Advertisement

Deep Inelastic Scattering Evidence for the Reality of Quarks

  • Jerome I. Friedman
Part of the NATO ASI Series book series (NSSB, volume 352)

Abstract

In the period following World War II there was a rapid development of particle physics. With the construction of new accelerators and the development of detector technology, many new particles were discovered and the systematics of their interactions investigated. The invention of the bubble chamberplayed an especially important role in uncovering the rich array of hadrons that were discovered in this period.

Keywords

Quark Model High Energy Physics Deep Inelastic Scattering Current Algebra Valence Quark 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Gell-Mann, Caltech Synchrotron Laboratory Report CTSL-20 (1961).Google Scholar
  2. 2.
    Y. Ne’eman, Nucl. Phys. 26 (1961) 222.MathSciNetCrossRefGoogle Scholar
  3. 3.
    M. Gell-Mann, Phys. Lett. 8 (1964) 214.ADSCrossRefGoogle Scholar
  4. 4.
    G. Zweig, CERN preprint 8182/TH 401 (1964); CERN preprint 8419/TH 412.Google Scholar
  5. 5a.
    R.E. Taylor, Deep Inelastic Scattering: The Early Years. Les Prix Nobel 1990, (Almqvist & Wiksell, Stockholm/Uppsala 1991);Google Scholar
  6. 5b.
    R.E. Taylor, Rev. Mod. Phys. 63 (1991) 573.ADSCrossRefGoogle Scholar
  7. 6.
    H. W. Kendall, Deep Inelastic Scattering: Experiments on the Proton and the Observation of Scaling. Les Prix Nobel 1990, (Almqvist & Wiksell, Stockholm/Uppsala 1991);Google Scholar
  8. 6.
    H. W. Kendall, Rev. Mod. Phys. 63 (1991) 597.ADSCrossRefGoogle Scholar
  9. 7a.
    J. I. Friedman, Deep Inelastic Scattering: Comparison with the Quark Model. Les Prix Nobel 1990, (Almqvist & Wiksell, Stockholm/Uppsala 1991),Google Scholar
  10. 7b.
    J. I. Friedman, Rev. Mod. Physics 63 (1991) 615. Excerpts from this publication are used in the present article.ADSCrossRefGoogle Scholar
  11. 8a.
    The following physicists participated in the inelastic electron scattering experiments described in this paper: W B. Atwood, E. Bloom, A. Bodek, M. Breidenbach, G. Buschhorn, R. Cottrell, D. Coward, H. DeStaebler, R. Ditzler, J. Drees, J. Elias, G. Hartmann, C. Jordan, M. Mestayer, G. Miller, L. Mo, H. Piel, J. Poucher, C. Prescott, M. Riordan, L. Rochester, D. Sherden, M. Sogard, S. Stein, D. Trines, and R. Verdier. For additional acknowledgements see J. I. Friedman, H. W. Kendall, and R. E. Taylor, Deep Inelastic Scattering: Acknowledgements, Les Prix Nobel 1990, (Almqvist & Wiksell, Stockholm/Uppsala 1991),Google Scholar
  12. 8b.
    J. I. Friedman, H. W. Kendall, and R. E. Taylor, Rev. of Mod. Physics 63 (1991) 629.ADSCrossRefGoogle Scholar
  13. 9.
    D. H. Coward, et al., Phys. Rev. Lett. 20 (1968) 292.ADSCrossRefGoogle Scholar
  14. 10.
    W. K. H. Panofsky, in Proceedings of 14th Lnternational Conference on High Energy Physics Vienna (1968) 23. The experimental report, presented by the present author, is not published in the Conference Proceedings. It was, however, produced as a SLAC preprint.Google Scholar
  15. 11a.
    E. D. Bloom, et al., Phys. Rev. Lett. 23 (1969) 930;ADSCrossRefGoogle Scholar
  16. 11b.
    M. Breidenbach, et al., Phys. Rev. Lett. 23 (1969) 935.ADSCrossRefGoogle Scholar
  17. 12.
    R. W. McAllister and R. Hofstadter, Phys. Rev. 102 (1956) 851.ADSCrossRefGoogle Scholar
  18. 13.
    The Mott cross-section σMott = e4/(4E2) (cos2θ/2)/sin4θ/2Google Scholar
  19. 14.
    J. D. Bjorken, Phys. Rev. 179 (1969) 1547; In a private communication, Bjorken told the MIT-SLAC group about scaling in 1968.ADSCrossRefGoogle Scholar
  20. 15.
    S. D. Drell and J. D. Walecka, Ann. Phys. (NY) 28 (1964) 18.ADSCrossRefGoogle Scholar
  21. 16.
    J. D. Bjorken, Proceedings of the International School of Physics “Enrico Fermi,” Course XLI: Selected Topics in Particle Physics, J. Steinberger, ed. (Academic Press, New York, 1968).Google Scholar
  22. 17a.
    M. Gell-Mann, Phys. Rev. 125 (1962) 1062;MathSciNetADSCrossRefGoogle Scholar
  23. 17b.
    For a review of current algebra see: J. D. Bjorken and M. Nauenberg, Ann. Rev. Nucl. Sci. 18 (1968) 229.ADSCrossRefGoogle Scholar
  24. 18.
    S. L. Adler, Phys. Rev. 143 (1966) 1144.ADSCrossRefGoogle Scholar
  25. 19.
    J. D. Bjorken, Phys. Rev. Lett. 16 (1966) 408.MathSciNetADSCrossRefGoogle Scholar
  26. 20.
    J. D. Bjorken, Phys. Rev. 163 (1967) 1767.ADSCrossRefGoogle Scholar
  27. 21.
    H. D. Abarbanel, M. L. Goldberger and S. B. Treiman, Phys. Rev. Lett. 22 (1969) 500.ADSCrossRefGoogle Scholar
  28. 22a.
    H. Harari, Phys. Rev. Lett. 22 (1969) 1078;ADSCrossRefGoogle Scholar
  29. 22b.
    H. Harari, Phys. Rev. Lett. 24 (1970) 286.ADSCrossRefGoogle Scholar
  30. 23.
    T. Akiba, Lett. Nuovo Cimento 4 (1970) 1281.CrossRefGoogle Scholar
  31. 24.
    H. Pagels, Phys. Rev. D3 (1971) 1217.ADSGoogle Scholar
  32. 25.
    J. W. Moffat and V. G. Snell, Phys. Rev. D30 (1971) 2848.ADSGoogle Scholar
  33. 26.
    P. V. Landschoff and J. C. Polkinghorne, DAMPT 70/36 (1970).Google Scholar
  34. 27a.
    G. Domokos, S. Kovesi-Domokos and E. Shonberg, Phys. Rev. D3 (1971) 1184;Google Scholar
  35. 27b.
    G. Domokos, S. Kovesi-Domokos and E. Shonberg, Phys. Rev. D3 (1971) 1191.ADSGoogle Scholar
  36. 28.
    J. J. Sakurai, Phys. Rev. Lett. 22 (1969) 981.ADSCrossRefGoogle Scholar
  37. 29.
    For a review of the Vector Dominance and Generalized Vector Dominance Models, see T. H. Bauer, R. E. Spital, D. R. Yennie and F. M. Pipkin, Rev. Mod. Phys. 50 (1978) 261.ADSCrossRefGoogle Scholar
  38. 30a.
    R. P. Feynman, Phys. Rev. Lett. 23 (1969) 1415;ADSCrossRefGoogle Scholar
  39. 30b.
    R. P. Feynman, Proceedings of the III International Conference on High Energy Collisions, organized by C. N. Yang, et al. (Gordon and Breach, New York, 1969).Google Scholar
  40. 31a.
    S. Drell, D. J. Levy and T. M. Yan, Phys. Rev. 187 (1969) 2159;ADSCrossRefGoogle Scholar
  41. 31b.
    S. Drell, D. J. Levy and T. M. Yan, Phys. Rev. Dl (1970) 1035, 1617.ADSCrossRefGoogle Scholar
  42. 32.
    N. Cabbibo, G. Parisi, M. Testa and A. Verganelakis, Lett. Nuovo Cimento 4 (1970) 569.CrossRefGoogle Scholar
  43. 33.
    J. D. Bjorken and E. A. Paschos, Phys. Rev. 185 (1969) 1975.ADSCrossRefGoogle Scholar
  44. 34.
    J. Kuti and V. F. Weisskopf, Phys. Rev. D4 (1971) 3418.ADSGoogle Scholar
  45. 35.
    P. V. Landshoff and J. C. Polkinghorne, Nucl. Phys. B28 (1971) 240.ADSCrossRefGoogle Scholar
  46. 36.
    T. D. Lee and S. D. Drell, Phys. Rev. D5 (1972) 1738.ADSGoogle Scholar
  47. 37.
    G. Miller, et al., Phys. Rev. D5 (1972) 528.ADSGoogle Scholar
  48. 38.
    J. S. Poucher, et al., Phys. Rev. Lett. 32 (1974) 118.ADSCrossRefGoogle Scholar
  49. 39a.
    A. Bodek, et al., Phys. Rev. Lett. 30 (1973) 1087;ADSCrossRefGoogle Scholar
  50. 39b.
    A. Bodek, et al., Phys. Lett. 51B (1974) 417;ADSGoogle Scholar
  51. 39c.
    A. Bodek, et al., Phys. Rev. D20 (1979) 1471.ADSGoogle Scholar
  52. 40a.
    E. M. Riordan, et al., Phys. Rev. Lett. 33 (1974) 561;ADSCrossRefGoogle Scholar
  53. 40b.
    E. M. Riordan, et al., Phys. Lett. 52B (1974) 249.ADSGoogle Scholar
  54. 41.
    W.-B. Atwood, et al., Phys. Lett. 64B (1976) 479.ADSGoogle Scholar
  55. 42.
    W. B. Atwood and G. B. West, Phys. Rev. D7 (1973) 773.ADSGoogle Scholar
  56. 43.
    A. Bodek, Phys. Rev. D8 (1973) 2331.ADSGoogle Scholar
  57. 44.
    C. G. Callan and D. J. Gross, Phys. Rev. Lett. 21 (1968) 311.ADSCrossRefGoogle Scholar
  58. 45.
    K. Gottfried, Phys. Rev. Lett. 18 (1967) 1174.ADSCrossRefGoogle Scholar
  59. 46.
    C. G. Callan and D. J. Gross, Phys. Rev. Lett. 22 (1969) 156.ADSCrossRefGoogle Scholar
  60. 47.
    D. H. Perkins, in Proceedings of the XVI International Conference on High Energy Physics, Chicago and NAL,Vol.4(1972) 189.Google Scholar
  61. 48.
    Proceedings of the XVII th International Conference on High Energy Physics, London, (1974), M. Haguenauer, p. IV–95; F. Sciulli, p. IV–105; D. C. Cundy, p. IV–131.Google Scholar
  62. 49.
    D. J. Gross and C. H. Llewellyn-Smith, Nucl. Phys. B14 (1969) 337.ADSCrossRefGoogle Scholar
  63. 50.
    D. J. Gross and F. Wilczek, Phys. Rev. Lett. 30 (1973) 1343.ADSCrossRefGoogle Scholar
  64. 51.
    H. D. Politzer, Phys. Rev. Lett. 30 (1973) 1346.ADSCrossRefGoogle Scholar
  65. 52.
    J. J. Aubert, et al., Phys. Rev. Lett. 33 (1974) 1404.ADSCrossRefGoogle Scholar
  66. 53.
    J. E. Augustin, et al., Phys. Rev. Lett. 33 (1974) 1406.ADSCrossRefGoogle Scholar
  67. 54.
    For a compendium of reprints and references covering the discoveries of the J/Ψ and its excited states, see R. N. Cahn and G. Goldhaber, The Experimental Foundations of Particle Physics (Cambridge University Press, Cambridge. UK, 1989), 257–278.Google Scholar
  68. 55.
    For a review of these early results see R. F. Schwitters and K. Strauch, Ann. Rev. Nucl. Sci. 26 (1976) 89.ADSCrossRefGoogle Scholar
  69. 56.
    G. Hanson, et al., Phys. Rev. Lett. 35 (1975) 1609.ADSCrossRefGoogle Scholar
  70. 57a.
    For referenced reviews of the early gluon jet data see: P. Duinker and D. Luckey, Comments on Nuclear and Particle Physics, 9 (1980) 123;Google Scholar
  71. 57b.
    P. Söding and G. Wolf, Ann. Rev. Nucl. Sci. 31 (1981) 231.ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1996

Authors and Affiliations

  • Jerome I. Friedman
    • 1
  1. 1.Department of PhysicsMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations