Skip to main content

The Lactose Permease of Escherichia coli An Update

  • Chapter
Book cover Molecular Biology of Membrane Transport Disorders

Abstract

An unsolved basic biochemical phenomenon of critical importance is the general problem of energy transduction in biological membranes. Although the driving force for a variety of seemingly unrelated functions (e.g., secondary active transport, oxidative phosphorylation, rotation of the bacterial flagellar motor) is a bulk-phase, transmembrane electrochemical ion gradient, the molecular mechanism(s) by which free energy stored in such gradients is transduced into work or into chemical energy remains enigmatic. Nonetheless, gene sequencing and analyses of deduced amino acid sequences indicate that many biological machines involved in energy transduction, secondary transport proteins in particular,1,2 fall into families encompassing proteins from archaebacteria to the mammalian central nervous system, thereby suggesting that the members may have common basic structural features and mechanisms of action. Moreover, certain of these proteins have been implicated in human disease (e.g., glucose/galactose malabsorption, certain forms of drug abuse, depression).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Henderson, P. J. (1990). Proton-linked sugar transport systems in bacteria. J. Bioenerg. Biomembr. 22:525–569.

    PubMed  CAS  Google Scholar 

  2. Marger, M. D., and Saier, M. H., Jr. (1993). A major superfamily of transmembrane facilitators that catalyze unipolar symptort and antiport. Trends Biochem. Sci. 18:13–20.

    PubMed  CAS  Google Scholar 

  3. Mitchell, P. (1963). Molecule, group and electron transport through natural membranes. Biochem. Soc. Symp. 22:142–168.

    Google Scholar 

  4. Mitchell, P. (1968). Chemiosmotic Coupling and Energy Transduction, Glynn Research Ltd, Bodmin, England.

    Google Scholar 

  5. Kaback, H. R. (1986). In Physiology of Membrane Disorders, (T. E. Andreoli, J. F. Hoffman, D. D. Fanestil, and S. G. Schultz, eds.) Plenum, New York p. 387.

    Google Scholar 

  6. Kaback, H. R. (1989). Molecular biology of active transport: From membranes to molecules to mechanism, Harvey Lect. 83:77–103.

    Google Scholar 

  7. Kaback, H. R. (1992). In and out and up and down with the lactose permease of Escherichia coli. Int. Rev. Cytol. 137A:97–125.

    CAS  Google Scholar 

  8. Teather, R. M., Müller-Hill, B., Abrutsch, U., Aichele, G., and Overath, P. (1978). Amplification of the lactose carrier protein in Escherichia coli using a plasmid vector. Molec. Gen. Genet. 159:239–48.

    PubMed  CAS  Google Scholar 

  9. Buchel, D. E., Gronenborn, B., and Muller-Hill, B. (1980). Sequence of the lactose permease gene, Nature 283:541–545.

    PubMed  CAS  Google Scholar 

  10. Kaczorowski, G. J., Leblanc, G., and Kaback, H. R. (1980). Specific labeling of the lac carrier protein in membrane vesicles of Escherichia coli by a photoaffinity reagent. Proc. Natl. Acad. Sci. USA 77:6319–23.

    PubMed  CAS  Google Scholar 

  11. Newman, M. J., and Wilson, T. H. (1980). Solubilization and reconstitution of the lactose transport system from Escherichia coli. J. Biol. Chem. 255:10583–10586.

    CAS  Google Scholar 

  12. Newman, M. J., Foster, D. L., Wilson, T. H., and Kaback, H. R. (1981). Purification and reconstitution of functional lactose carrier from Escherichia coli. J. Biol. Chem. 256: 11804–11808.

    CAS  Google Scholar 

  13. Foster, D. L., Garcia, M. L., Newman, M. J., Patel, L., and Kaback, H. R. (1982). Lactose-proton symport by purified lac carrier protein. Biochemistry 21:5634–5638.

    PubMed  CAS  Google Scholar 

  14. Viitanen, P., Newman, M. J., Foster, D. L., Wilson, T. H., and Kaback, H. R. (1986). Purification, reconstitution, and characterization of the lac permease of Escherichia coli, Methods Enzymol. 125:429–452.

    PubMed  CAS  Google Scholar 

  15. Viitanen, P., Garcia, M. L., and Kaback, H. R. (1984). Purified reconstituted lac carrier protein from Escherichia coli is fully functional. Proc. Natl. Acad. Sci. USA 81:1629–1633.

    PubMed  CAS  Google Scholar 

  16. Matsushita, K., Patel, L., Gennis, R. B., and Kaback, H. R. (1983). Reconstitution of active transport in proteoliposomes containing cytochrome o oxidase and lac carrier protein purified from Escherichia coli. Proc. Natl. Acad. Sci. USA 80:4889–4893.

    CAS  Google Scholar 

  17. Deisenhofer, J., and Michel, H. (1991). High-resolution structures of photosynthetic reaction centers. Annu. Rev. Biophys. Biophys. Chem. 20:247–266.

    PubMed  CAS  Google Scholar 

  18. Foster, D. L., Boublik, M., and Kaback, H. R. (1983). Structure of the lac carrier protein of Escherichia coli. J. Biol. Chem. 258:31–34.

    CAS  Google Scholar 

  19. Vogel, H., Wright, J. K., and Jahnig, F. (1985). The structure of the lactose permease derived from Raman spectroscopy and prediction methods. EMBO J. 4: 3625–3631.

    PubMed  CAS  Google Scholar 

  20. Carrasco, N., Tahara, S. M., Patel, L., Goldkorn, T., and Kaback, H. R. (1982). Preparation, characterization, and properties of monoclonal antibodies against the lac carrier protein from Escherichia coli. Proc. Natl. Acad Sci. USA 79:6894–6898.

    CAS  Google Scholar 

  21. Seckler, R., Wright, J. K., and Overath, P. (1983). Peptide-specific antibody locates the COOH terminus of the lactose carrier of Escherichia coli on the cytoplasmic side of the plasma membrane. J. Biol. Chem. 258:10817–10820.

    PubMed  CAS  Google Scholar 

  22. Carrasco, N., Viitanen, P., Herzlinger, D., and Kaback, H. R. (1984). Monoclonal antibodies against the lac carrier protein from Escherichia coli. 1. Functional studies. Biochemistry 23:3681–3687.

    PubMed  CAS  Google Scholar 

  23. Herzlinger, D., Viitanen, P., Carrasco, N., and Kaback, H. R. (1984). Monoclonal antibodies against the lac carrier protein from Escherichia coli. 2. Binding studies with membrane vesicles and proteoliposomes reconstituted with purified lac carrier protein. Biochemistry 23:3688–3693.

    PubMed  CAS  Google Scholar 

  24. Carrasco, N., Herzlinger, D., Mitchell, R., DeChiara, S., Danho, W., Gabriel, T. F., and Kaback, H. R. (1984). Intramolecular dislocation of the COOH terminus of the lac carrier protein in reconstituted proteoliposomes. Proc. Natl. Acad. Sci. USA 81:4672–4676.

    PubMed  CAS  Google Scholar 

  25. Seckler, R., and Wright, J. K. (1984). Sidedness of native membrane vesicles of Escherichia coli and orientation of the reconstituted lactose/H+ carrier. Eur. J. Biochem. 142:269–279.

    PubMed  CAS  Google Scholar 

  26. Herzlinger, D., Carrasco, N., and Kaback, H. R. (1985). Functional and immunochemical characterization of a mutant of Escherichia coli energy uncoupled for lactose transport. Biochemistry 24:221– 229.

    PubMed  CAS  Google Scholar 

  27. Danho, W., Makofske, R., Humiec, F., Gabriel, T. F., Carrasco, N., and Kaback, H. R. (1985). Use of site-directed polyclonal antibodies as immunotopological probes for the lac permease of Escherichia coli. In Peptides: Structure and Function (C. M. Deber, V. J. Hruby, K. D. Kopple, eds.), Pierce Chemical Co., Rockford, IL, pp. 59–62.

    Google Scholar 

  28. Seckler, R., Moroy, T., Wright, J. K., and Overath, P. (1986). Anti-peptide antibodies and proteases as structural probes for the lactose/ H+ transporter of Escherichia coli: a loop around amino acid residue 130 faces the cytoplasmic side of the membrane. Biochemistry 25: 2403–2409.

    PubMed  CAS  Google Scholar 

  29. Goldkorn, T., Rimon, G., and Kaback, H. R. (1983). Topology of the lac carrier protein in the membrane of Escherichia coli. Proc. Natl. Acad. Sci. USA 80:3322–3326.

    CAS  Google Scholar 

  30. Stochaj, U., Bieseler, B., and Ehring, R. (1986). Limited proteolysis of lactose permease from Escherichia coli. Eur. J. Biochem. 158:423–428.

    CAS  Google Scholar 

  31. Page, M. G., and Rosenbusch, J. P. (1988). Topography of lactose permease from Escherichia coli. J. Biol. Chem. 263:15906–15914.

    CAS  Google Scholar 

  32. Bieseler, B., Prinz, H., and Beyreuther, K. (1985). Topological studies of lactose permease of Escherichia coli by protein sequence analysis. Ann. N Y Acad. Sci. 456:309–325.

    PubMed  CAS  Google Scholar 

  33. Calamia, J., and Manoil, C. (1990). Lac permease of Escherichia coli: topology and sequence elements promoting membrane insertion. Proc. Natl. Acad. Sci. USA 87:4937–4941.

    PubMed  CAS  Google Scholar 

  34. Manoil, C, and Beckwith, J. (1986). A genetics approach to analyzing membrane protein topology. Science 233:1403–1408.

    PubMed  CAS  Google Scholar 

  35. Costello, M. J., Escaig, J., Matsushita, K., Viitanen, P. V., Menick, D. R., and Kaback, H. R. (1987). Purified lac permease and cytochrome o oxidase are functional as monomers. J. Biol. Chem. 262: 17072–17082.

    CAS  Google Scholar 

  36. Costello, M. J., Viitanen, P., Carrasco, N., Foster, D. L., and Kaback, H. R. (1954). Morphology of proteoliposomes reconstituted with purified lac carrier protein from Escherichia coli. J. Biol. Chem. 259:15579–15586.

    Google Scholar 

  37. Li, J., Tooth, P. (1987). Size and shape of the Escherichia coli lactose permease measured in filamentous arrays. Biochemistry 26:4816–4823.

    PubMed  CAS  Google Scholar 

  38. Bibi, E., and Kaback, H. R. (1990). In vivo expression of the lacY gene in two segments leads to functional lac permease. Proc. Natl. Acad. Sci. USA 87:4325–4329.

    PubMed  CAS  Google Scholar 

  39. Dornmair, K., Corin, A. E, Wright, J. K., and Jahnig, F. (1985). The size of the lactose permease derived from rotational diffusion measurements. EMBO J. 4:3633–3638.

    PubMed  CAS  Google Scholar 

  40. Sahin-Tóth, M., Lawrence, M. C., and Kaback, H. R. (1994). Properties of permease dimer, a fusion protein containing two lactose permease molecules from Escherichia coli. Proc. Natl. Acad. Sci. USA 91:5421–5425.

    Google Scholar 

  41. van Iwaarden, P. R., Pastore, J. C., Konings, W. N., and Kaback, H. R. (1991). Construction of a functional lactose permease devoid of cysteine residues. Biochemistry 30:9595–9600.

    PubMed  Google Scholar 

  42. Sahin-Tóth, M., and Kaback, H. R. (1993). Cysteine scanning mutagenesis of putative transmembrane helices IX and X in the lactose permease of Escherichia coli. Protein Sci. 2:1024–1033.

    PubMed  Google Scholar 

  43. Dunten, R. L., Sahin-Toth, M., and Kaback, H. R. (1993). Cysteine scanning mutagenesis of putative helix XI in the lactose permease of Escherichia coli. Biochemistry 32:12644–12650.

    PubMed  CAS  Google Scholar 

  44. Sahin-Tóth, M., Persson, B., Schweiger, J., Cohan, M., and Kaback, H. R. (1994). Cysteine scanning mutagenesis of the N-terminal 32 amino acid residues in the lactose permease of Escherichia coli. Protein Sci. 3:240–247.

    PubMed  Google Scholar 

  45. Trumble, W. R., Viitanen, P. V, Sarkar, H. K., Poonian, M. S., and Kaback, H. R. (1984). Site-directed mutagenesis of cys148 in the lac carrier protein of Escherichia coli. Biochem. Biophys. Res. Commun. 119:860–867.

    PubMed  CAS  Google Scholar 

  46. Menick, D. R., Sarkar, H. K., Poonian, M. S., and Kaback, H. R. (1985). Cys154 is important for lac permease activity in Escherichia coli. Biochem. Biophys. Res. Commun. 132:162–170.

    PubMed  CAS  Google Scholar 

  47. Viitanen, P. V, Menick, D. R., Sarkar, H. K., Trumble, W. R., and Kaback, H. R. (1985). Site-directed mutagenesis of cysteine-148 in the lac permease of Escherichia coli: effect on transport, binding, and sulfhydryl inactivation. Biochemistry 24:7628–7635.

    PubMed  CAS  Google Scholar 

  48. Neuhaus, J.-M., Soppa, J., Wright, J. K., Riede, L, Bocklage, H., Frank, R., and Overath, P. (1988). Properties of a mutant lactose carrier of Escherichia coli with a Cys148-Ser148 substitution. FEBS Lett. 185:83–88.

    Google Scholar 

  49. Sarkar, H. K., Menick, D. R., Viitanen, P. V, Poonian, M. S., and Kaback, H. R. (1986). Site-specific mutagenesis of cysteine 148 to serine in the lac permease of Escherichia coli. J. Biol. Chem. 261: 8914–8918.

    PubMed  CAS  Google Scholar 

  50. Brooker, R. J., and Wilson, T. H. (1986). Site-specific alteration of cysteine 176 and cysteine 234 in the lactose carrier of Escherichia coli. J. Biol. Chem. 261:11765–11771.

    PubMed  CAS  Google Scholar 

  51. Menick, D. R., Lee, J. A., Brooker, R. J., Wilson, T. H., and Kaback, H. R. (1987). Role of cysteine residues in the lac permease of Escherichia coli. Biochemistry 26:1132–1136.

    PubMed  CAS  Google Scholar 

  52. van Iwaarden, P. R., Driessen, A. J., Menick, D. R., Kaback, H. R., and Konings, W. N. (1991). Characterization of purified, reconstituted site-directed cysteine mutants of the lactose permease of Escherichia coli. J. Biol. Chem. 266:15688–15692.

    PubMed  Google Scholar 

  53. Menezes, M. E., Roepe, P. D., and Kaback, H. R. (1990). Design of a membrane transport protein for fluorescence spectroscopy. Proc. Natl. Acad. Sci. USA 87:1638–1642.

    PubMed  CAS  Google Scholar 

  54. Lolkema, J. S., Puttner, I. B., and Kaback, H. R. (1988). Site-directed mutagenesis of Pro327 in the lac permease of Escherichia coli. Biochemistry 27:8307–8310.

    PubMed  CAS  Google Scholar 

  55. Consler, T. G., Tsolas, O., and Kaback, H. R. (1991). Role of proline residues in the structure and function of a membrane transport protein. Biochemistry 30:1291–1298.

    PubMed  CAS  Google Scholar 

  56. Padan, E., Sarkar, H. K., Viitanen, P. V, Poonian, M. S., and Kaback, H. R. (1985). Site-specific mutagenesis of histidine residues in the lac permease of Escherichia coli. Proc. Natl. Acad. Sci. USA 82:6765–6768.

    PubMed  CAS  Google Scholar 

  57. Püttner, I. B., Sarkar, H. K., Poonian, M. S., and Kaback, H. R. (1986). Lac permease of Escherichia coli: His-205 and His-322 play different roles in lactose/H+ symport. Biochemistry 25:4483–4485.

    PubMed  Google Scholar 

  58. Püttner, I. B., and Kaback, H. R. (1988). Lac permease of Escherichia coli containing a single histidine residue is fully functional. Proc. Natl. Acad. Sci. USA 85:1467–1471.

    PubMed  Google Scholar 

  59. Püttner, I. B., Sarkar, H. B., Padan, E., Lolkema, J. S., and Kaback, H. R. (1989). Characterization of site-directed mutants in the lac permease of Escherichia coli: I. Replacement of histidine residues. Biochemistry 28:2525–2533.

    PubMed  Google Scholar 

  60. Roepe, P. D., and Kaback, H. R. (1989). Site-directed mutagenesis of tyrosine residues in the lac permease of Escherichia coli. Biochemistry 28:6127–6132.

    PubMed  CAS  Google Scholar 

  61. Ujwal, M. L., Sahin-Toth, M., Persson, B., and Kaback, H. R. (1994). Role of glutamate-269 in the lactose permease of Escherichia coli. Mol. Membr. Biol. 1:9–16.

    Google Scholar 

  62. Franco, P. J., and Brooker, R. J. (1994). Functional roles of Glu-269 and Glu-325 within the lactose permease of Escherichia coli. J. Biol. Chem. 269:7379–7386.

    PubMed  CAS  Google Scholar 

  63. Menick, D. R., Carrasco, N., Antes, L. M., Patel, L., and Kaback, H. R. (1987). Lac permease of Escherichia coli: Arginine-302 as a component of the postulated proton relay. Biochemistry 26:6638–6644.

    PubMed  CAS  Google Scholar 

  64. Matzke, E. A., Stephenson, L. J., and Brooker, R. J. (1992). Functional role of arginine 302 within the lactose permease of Escherichia coli. J. Biol Chem. 267:19095–19100.

    PubMed  CAS  Google Scholar 

  65. Carrasco, N., Antes, L. M., Poonian, M. S., and Kaback, H. R. (1986). Lac permease of Escherichia coli: histidine-322 and glutamic acid-325 may be components of a charge-relay system. Biochemistry 25:4486–488.

    PubMed  CAS  Google Scholar 

  66. Carrasco, N., Puttner, I. B., Antes, L. M., Lee, J. A., Larigan, J. D., Lolkema, J. S., Roepe, P. D., and Kaback, H. R. (1989). Characterization of site-directed mutants in the lac permease of Esche-q2539.

    Google Scholar 

  67. Fox, C. F., and Kennedy, E. P. (1965). Specific labeling and partial purification of the M protein, a component of the β-galactoside transport system of Escherichia coli. Proc. Natl Acad. Sci. USA 51:891.

    Google Scholar 

  68. Kennedy, E. P., Rumley, M. K., and Armstrong, J. B. (1974). Direct measurement of the binding of labeled sugars to the lactose permease M protein. J. Biol. Chem. 249:33–37.

    PubMed  CAS  Google Scholar 

  69. Beyreuther, K., Bieseler, B., Ehring, R., and Müller-Hill, B. (1981). Identification of internal residues of lactose permease of Escherichia coli by radiolabel sequences of peptide mixtures. In Methods in Protein Sequence Analysis (M. Elzinga, ed.), Humana, Clifton, NY, pp. 139–148.

    Google Scholar 

  70. Kaback, H. R., and Patel, L. (1978). The role of functional sulf-hydryl groups in active transport in Escherichia coli membrane vesicles. Biochemistry 17:1640–1646.

    PubMed  CAS  Google Scholar 

  71. Konings, W. N., and Robillard, G. T. (1982). Physical mechanism for regulation of proton solute symport in Escherichia coli, Proc. Natl. Acad. Sci. USA 79:5480–5484.

    PubMed  CAS  Google Scholar 

  72. Kaback, H. R., and Barnes, E. M., Jr. (1971). Mechanisms of active transport in isolated membrane vesicles. II. The mechanism of energy coupling between D-lactic dehydrogenase and β-galactoside transport in membrane preparations from Escherichia coli. J. Biol. Chem. 246:5523–5531.

    PubMed  CAS  Google Scholar 

  73. Robillard, G. T., and Konings, W. N. (1982). A hypothesis for the role of dithiol-disulfide interchange in solute transport and energy-transducing processes. Eur. J. Biochem. 127:597–604.

    PubMed  CAS  Google Scholar 

  74. Jung H., Jung, K., and Kaback, H. R. (1994). Cysteine 148 in the lactose permease of Escherichia coli is a component of a substrate binding site. I. Site-directed mutagenesis studies. Biochemistry 33: 12160–12165.

    PubMed  CAS  Google Scholar 

  75. Wu, J., and Kaback, H. R. (1994). Cysteine 148 in the lactose permease of Escherichia coli is a component of a substrate binding site. 2. Site-directed fluroescence studies. Biochemistry 33:12166–12171.

    PubMed  CAS  Google Scholar 

  76. King, S. C, Hansen, C. L., and Wilson, T. H. (1991). The interaction between aspartic acid 237 and lysine 358 in the lactose carrier of Escherichia coli. Biochem. Biophys. Acta. 1062:177–186.

    PubMed  CAS  Google Scholar 

  77. Sahin-Tóth, M., Dunten, R. L., Gonzalez, A., and Kaback, H. R. (1992). Functional interactions between putative intramembrane charged residues in the lactose permease of Escherichia coli. Proc. Natl. Acad. Sci. USA 89:10547–10551.

    PubMed  Google Scholar 

  78. Dunten, R. L., Sahin-Toth, M., and Kaback, H. R. (1993). Role of the charge pair formed by aspartic acid 237 and lysine 358 in the lactose permease of Escherichia coli. Biochemistry 32:3139–3145.

    PubMed  CAS  Google Scholar 

  79. Sahin-Tóth, M., and Kaback, H. R. (1993). Properties of interacting aspartic acid and lysine residues in the lactose permease of Escherichia coli. Biochemistry 32:10027–10035.

    PubMed  Google Scholar 

  80. Akabas, M. H., Stauffer, D. A., Xu, M., and Karlin, A. (1992). Acetylcholine receptor channel structure probed in cysteine-substitution mutants. Science 258:307–310.

    PubMed  CAS  Google Scholar 

  81. Roepe, P. D., Zbar, R. I., Sarkar, H. K., and Kaback, H. R. (1989). A five-residue sequence near the carboxyl terminus of the polytopic membrane protein lac permease is required for stability within the membrane. Proc. Natl. Acad. Sci. USA 86:3992–3996.

    PubMed  CAS  Google Scholar 

  82. McKenna, E., Hardy, D., Pastore, J. C., and Kaback, H. R. (1991). Sequential truncation of the lactose permease over a three-amino acid sequence near the carboxyl terminus leads to progressive loss of activity and stability. Proc. Natl. Acad. Sci. USA 88:2969–2973.

    PubMed  CAS  Google Scholar 

  83. McKenna, E., Hardy, D., and Kaback, H. R. (1992). Evidence that the final turn of the last transmembrane helix in the lactose permease is required for folding. J. Biol. Chem. 267:6471–6474.

    PubMed  CAS  Google Scholar 

  84. Lee, J. L., Hwang, P. P., Hansen, C., and Wilson, T. H. (1992). Possible salt bridges between transmembrane α-helices of the lactose carrier of Escherichia coli. J. Biol. Chem. 267:20758–20764.

    PubMed  CAS  Google Scholar 

  85. Hinkle, P. C, Hinkle, P. V., and Kaback, H. R. (1990). Information content of amino acid residues in putative helix VII of lac permease from Escherichia coli. Biochemistry 29:10989–10994.

    PubMed  CAS  Google Scholar 

  86. Zen, K. H., McKenna, E., Bibi, E., Hardy, D., and Kaback, H. R. (1994). Expression of lactose permease in contiguous fragments as a probe for membrane-spanning domains. Biochemistry 33:8198–8206.

    PubMed  CAS  Google Scholar 

  87. Jung, K., Jung, H., Wu, J., Privé, G. G., and Kaback, H. R. (1993). Use of site-directed fluorescence labeling to study proximity relationships in the lactose permease of Escherichia coli. Biochemistry 32:12273–12278.

    PubMed  CAS  Google Scholar 

  88. Kinnunen, P. K. J., Koiv, A., and Mustonen, P. (1993). Pyrene-labelled lipids as fluorescent probes in studies on biomembranes and membrane models. In Fluorescence Spectroscopy, (O. S. Wolfbeis, ed.), Springer-Verlag, New York, pp. 159–71.

    Google Scholar 

  89. Betcher-Lange, S. L., and Lehrer, S. S. (1978). Pyrene excimer fluorescence in rabbit skeletal alphaalphatropomyosin labeled with N-(1-pyrene)maleimide: A probe of sulfhydryl proximity and local chain separation. J. Biol. Chem. 253:3757–3760.

    PubMed  CAS  Google Scholar 

  90. Ishii, Y, and Lehrer, S. S. (1987). Fluorescence probe studies of the state of tropomyosin in reconstituted muscle thin filaments. Biochemistry 26:4922–4925.

    PubMed  CAS  Google Scholar 

  91. Ludi, H., and Hasselbach, W. (1987). Excimer formation pyrenemaleimide-labeled sarcoplasmic reticulum ATPase. Biophys. J. 51 :513–515.

    PubMed  CAS  Google Scholar 

  92. Sen, A. C, and Chakrabarti, B. (1990). Proximity of sulfhydryl groups in lens proteins. Excimer fluorescence of pyrene-labeled crystallins. J. Biol. Chem. 265:14277–14284.

    CAS  Google Scholar 

  93. Lee, J. A., Püttner, I. B., and Kaback, H. R. (1989). Effect of distance and orientation between arginine-302, histidine-322, and gluta-mate-325 on the activity of lac permease from Escherichia coli. Biochemistry 28:2540–2544.

    PubMed  CAS  Google Scholar 

  94. Cronan, J. E., Jr. (1990). Biotination of proteins in vivo. A post-translational modification to label, purify, and study proteins. J. Biol. Chem. 265:10327–10333.

    PubMed  CAS  Google Scholar 

  95. Consler, T. G., Persson, B. L., Jung, H., Zen, K. H., Jung, K., Prive, G. G., Verner, G. E., and Kaback, H. R. (1993). Properties and purification of an active biotinylated lactose permease from Escherichia coli. Proc. Natl. Acad. Sci. USA 90:6964.

    Google Scholar 

  96. Lee, J. I., Hwang, P. P., and Wilson, T. H. (1993). Lysine 319 interacts with both glutamic acid 269 and aspartic acid 240 in the lactose carrier of Escherichia coli. J. Biol. Chem. 268:20007–20015.

    PubMed  CAS  Google Scholar 

  97. Baldwin, S. A. (1993). Mammalian passive glucose transporters: members of an ubiquitous family of active and passive transport proteins. Biochim. Biophys. Acta. 1154:17–49.

    PubMed  CAS  Google Scholar 

  98. Jung, K., Jung, H., and Kaback, H. R. (1994). Dynamics of lactose permease of Escherichia coli determined by site-directed fluroescence labeling. Biochemistry 33:3980–3985.

    PubMed  CAS  Google Scholar 

  99. Jung, H., Jung, K., and Kaback, H. R. (1994). A conformational change in the lactose permease of Escherichia coli is induced by ligand binding or membrane potential. Protein Sci. 3:1052–1057.

    PubMed  CAS  Google Scholar 

  100. Kaczorowski, G. J., and Kaback, H. R. (1979). Mechanism of lactose translocation in membrane vesicles from Escherichia coli. 1. Effect of pH on efflux, exchange, and counterflow. Biochemistry 18:3691–3697.

    PubMed  CAS  Google Scholar 

  101. Kaczorowski, G. J., Robertson, D. E., and Kaback, H. R. (1979). Mechanism of lactose translocation in membrane vesicles from Escherichia coli. 2. Effect of imposed delta psi, delta pH, and Delta mu H+. Biochemistry 18:3697–3704.

    PubMed  CAS  Google Scholar 

  102. Robertson, D. E., Kaczorowski, G. J., Garcia, M. L., and Kaback, H. R. (1980). Active transport in membrane vesicles from Escherichia coli: the electrochemical proton gradient alters the distribution of the lac carrier between two different kinetic states. Biochemistry 19:5692–5702.

    PubMed  CAS  Google Scholar 

  103. Blow, D. M., Birktoft, J. J., and Hartley, B. S. (1969). Role of a buried acid group in the mechanism of action of chymotrypsin. Nature 221:337–340.

    PubMed  CAS  Google Scholar 

  104. Garcia, M. L., Viitanen, P., Foster, D. L., and Kaback, H. R. (1983). Mechanism of lactose translocation in proteoliposomes reconstituted with lac carrier protein purified from Escherichia coli. 1. Effeet of pH and imposed membrane potential on efflux, exchange, and counterflow. Biochemistry 22:2524–2531.

    PubMed  CAS  Google Scholar 

  105. Viitanen, P., Garcia, M. L., Foster, D. L., Kaczorowski, G. J., and Kaback, H. R. (1983). Mechanism of lactose translocation in proteoliposomes reconstituted with lac carrier protein purified from Escherichia coli. 2. Deuterium solvent isotope effects. Biochemistry 22:2531–2536.

    PubMed  CAS  Google Scholar 

  106. Kaback, H. R. (1990). Lac permease of Escherichia coli: on the path of the proton. Phil Trans. Roy Soc. Lond. B Biol. Sci. 326:425–436.

    CAS  Google Scholar 

  107. Collins, J. C, Permuth, S. F., and Brooker, R. J. (1989). Isolation and characterization of lactose permease mutants with an enhanced recognition of maltose and diminished recognition of cellobiose. J. Biol. Chem. 264: 14698–14703.

    PubMed  CAS  Google Scholar 

  108. Franco, P. J., Eelkema, J. A., and Brooker, R. J. (1989). Isolation and characterization of thiodigalactoside-resistant mutants of the lactose permease which possess an enhanced recognition for maltose. J. Biol. Chem. 264:15988–15992.

    PubMed  CAS  Google Scholar 

  109. King, S. C, and Wilson, T. H. (1989). Galactoside-dependent proton transport by mutants of the Escherichia coli lactose carrier. Replacement of histidine 322 by tyrosine or phenylalanine, J. Biol. Chem. 264:7390–7394.

    CAS  Google Scholar 

  110. King, S. C., and Wilson, T. H. (1989). Galactoside-dependent proton transport by mutants of the Escherichia coli lactose carrier: substitution of tyrosine for histidine-322 and of leucine for serine-306. Biochim. Biophys. Acta. 982:253–264.

    PubMed  CAS  Google Scholar 

  111. King, S. C., and Wilson, T. H. (1990). Sensitivity of efflux-driven carrier turnover to external pH in mutants of the Escherichia coli lactose carrier that have tyrosine or phenylalanine substituted for histidine-322. A comparison of lactose and melibiose. J. Biol. Chem. 265:3153–3160.

    CAS  Google Scholar 

  112. Brooker, R. J. (1990). Characterization of the double mutant, Val-177/Asn-322, of the lactose permease. J. Biol. Chem. 265:4155–4160.

    PubMed  CAS  Google Scholar 

  113. Boyer, P. D. (1988). Bioenergetic coupling to protonmotive force: should we be considering hydronium ion coordination and not group protonation? Trends Biochem. Sci. 13:5–7.

    PubMed  CAS  Google Scholar 

  114. Privé, G. G., Verner, G. E., Weitzman, C, Zen, K. H., Eisenberg, D., and Kaback, H. R. (1994). Fusion proteins as tools for crystallization: the lactose permease of Escherichia coli. Acta Cryst. 375–379.

    Google Scholar 

  115. McKenna, E., Hardy, D., and Kaback, H. R. (1992). Insertional mutagenesis of hydrophilic domains in the lactose permease of Escherichia coli. Proc. Natl Acad. Sci. USA 89:11954–11958.

    PubMed  CAS  Google Scholar 

  116. Stochaj, U., and Ehring, R. (1987). The N-terminal region of Escherichia coli lactose permease mediates membrane contact of the nascent polypeptide chain. Eur. J. Biochem. 163:653–658.

    PubMed  CAS  Google Scholar 

  117. Stochaj, U., Fritz, H. J., Heibach, C., Markgraft, M., von Schaewen, A., Sonnewald, U., and Ehring, R. (1988). Truncated forms of Escherichia coli lactose permease: models for study of biosynthesis and membrane insertion. J. Bacteriol. 170:2639–2645.

    PubMed  Google Scholar 

  118. von Heijne, G., and Blomberg, C. (1979). Trans-membrane translocation of proteins. The direct transfer model. Eur. J. Biochem. 97: 175–181.

    Google Scholar 

  119. Engelman, D. M., and Steitz, T. A. (1981). The spontaneous insertion of proteins into and across membranes: the helical hairpin hypothesis. Cell 23:411–422.

    PubMed  CAS  Google Scholar 

  120. Wickner, W. T., and Lodish, H. F. (1985). Multiple mechanisms of protein insertion into and across membranes. Science 230:400–407.

    PubMed  CAS  Google Scholar 

  121. Rapoport, T. A. (1986). Protein translocation across and integration into membranes. CRC Crit. Rev. Biochem. 20:73–137.

    PubMed  CAS  Google Scholar 

  122. Singer, S. J., Maher, P. A., and Yaffe, M. P. (1987). On the transfer of integral proteins into membranes. Proc. Natl Acad. Sci. USA 84: 1960.

    PubMed  CAS  Google Scholar 

  123. Blobel, G. (1980). Intracellular protein topogenesis. Proc. Natl. Acad. Sci. USA 77:1496–1500.

    PubMed  CAS  Google Scholar 

  124. Popot, J. L., and de Vitry, C. (1990). On the microassembly of integral membrane proteins. Annu. Rev. Biophys. Biophys. Chem. 19:369–403.

    PubMed  CAS  Google Scholar 

  125. Popot, J. L., and Engelman, D. M. (1990). Membrane Protein Models: Possibilities and Probabilities. In Protein Form and Function, (R. A. Bradshaw, and M. Purton, eds.), Elsevier, Cambridge, pp. 147–151.

    Google Scholar 

  126. Bibi, E., Verner, G., Chang, C. Y., and Kaback, H. R. (1991). Organization and stability of a polytopic membrane protein: deletion analysis of the lactose permease of Escherichia coli. Proc. Natl. Acad. Sci. USA 88:7271–7275.

    PubMed  CAS  Google Scholar 

  127. Calamia, J., and Manoil, C. (1992). Membrane protein spanning segments as export signals. J. Mol. Biol. 224:539–543.

    CAS  Google Scholar 

  128. Wrubel, W., Stochaj, U., Sonnewald, U., Theres, C, and Ehring, R. (1990). Reconstitution of an active lactose carrier in vivo by simultaneous synthesis of two complementary protein fragments. J. Bacteriol. 172:5374–5381.

    PubMed  CAS  Google Scholar 

  129. Bibi, E., Stearns, S. M., and Kaback, H. R. (1992). The N-terminal 22 amino acid residues in the lactose permease of Escherichia coli are not obligatory for membrane insertion or transport activity. Proc. Natl. Acad. Sci. USA 89:3180–3184.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Plenum Press, New York

About this chapter

Cite this chapter

Kaback, H.R. (1996). The Lactose Permease of Escherichia coli An Update. In: Schultz, S.G., Andreoli, T.E., Brown, A.M., Fambrough, D.M., Hoffman, J.F., Welsh, M.J. (eds) Molecular Biology of Membrane Transport Disorders. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1143-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1143-0_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8446-8

  • Online ISBN: 978-1-4613-1143-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics