Skip to main content

Part of the book series: NATO ASI Series ((NSSB,volume 352))

Abstract

Sampling total absorption detectors for hadrons are an excellent example of the impressive development of particle detectors which has become an essential basis for the breathtaking progress in particle physics. For an energy measurement of hadrons, homogeneous blocks of scintillating or ionization measuring materials are, in contrast to electromagnetic showers, completely impractical since the large hadronic interaction length would lead to huge blocks of material. Hence materials with smaller interaction lengths interleaved with sampling detectors have to be employed. In the sixties, such sampling total absorption counters (STAC) were mostly considered to be useful only for specialized tasks such as neutron detection, and their use as a general purpose detector for hadronic energy measurement was almost laughed at. The advantages of such devices were recognized only in the seventies, where they played a major role, for example, in the collider experiments that discovered the W and Z. Today they have become an almost inevitable ingredient of most existing and planned experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. W. Fabjan and T. Ludlam, Ann. Rev. Nucl. Part. Sci. 32, 335 (1982); C. W. Fabjan, CERN-Report CERN-EP/85–54.

    Article  ADS  Google Scholar 

  2. R. Wigmans, CERN-Report CERN-PPE/91–39 and Ann. Rev. Nucl. Part. Sci. 41, 133 (1991).

    Article  Google Scholar 

  3. R. Hofstadter, Nucl. Instr. and Meth. 63, 136 (1968);

    Article  ADS  Google Scholar 

  4. E. B. Hughes et al., Nucl. Instr. and Meth. 75, 130 (1969).

    Article  ADS  Google Scholar 

  5. N.L. Grigorov, et al., JETP 34, 506(1958).

    Google Scholar 

  6. V. S. Murzin, Progr. Element. Part, and Cosmic Ray Phys., Vol.9, 247 (1967).

    Google Scholar 

  7. J. Engler, et al Phys. Lett. 27B, 599 (1968).

    ADS  Google Scholar 

  8. J. Engler, et al., Nucl. Instr. and Meth. 106, 189 (1973);

    Article  ADS  Google Scholar 

  9. V. Boehmer, et al., Nucl. Instr. and Meth. 122, 313 (1974).

    Article  ADS  Google Scholar 

  10. See L. W. Jones et al., “A Calorimeter for 300 GeV Neutrons and Protons” University of Michigan Report UM HE 73–24 revised, 1973.

    Google Scholar 

  11. J. Ranft, Nucl. Instr. and Meth. 48, 133 and 261 (1967);

    Article  ADS  Google Scholar 

  12. J. Ranft and J. T. Routti, CERN LABII-RA/71–4, November 24, 1971 and CERN LABII-RA/72–4, April 25, 1972;

    Google Scholar 

  13. K. Goebel, et al., Nucl. Instr. and Meth. 113,433(1973).

    Article  ADS  Google Scholar 

  14. T. A. Gabriel, et al., Oak Ridge Report ORNL-TM-4349 (1973).

    Google Scholar 

  15. A. Baroncelli, Nucl. Instr. and Meth. 118, 445 (1974);

    Article  ADS  Google Scholar 

  16. T. A. Gabriel, et al., Nucl. Instr. and Meth. 116, 33 (1974) and 134, 271 (1976);

    Article  Google Scholar 

  17. T. A. Gabriel, Nucl. Instr. and Meth. 150, 145 (1978).

    Article  ADS  Google Scholar 

  18. For the details of finding the physically relevant solutions and the parametrization of K(E’, E) see Ref. 7.

    Google Scholar 

  19. J. Engler, et al., 4th Int. Conf. on High-Energy Collisions, Oxford 1972;

    Google Scholar 

  20. J. Engler, et al., Phys. Lett. 29B, 321 (1969);

    ADS  Google Scholar 

  21. J. Engler, et al., Phys. Lett. 31B, 669 (1970);

    ADS  Google Scholar 

  22. J. Engler, et al., Phys. Lett. 32B, 716 (1970);

    ADS  Google Scholar 

  23. J. Engler, et al., Phys. Lett. 34B, 528 (1971);

    ADS  Google Scholar 

  24. J. Engler, et al., Nuov. Cim. 9A, 311 (1972);

    Article  ADS  Google Scholar 

  25. J. Engler, et al., Nucl. Phys. 62B, 160 (1973);

    Article  ADS  Google Scholar 

  26. J. Engler, et al., Nucl. Phys. 64B, 173 (1973);

    Article  ADS  Google Scholar 

  27. J. Engler, et al., Nucl. Phys. 84B, 70 (1975);

    Article  ADS  Google Scholar 

  28. A. Babaev, et al., Phys. Lett. 51B, 501 (1974);

    ADS  Google Scholar 

  29. A. Babaev, et al., Nucl. Phys. 110B, 189 (1976);

    Article  ADS  Google Scholar 

  30. V. Boehmer, et al., Nucl. Phys. 91B, 266 (1975).

    Article  ADS  Google Scholar 

  31. W. V. Jones, Phys. Rev., 187, 1868 (1969).

    Article  ADS  Google Scholar 

  32. L. W. Jones, et al., Phys. Rev. Lett. 20, 468 (1968);

    Article  ADS  Google Scholar 

  33. M. N. Kreisler, et al., Nuclear Physics B84, 3 (1975).

    ADS  Google Scholar 

  34. M. N. Kreisler, et al., Phys. Rev Lett. 20,(1968) 468.

    Article  ADS  Google Scholar 

  35. H. Whiteside, et al., Nucl. Instrum. and Meth. 109A, 375 (1973).

    Article  ADS  Google Scholar 

  36. J. Engler, et al., Phys. Lett. 29B, 321 (1969).

    ADS  Google Scholar 

  37. G. Keil, Nucl. Instr. and Meth. 89,111 (1970);

    Article  ADS  Google Scholar 

  38. B. Barish, et al., IEEE Trans. Nucl. Sci. NS-25, 532 (1978);

    Article  ADS  Google Scholar 

  39. W. Selove, et al., Nucl. Instr. and Meth. 161, 233 (1979).

    Article  ADS  Google Scholar 

  40. J. Fent, et al., Nucl. Instr. and Meth. 225, 509 (1984);

    Article  Google Scholar 

  41. H. A. Gordon, et al., Phys. Scripta 23, 564 (1981).

    Article  ADS  Google Scholar 

  42. W. J. Willis and V. Radeka, Nucl. Instr. and Meth. 120, 221 (1974).

    Article  ADS  Google Scholar 

  43. UA1 Collaboration, Technical report on the design of a new combined electromagnetic/hadronic calorimeter for UAI, CERN/SPSC/84–72 (1984) and CERN/SPSC 89–23 (1989).

    Google Scholar 

  44. See for example J. A. Appel, Gas Sampling Calorimeter Workshop, Fermilab FN-380 (1982), or J. Engler, Nucl. Instr. and Meth. 217, 9 (1983).

    Google Scholar 

  45. M. Conversi, Nature 241, 160(1973);

    Article  ADS  Google Scholar 

  46. M. Conversi and L. Frederici, Nucl. Instr. and Meth. 151, 193(1978).

    Google Scholar 

  47. C. W Fabjan, et al., Phys. Lett. 60B, 105 (1975).

    ADS  Google Scholar 

  48. C. Leroy, et al., Nucl. Instr. and Meth. 252A, 4 (1986).

    ADS  Google Scholar 

  49. R. Wigmans, Nucl. Instr. and Meth. 259A, 389 (1987);

    ADS  Google Scholar 

  50. H. Brückmann, et al., Nucl. Instr. and Meth. 263A, 136 (1988);

    ADS  Google Scholar 

  51. J. E. Brau and T. A. Gabriel, Nucl. Instr. and Meth. 238A, 489 (1985).

    ADS  Google Scholar 

  52. E. Bernardi, et al., Nucl. Instr. and Meth. 262A, 229 (1987).

    ADS  Google Scholar 

  53. G. Drews et al., Nucl. Instr. and Meth. 290A, 335 (1990);

    ADS  Google Scholar 

  54. H. Tiecke, et al., Nucl. Instr. and Meth. 277A, 42 (1989).

    Google Scholar 

  55. J. P. Rishan, Report SLAC-216 (1979);

    Google Scholar 

  56. H. Abramowicz, et al., Nucl. Instr. and Meth. 180, 429 (1981);

    Article  ADS  Google Scholar 

  57. W. Selove, et al., Univ. Pennsylvania preprint UPR-75E (1980).

    Google Scholar 

  58. B. Adrien, et al., Nucl. Instr. and Meth. 336A,499 (1993).

    ADS  Google Scholar 

  59. M. de Vincenzi, et al., Nucl. Instr. and Meth. 243A, 348 (1986).

    ADS  Google Scholar 

  60. M. Abolins, et al., Nucl. Instr. and Meth. 280A, 36 (1989).

    ADS  Google Scholar 

  61. T. Aôkeson, et al., Nucl. Instr. and Meth. 262A, 243 (1987).

    ADS  Google Scholar 

  62. U. Behrens, et al., Nucl. Instr. and Method 289A, 115 (1990);

    Article  ADS  Google Scholar 

  63. G. d’Agostini, et al., Nucl. Instr. and Method 274 A, 134(1989).

    Article  ADS  Google Scholar 

  64. G. R. Young, et al., Nucl. Instr. and Meth. 279A, 503 (1989).

    ADS  Google Scholar 

  65. R. Desalvo, et al., Nucl. Instr. and Meth. 279A, 467 (1989);

    ADS  Google Scholar 

  66. D. Acosta, et al., Nucl. Instr. and Meth. 294A, 193 (1990);

    ADS  Google Scholar 

  67. D. Acosta, et al., Nucl. Instr. and Meth. 302A, 36 (1991);

    ADS  Google Scholar 

  68. D. Acosta, et al., Nucl. Instr. and Meth. 305A, 55 (1991);

    ADS  Google Scholar 

  69. D. Acosta, et al., Nucl. Instr. and Meth. 308A, 481, (1991);

    ADS  Google Scholar 

  70. B. Bencheikh, et al., Nucl. Instr. and Meth. 315A, 354 (1992);

    ADS  Google Scholar 

  71. B. Bencheikh, et al., Nucl. Instr. and Meth. 323A, 398 (1992).

    ADS  Google Scholar 

  72. J. Baclier, et al., Nucl. Instr. and Meth. 337A, 326 (1994).

    ADS  Google Scholar 

  73. D. Acosta, et al., Preprint CERN PPE/91–85 (1991).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Plenum Press, New York

About this chapter

Cite this chapter

Schopper, H. (1996). Hadron Sampling Total Absorption (STAC) Calorimeters. In: Newman, H.B., Ypsilantis, T. (eds) History of Original Ideas and Basic Discoveries in Particle Physics. NATO ASI Series, vol 352. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1147-8_28

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1147-8_28

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8448-2

  • Online ISBN: 978-1-4613-1147-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics