol. 4, 135 (1972).

    Google Scholar 

  13. Gell-Mann, M. and Neeman, Y. The Eightfold Way (W. A. Benjamin Inc.) (1964).

    Google Scholar 

  14. Gell-Mann, M., The Symmetry Group of Vector and Axial Vector Currents, Physics, 1, 63 (1964).

    Google Scholar 

  15. Gell-Mann, M., A Schematic Model of Baryons and Mesons, Phys. Lett. 8, 214 (1964);

    Article  ADS  Google Scholar 

  16. Zweig, G., CERN Report No. TH401, 4 12 (1964) (unpublished).

    Google Scholar 

  17. Nambu, Y., Dynamical Symmetries and Fundamental Fields, Proceedings of the Second Coral Gables Conference on Symmetry Principles at High Energy, 133 (1965);

    Google Scholar 

  18. Nambu, Y A Systematics of Hadrons in Subnuclear Physics, in Preludes in Theoretical Physics, (1965).

    Google Scholar 

  19. Han, M. Y. and Nambu, Y., Three-Triplet Model with Double SU(3) Symmetry, Phys. Rev. 139B, 1006 (1965).

    Article  MathSciNet  ADS  Google Scholar 

  20. Greenberg, O.W., Spin and Unitary-Spin Independence in a Paraquark Model of Baryons and Mesons, Phys. Rev. Lett. 13, 598 (1964).

    Article  ADS  Google Scholar 

  21. Dashen, R. and Gell-Mann, M., Representations of Local Current Algebra at Infinite Momentum, Phys. Rev. Lett. 17, 340 (1966).

    Article  MathSciNet  ADS  Google Scholar 

  22. Adler, S., Sum Rules for the Axial Vector Coupling Constant Renormalization in ß Decay, Phys. Rev. 140B, 736 (1965)

    Article  ADS  Google Scholar 

  23. Weisberger, W.I. Unsubtracted Dispersion Relations and the Renormalization of the Weak Axial-Vector Coupling Constants, Phys. Rev. 143 B, 1302 (1966).

    Article  ADS  Google Scholar 

  24. Bjorken, J. D. Applications of the Chiral U(6) × U(6) Algebra of Current Densities, Phys. Rev. 148 B, 1467 (1966).

    Article  ADS  Google Scholar 

  25. Bjorken, J., Current Algebra at Small Distances, Varenna School Lectures, Course XLI, Varenna, Italy (1967).

    Google Scholar 

  26. Bjorken, J., Inequality for Backward Electron and Muon-Nucleon Scattering at High Momentum Transfer, Phys. Rev. 163, 1767 (1967).

    Article  ADS  Google Scholar 

  27. Sugawara, H., A Field Theory of Currents, Phys. Rev. 170, 1659 (1968).

    Article  ADS  Google Scholar 

  28. Callan, C. G. and Gross, D. J., Crucial Test of a Theory of Currents, Phys. Rev. Lett. 21, 311 (1968).

    Article  ADS  Google Scholar 

  29. Bjorken, J., Asymptotic Sum Rules at Infinite Momentum, Phys. Rev. 179, 1547 (1969).

    Article  ADS  Google Scholar 

  30. Bloom, E. D. et al., High-Energy Inelastic e — p Scattering at 6° and 10°, Phys. Rev. Lett. 23, 930 (1969).

    Article  ADS  Google Scholar 

  31. Callan, C. G. and Gross, D. J., High-Energy Electroproduction and the Constitution of the Electric Current, Phys. Rev. Lett. 22, 156 (1968).

    Article  ADS  Google Scholar 

  32. Gross, D. J. and Llewellyn-Smith, C., High Energy Neutrino-Nucleon Scattering, Current Algebra and Partons, Nucl. Phys. B14, 337 (1969).

    Google Scholar 

  33. Feynman, R. P., Very High-Energy Collisions of Hadrons, Phys. Rev. Lett. 23, 1415 (1969).

    Article  ADS  Google Scholar 

  34. Drell, S. D. and Yan, T. M., Partons and Their Applications at High Energies, Ann. Phys.(NY) 66, 578 (1971).

    Article  ADS  Google Scholar 

  35. Gross, D. J. and Wess, J., Scale Invariance, Conformai Invariance and the High Energy Behavior of Scattering Amplitudes, Phys. Rev. D2, 753 (1970).

    ADS  Google Scholar 

  36. Veneziano, G., Construction of a Crossing-Symmetric Regge-Behaved Amplitude for Linearly Rising Trajectories, Nuovo Cimento, 57A, 190 (1968).

    ADS  Google Scholar 

  37. ’t Hooft, G., Renormalizable Lagrangians for Massive Yang-Mills Fields, Nucl. Phys. 35, 167 (1967).

    Article  Google Scholar 

  38. Gell-Mann, M. and Low, F., Quantum Electrodynamics at Small Distances, Phys. Rev. 95, 1300 (1954).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  39. Stueckelberg, E. and Petermann, A., La Normalisation des Constantes dans la Theorie des Quanta, Helv. Phys. Acta 26, 499 (1953).

    MathSciNet  MATH  Google Scholar 

  40. N. N. Bogoliubov and D. V. Shirkov, Introduction to the Theory of Quantized Fields, Interscience, New York, (1959).

    Google Scholar 

  41. Callan, C. G., Broken Scale Invariance in Scalar Field Theory, Phys. Rev D 2,1541 (1970)

    ADS  Google Scholar 

  42. Symanzik, K., Small Distance Behavior in Field Theory and Power Counting, Comm. Math. Phys. 18, 227 (1970).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  43. Wilson, K., Renormalization Group and Strong Interactions, Phys. Rev. D3, 1818 (1971).

    ADS  Google Scholar 

  44. Jackiw, R. Van Royen, R. and West, G., Measuring Light-Cone Singularities, Phys. Rev. D2, 2473 (1970)

    ADS  Google Scholar 

  45. Frishman, Y, Operator Products at Almost Light Like Distances, Ann. Phys. 66, 373 (1971)

    Article  MathSciNet  ADS  Google Scholar 

  46. Leutwyler, H. and Stern, J., Singularities of Current Commutators on the Light Cone, Nucl. Phys. B20,77 (1970)

    Article  MathSciNet  ADS  Google Scholar 

  47. Gross, D. J., Light Cone Structure of Current Commutators in the Gluon-Quark Model, Phys. Rev. D4, 1059 (1971).

    ADS  Google Scholar 

  48. Callan, C. G., Broken Scale Invariance and Asymptotic Behavior, Phys. Rev D 5,3202 (1972)

    ADS  Google Scholar 

  49. Symanzik, K., Small-Distance-Behavior Analysis and Wilson Expansions, Comm. Math. Phys. 23, 49 (1971)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  50. Christ, N., Hasslacher, B. and Mueller, A., Light-Cone Behavior of Perturbation Theory, Phys. Rev D6,3543 (1972).

    ADS  Google Scholar 

  51. Wilson, K. and Kogut, J., The Renormalization Group and the ε expansion. Phys. Rep. 31, 792 (1973).

    Google Scholar 

  52. Parisi, G., Deep Inelastic Scattering in a Field Theory with Computable Large-Momenta Behavior, Lett. al Nuovo Cimento 7, 84 (1973).

    Article  Google Scholar 

  53. Callan, C. G. and Gross, D. J., Bjorken Scaling in Quantum Field Theory, Phys. Rev. D8, 4383 (1973).

    ADS  Google Scholar 

  54. Coleman, S. and Gross, D. J., Price of Asymptotic Freedom, Phys. Rev. Lett. 31, 851 (1973).

    Article  ADS  Google Scholar 

  55. Zee, A., Study of the Renormalization Group for Small Coupling Constants, Phys. Rev. D7, 3630 (1973).

    ADS  Google Scholar 

  56. Gross, D. J. and Wilczek, F., Ultraviolet Behavior of Non-Abelian Gauge Theories, Phys. Rev. Lett. 30, 1343 (1973).

    Article  ADS  Google Scholar 

  57. Politzer, H. D., Reliable Perturbative Results for Strong Interactions?, Phys. Rev. Lett. 30, 1346 (1973).

    Article  ADS  Google Scholar 

  58. Nielsen, N. K., Asymptotic Freedom as a Spin Effect, Am. J. Phys. 49, 1171 (1981).

    Article  ADS  Google Scholar 

  59. Bardeen, W. A., Fritzsch, H. and Gell-Mann, M., Light-Cone Current Algebra, π 0 Decay, and e + e - Annihilation, in Scale and Conformai Symmetry in Hadron Physics, ed. R. Gatto (Wiley & Sons, 1973).

    Google Scholar 

  60. Weinberg, S., Non-Abelian Gauge Theories of the Strong Interactions, Phys. Rev. Lett. 31, 494 (1973).

    Article  ADS  Google Scholar 

  61. Fritzsch, H., Gell-Mann, M. and Leutwyler, H., Advantages of the Color Octet Gluon Picture, Physics Lett. 47B, 368 (1973).

    ADS  Google Scholar 

  62. Fritzsch, H. and Gell-Mann, M., Current Algebra: Quarks and What Else?, in Proceedings of the XVI International Conference on High Energy Physics, Vol. 2, 164 (1972).

    Google Scholar 

  63. Belavin, A., Polyakov, A., Schwartz, A. and Tyupkin, Yu., Psuedoparticle Solutions of the Yang-Mills Equations, Phys. Lett. 59B, 85 (1975).

    MathSciNet  ADS  Google Scholar 

  64. ’t Hooft, G., Computation of the Quantum Effects due to a Four-Dimensional Psuedoparticle, Phys. Rev. D14, 3432 (1976).

    ADS  Google Scholar 

  65. Callan, C., Dashen, R. and Gross, D, The Structure of the Vacuum, Phys. Lett. (1976)

    Google Scholar 

  66. Jackiw, R. and Rebbi, C. Vacuum Periodicity in a Yang-Mills Quantum Theory, Phys. Rev. Lett. 37, 172 (1976).

    Article  ADS  Google Scholar 

  67. Gross, D. J. and Wilczek, F., Asymptotically Free Gauge Theories. I, Phys. Rev. D8, 3633 (1973).

    ADS  Google Scholar 

  68. Gross, D. J. and Wilczek, F., Asymptotically Free Gauge Theories. II, Phys. Rev. D9, 980 (1974).

    ADS  Google Scholar 

  69. Lipkin, H. Triality, Exotics and the Dynamical Basis of the Quark Model, Phys. Lett. Vol. 45B, 267 (1973).

    ADS  Google Scholar 

  70. Marciano, B. and Pagels, H., Quantum Chromodynamics, Phys. Rep. C 36, 137 (1978).

    Article  ADS  Google Scholar 

  71. Wilson, K., Confinement of Quarks, Phys. Rev. D10, 2445 (1974).

    ADS  Google Scholar 

  72. Creutz, M., Confinement and the Critical Dimensionality of Space-Time, Phys. Rev. Lett. 43, 553 (1968).

    Article  ADS  Google Scholar 

  73. Gross, D. J. and Neveu, A., Dynamical Symmetry Breaking in an Asymptotically Free Theory, Phys. Rev. D10, 3235 (1974).

    ADS  Google Scholar 

  74. t’ Hooft, G., A Planar Diagram Theory for Strong Interactions, Nucl. Phys. B72, 461 (1974).

    Article  ADS  Google Scholar 

  75. A. Casher, J. Kogut and L. Susskind, Vacuum Polarization and the Quark-Parton puzzle, Phys. Rev. Lett. 31, 792 (1973)

    Article  ADS  Google Scholar 

  76. A. Casher, J. Kogut and L. Susskind Vacuum Polarization and the Absence of Free Quarks, Phys. Rev. D 10, 732 (1974).

    ADS  Google Scholar 

  77. Caswell, W., Asymptotic Behavior of Non-Abelian Gauge Theories to Two-Loop Order, Phys. Rev. Lett. 33, 244 (1974).

    Article  ADS  Google Scholar 

  78. Jones, D. Two-Loop Diagrams in Yang-Mills Theoiy, Nucl. Phys. B75, 531, (1974).

    Article  ADS  Google Scholar 

  79. Appelquist, T. and Georgi, H., e + e - Annihilation in Gauge Theories of Strong Interactions , Phys. Rev. D8, 4000 (1973).

    ADS  Google Scholar 

  80. Zee, A., Electron-Positron Annihilation in Stagnant Field Theories, Phys. Rev. D8, 4038, (1973).

    ADS  Google Scholar 

  81. Gaillard, M. K. and Lee, B. W.ΔI =1/2 Rule for Non-Leptonic Decays in Asymptotically Free Field Theories, Phys. Rev. Lett 33, 108 (1974).

    Article  ADS  Google Scholar 

  82. Altarelli, G. and Maiani, L., Octet Enhancement of Non-Leptonic Weak Interactions in Asymptotically Free Gauge Theories, Phys. Lett. 52B, 351 (1974).

    ADS  Google Scholar 

  83. Gross, D. J., How to Test Scaling in Asymptotically Free Theories, Phys. Rev. Lett. 32, 1071 (1974).

    Article  ADS  Google Scholar 

  84. Bouchiat, C, Illiopoulos, J. and Meyer, Ph., An Anomaly Free Version of Weinberg’s Model, Phys. Lett. 38B, 519 (1972).

    ADS  Google Scholar 

  85. Gross, D. J. and Jackiw, R., The Effect of Anomalies on Quasi-Renormalizable Theories, Phys. Rev. D6, 477 (1972).

    ADS  Google Scholar 

  86. Gaillard, M. K., Lee, B. W. and Rosner, J. L., Search for Charm, Rev. Mod. Phys. 47, 277 (1975).

    Article  ADS  Google Scholar 

  87. The discovery and application of axial anomalies had a big impact on the development of the standard model. The original observation was due to S. Adler, Phys. Rev. 177, 2426 (1969);

    Article  ADS  Google Scholar 

  88. and independently, J. Bell and R. Jackiw, Nuovo Cimento 60A, 47 (1969). They discovered that the axial vector current was not conserved in gauge theories, as one would naively expect, but rather proportional to F μν (ř) μν . This explained the invalidity of the naive low energy theorem which predicted a vanishing π 0 decay rate to two photons in the chiral limit. The demonstration of Adler, and S. Adler and W. Bardeen, Phys. Rev. 182, 1517 (1969), that the coefficient of the anomaly was given exactly, by lowest order perturbation theory (the triangle graph) meant that the pion decay constant could yield information about the sum of the squares of the charges of the elementary constituents of the hadrons. This was used as one of the arguments for color [50]. The proof of non-renormalization of the anomaly was generalized to non-Abelian gauge theories by Bardeen. When ‘t Hooft’s demonstration of the renormalizability of the electro-weak theory [34] appeared many of us worried whether the axial anomalies would invalidate the proof. The argument that anomalies do spoil renormalizability, and the suggestion that the anomalies would cancel between quarks and leptons if there was a charmed quark, gave further impetus to the the idea of charm [74, 73]. Later, the discovery of instantons [54], produced a convincing argument [55] as to the lact of a chiral U(1) symmetry of hadrons, which was in conflict with the observed spectrum of psuedoscalar mesons, and revealed the θ parameter of QCD [56].

    ADS  Google Scholar 

  89. Appelquist, T. and Politzer, H. D., Heavy Quarks and e + e - Annihilation, Phys. Rev. Lett. 34, 43 (1975).

    Article  ADS  Google Scholar 

  90. Georgi, H. and Glashow, S., Unity of All Elementary Particle Forces, Phys. Rev. Lett. 32, 438 (1974).

    Article  ADS  Google Scholar 

  91. Pati, J. C. and Salam, A., Unified Lepton-Hadron Symmetry and a Gauge Theory of the Basic Interactions, Phys. Rev. D 8, 1240 (1973).

    ADS  Google Scholar 

  92. Georgi, H., Quinn, H. R. and Weinberg, S., Hierarchy of Interactions in Unified Gauge Theories, Phys. Rev. Lett. 33, 451 (1974).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Plenum Press, New York

About this chapter

Cite this chapter

Gross, D.J. (1996). Asymptotic Freedom, Confinement and QCD. In: Newman, H.B., Ypsilantis, T. (eds) History of Original Ideas and Basic Discoveries in Particle Physics. NATO ASI Series, vol 352. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1147-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1147-8_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8448-2

  • Online ISBN: 978-1-4613-1147-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics