Disorders of Renal Tubular Transport Processes

  • W. Brian Reeves
  • Thomas E. Andreoli
Chapter

Abstract

The glomeruli of individuals with normal renal function deliver, on an average, about 180 liters of plasma ultrafiltrate to the nephrons each day. Included in this vast volume of filtrate are 25,000 mEq of sodium, 4300 mEq of bicarbonate, 700 mEq of potassium, 180 g of glucose, and 10 g of calcium. Indeed, for many of the constituents of the glomerular ultrafiltrate, such as water and sodium, the daily filtered load greatly exceeds the total body content of these substances. One of the primary functions of the nephron, then, is to reabsorb the bulk of the water and solutes presented to it. This process, involving the regulated actions of a wide variety of both active and passive transport pathways proceeding in spatially discrete segments of the nephron, results in a final urine that contains only a small fraction of the original volume and of certain solutes, while other solutes may be present in higher content than in the original glomerular filtrate. That is, certain solutes are avidly absorbed by the nephron while others may undergo net secretion. It also must be emphasized that the resorptive and secretory processes in the kidney are under strict physiologic regulation.

Keywords

Lithium Uranium Proline Sponge Fructose 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Friedman, A. L., and Chesney, R. W. (1993). Isolated renal tubular disorders. In Diseases of the Kidney, 5th ed. (R. W. Schrier and C. W. Gottschalk, eds.), Little, Brown, Boston, pp. 611–634.Google Scholar
  2. 2.
    Reeves, W. B., and Andreoli, T. E. (1993). Tubular sodium transport. In Diseases of the Kidney, 5th ed. (R. W. Schrier and C. W. Gottschalk, eds.), Little, Brown, Boston, pp. 139–179.Google Scholar
  3. 3.
    Barfuss, D. W., and Schafer, J. A. (1979). Active amino acid absorption by proximal convoluted and proximal straight tubules. Am. J. Physiol. 236:F149–F155.PubMedGoogle Scholar
  4. 4.
    Samarzija, I., and Fromter, E. (1982). Electrophysiologic analysis of rat renal sugar and amino acid transport. I. Basic phenomema. Pfluegers Arch. 393:179–188.Google Scholar
  5. 5.
    Fass, S. J., Hammerman, M. R., and Sactor, B. (1977). Transport of amino acids in renal brush border membrane vesicles. Uptake of the neutral amino acid L-alanine. J. Biol. Chem. 252:583–587.PubMedGoogle Scholar
  6. 6.
    Murer, H., Leopolder, A., Kinne, R., and Burckhardt, G. (1980). Recent observations on the proximal tubular transport of acid and basic amino acids by rat renal proximal tubular brush border vesicles. Int. J. Biochem. 12:222–230.Google Scholar
  7. 7.
    Doyle, F. A., and McGivan, J. D. (1992). The bovine renal epithelial cell line NBL-1 expresses a broad specificity Na+-dependent neutral amino acid transport system similar to that in bovine renal brush border membrane vesicles. Biochim. Biophys. Acta 1104:55–59.PubMedGoogle Scholar
  8. 8.
    Doyle, F. A., and McGivan, J. D. (1992). Reconstitution and identification of the major Na+-dependent neutral amino acid transport protein from bovine renal brush-border membrane vesicles. Biochem. J. 281:95–101.PubMedGoogle Scholar
  9. 9.
    Tate, S. S., Yan, N., and Undenfriend, S. (1992). Expression cloning of a Na+-independent neutral amino acid transporter from rat kidney. Proc. Natl. Acad. Sci. USA 89:1–5.PubMedGoogle Scholar
  10. 10.
    Samarzija, I., and Fromter, E. (1982). Electrophysiologic analysis of rat renal sugar and amino acid transport. III. Neutral amino acids. Pfluegers Arch. 393:199–209.Google Scholar
  11. 11.
    Samarzija, I., and Fromter, E. (1982). Electrophysiologic analysis of rat renal sugar and amino acid transport. IV. Basic amino acids. Pfluegers Arch. 393:210–214.Google Scholar
  12. 12.
    Samarzija, I., and Fromter, E. (1982). Electrophysiologic analysis of rat renal sugar and amino acid transport. V. Acidic amino acids. Pfluegers Arch. 393:215–219.Google Scholar
  13. 13.
    Wells, R. G., and Hediger, M. A. (1992). Cloning of a rat kidney cDNA that stimulates dibasic and neutral amino acid transport and has sequence similarity to glucosidases. Proc. Natl. Acad. Sci. USA 89:5596–5600.PubMedGoogle Scholar
  14. 14.
    Lee, W. S., Wells, R. G., Sabbag, R. V., Mohandas, T. K., and Hediger, M. A. (1993). Cloning and chromosomal localization of a human kidney cDNA involved in cystine, dibasic, and neutral amino acid transport. J. Clin. Invest. 91:1959–1965.PubMedGoogle Scholar
  15. 15.
    Segal, S., and Thier, S. O. (1995). Cystinuria. In The Metabolic and Molecular Bases of Inherited Disease, 7th ed. (C. R. Scriver, A. L. Beaudet, W. S. Sly, and D. Valle, eds.), McGraw-Hill, New York, pp. 3581–3606.Google Scholar
  16. 16.
    Bertrand, J., Werner, A., Moore, M. L., Strange, G., Markovich, D., Biber, J., Testar, X., Zorzano, A., Palacin, M., and Murer, H. (1992). Expression cloning of a cDNA from rabbit kidney cortex that induces a single transport system for cystine and dibasic and neutral amino acids. Proc. Natl. Acad. Sci. USA 89:5601–5605.Google Scholar
  17. 17.
    Pras, E., Arber, N., Aksentijevich, I., Katz, G., Schapiro, J. M., Prosen, L., Gruberg, L., Harel, D., Liberman, U., Weissenbach, J., Pras, M., and Kastner, D. L. (1994). Localization of a gene causing cystinuria to chromosome 2p. Nature Genet. 6:415–419.PubMedGoogle Scholar
  18. 18.
    Calonge, M. J., Gasarine, P., Chillaron, J., Chillon, M., Gallucci, M., Roussard, F., Zelante, L., Testar, X., Dallapiccola, B., DiSilverio, F., Barcelo, P., Estivill, X., Zorzano, A., Nunes, V., and Palacin, M. (1994). Cystinuria caused by mutations in rBAT, a gene involved in the transport of cystine. Nature Genet. 6:420–425.PubMedGoogle Scholar
  19. 19.
    Levy, H. L. (1973). Genetic screening. In Advances in Human Genetics (H. Harris and K. Hirschhorn, eds.), Plenum Press, New York, pp. 1–82.Google Scholar
  20. 20.
    Dent, C. E., Friedmann, M., Green, H., and Watson, L. C. A. (1965). Treatment of cystinuria. Br. Med. J. 1:403–405.PubMedGoogle Scholar
  21. 21.
    Levy, H. L. (1995). Hartnup disorder. In The Metabolic and Molecular Bases of Inherited Disease, 7th ed. (C. R. Scriver, A. L. Beaudet, W. S. Sly, and D. Valle, eds.), McGraw-Hill, New York, pp. 3629–3642.Google Scholar
  22. 22.
    Scriver, C. R., Mahon, B., Levy, H. L., Clow, C. L., Reade, T. M., Kronick, J., Lemieux, B., and Laberge, C. (1987). The Hartnup phenotype: Mendelian transport disorder, multifactorial disease. Am. J. Hum. Genet. 40:401–411.PubMedGoogle Scholar
  23. 23.
    Haim, S., Gilhar, A., and Cohen, A. (1978). Cutaneous manifestations associated with aminoaciduria. Report of two cases. Dermatologica 156:244–249.PubMedGoogle Scholar
  24. 24.
    Mori, E., Yamadori, A., Tsutsumi, A., and Kyotani, Y. (1989). Adult onset Hartnup disease presenting with neuropsychiatrie symptoms but without skin lesions. Clin. Neurol. 29:687–690.Google Scholar
  25. 25.
    Erly, W., Castillo, M., Foosaner, D., and Bonmati, C. (1991). Hartnup disease: MR findings. AJNR 12:1026–1031.PubMedGoogle Scholar
  26. 26.
    Chesney, R. W. (1995). Iminoglycinuria. In The Metabolic and Molecular Bases of Inherited Disease, 7th ed. (C. R. Scriver, A. L. Beaudet, W. S. Sly, and D. Valle, eds.), McGraw-Hill, New York, pp. 3643–3653.Google Scholar
  27. 27.
    Desjeux, J.-F., Turk, E., and Wright, E. (1995). Congenital selective Na+ D-glucose cotransport defects leading to renal glycosuria and congenital selective intestinal malabsorption of glucose and galactose. In The Metabolic and Molecular Bases of Inherited Disease, 7th ed. (C. R. Scriver, A. L. Beaudet, W. S. Sly, and D. Valle, eds.), McGraw-Hill, New York, pp. 3563–3580.Google Scholar
  28. 28.
    DeMarchi, S., Cecchin, E., Basile, A., Proto, G., Donadon, W., Jengo, A., Schinella, D., Jus, A., Villalta, D., De Paoli, P., Santini, G., and Tesio, F (1984). Close genetic linkage between HLA and renal glycosuria. Am. J. Nephrol. 4:280–286.Google Scholar
  29. 29.
    Oemar, B. S., Byrd, D. J., and Brodehl, J. (1987). Complete absence of tubular glucose absorption: A new type of renal glucosuria. Clin. Nephrol. 27:156–160.PubMedGoogle Scholar
  30. 30.
    Biagi, B. A., Kubota, T., Sohtell, M., and Giebisch, G. (1981). Intracellular potentials in rabbit proximal tubules perfused in vitro. Am. J. Physiol. 240:F200–F208.Google Scholar
  31. 31.
    Aronson, P S., and Sacktor, B. (1975). The Na+ gradient-dependent transport of D-glucose in renal brush border membranes. J. Biol. Chem. 250:6032–6036.PubMedGoogle Scholar
  32. 32.
    Kinne, R., Murer, H., Kinne-Saffran, E., Thees, M., and Sachs, G. (1975). Sugar transport by renal plasma membrane vesicles. J. Membr. Biol. 21:375–382.Google Scholar
  33. 33.
    Barfuss, D. W., and Schafer, J. A. (1981). Differences in active and passive glucose transport along the proximal nephron. Am. J. Physiol. 236:F149–F156.Google Scholar
  34. 34.
    Turner, R. J., and Moran, A. (1982). Heterogeneity of sodium-dependent D-glucose transport sites along the proximal tubule: Evidence from vesicle studies. Am. J. Physiol. 242:F406–F412.PubMedGoogle Scholar
  35. 35.
    Turner, R. J., and Moran, A. (1982). Stoichiometric studies of renal outer critical brush border membrane D-glucose transporter. J. Membr. Biol. 67:73–80.PubMedGoogle Scholar
  36. 36.
    Turner, R. J., and Moran, A. (1982). Further studies of proximal tubular brush border membrane D-glucose transport heterogeneity. J. Membr. Biol. 70:37–43.PubMedGoogle Scholar
  37. 37.
    Hediger, M. A., Coady, M. J., Ikeder, T. S., and Wright, E. M. (1987). Expression cloning and cDNA sequencing of the Na+/glucose co-transporter. Nature 330:379–381.PubMedGoogle Scholar
  38. 38.
    Hediger, M. A., Turk, E., and Wright, E. M. (1989). Homology of the human intestinal Na+/glucose and Escherichia coli Na+/proline cotransporters. Proc. Natl Acad. Sci. USA 86:5748–5753.PubMedGoogle Scholar
  39. 39.
    Coady, M. J., Pajor, A. M., and Wright, E. M. (1990). Sequency homologies among intestinal and renal Na+/glucose cotransporters. Am. J. Physiol. 259:C605–C612.PubMedGoogle Scholar
  40. 40.
    Pajor, A. M., Hirayama, B. A., and Wright, E. M. (1992). Molecular evidence for two renal Na+/glucose cotransporters. Biochim. Biophys. Acta 1106:216–219.PubMedGoogle Scholar
  41. 41.
    Wells, R. G., Pajor, A. M., Kanai, T., Turk, E., Wright, E. M., and Hediger, M. A. (1992). Cloning of a human kidney cDNA with similarity to the sodium-glucose cotransporter. Am. J. Physiol. 263: F459–F467.PubMedGoogle Scholar
  42. 42.
    Kanai, Y., Lee, W. S., You, G., Brown, D., and Hediger, M. A. (1994). The human kidney low affinity Na+/glucose cotransporter SGLT2. Delineation of the major renal resorptive mechanism for D-glucose. J. Clin. Invest. 93:397–405.PubMedGoogle Scholar
  43. 43.
    Turk, E., Zabel, B., Mundlos, S., Dyer, J., and Wright, E. (1991). Glucose/galactose malabsorption: A defect in the Na+/glucose co-transporter. Nature 350:354–356.PubMedGoogle Scholar
  44. 44.
    Reeves, W. B., and Andreoli, T. E. (1995). Nephrogenic diabetes insipidus. In The Metabolic and Molecular Bases of Inherited Disease, 7th ed. (C. R. Scriver, A. L. Beaudet, W S. Sly, and D. Valle, eds.), McGraw-Hill, New York.Google Scholar
  45. 45.
    Reeves, W. B., and Andreoli, T. E. (1992). The posterior pituitary and water metabolism. In Williams Textbook of Endocrinology, 8th ed. (J. D. Wilson and D. W. Foster, eds.), Saunders, Philadelphia, pp. 311–356.Google Scholar
  46. 46.
    Ganote, C. E., Grantham, J. J., Moses, H. L., Burg, M. B., and Orloff, J. (1968). Ultrastructural studies of vasopressin effect in isolated perfused renal collecting tubules of the rabbit. J. Cell Biol 36:355–362.PubMedGoogle Scholar
  47. 47.
    Grantham, J. J., Ganote, C. E., Burg, M. B., and Orloff, J. (1968). Paths of transtubular water flow in isolated renal collecting tubules. J. Cell Biol. 41:562–570.Google Scholar
  48. 48.
    Schafer, J. A., and Andreoli, T. E. (1972). Cellular constraints to diffusion: The effect of antidiuretic hormone on water flows in isolated mammalian collecting tubules. J. Clin. Invest. 51:1264–1270.PubMedGoogle Scholar
  49. 49.
    Birnbaumer, M., Seibold, A., Gilbert, S., Ishido, M., Barberis, C., Antaramian, A., Brabet, P., and Rosenthal, W. (1992). Molecular cloning of the receptor for human antidiuretic hormone. Nature 357: 333–335.PubMedGoogle Scholar
  50. 50.
    Lolait, S. J., O’Carroll, A.-M., McBride, O. W., Konig, M., Morel, A., and Brownstein, M. J. (1992). Cloning and characterization of a vasopressin V2 receptor and possible link to nephrogenic diabetes insipidus. Nature 357:336–340.PubMedGoogle Scholar
  51. 51.
    Nielsen, S., and Agre, P. (1995). The aquaporin family of water channels in kidney. Kidney Int. 48:1057–1068.PubMedGoogle Scholar
  52. 52.
    Nielsen, S., Chou, C. L., Marples, D., Christensen, E. I., Kishore, B. K., and Knepper, M. A. (1995). Vasopressin increases water permeability of kidney collecting duct by producing translocation of aquaporin-CD water channels to plasma membrane. Proc. Natl Acad. Sci. USA 92:1013–1017.PubMedGoogle Scholar
  53. 53.
    Bichet, D. G., Razi, M., Arthus, M.-F., Lonergan, M., Tittley, P., Smiley, R. K., Rock, G., and Hirsch, D. J. (1989). Epinephrine and dDAVP administration in patients with congenital nephrogenic diabetes isipidus. Evidence for a pre-cyclic AMP V2 receptor defective mechanism. Kidney Int. 36:859–867.PubMedGoogle Scholar
  54. 54.
    Knoers, N., Brommer, E. J. P., Willems, H., van Oost, B. A., and Monens, L. A. H. (1990). Fibrinolytic responses to 1-desamino-8-D-arginine-vasopressin in patients with congenital nephrogenic diabetes insipidus. Nephron 54:326–331.Google Scholar
  55. 55.
    D’Avanzo, M., Toraldo, R., Fazzone, A., Papa, M. L., Santinelli, R., Tolone, C., and Lafusco, F. (1991). Factor VIII response to vasopressin in nephrogenic diabetes insipidus. J. Pediatr. 119:504–510.PubMedGoogle Scholar
  56. 56.
    Kobrinsky, N. L., Doyle, J. J., Israels, E. D., Winter, J. J., Cheang, M. S., Walker, R. D., and Bishop, A. J. (1985). Absent factor VIII response to synthetic vasopressin analogue (DDAVP) in nephrogenic diabetes insipidus. Lancet 8441:1293–1294.Google Scholar
  57. 57.
    Brenner, B., Seligsohn, U., and Hochberg, Z. (1988). Normal response of factor VIII and von Willebrand factor to 1-deamino-8-D-arginine vasopressin in nephrogenic diabetes insipidus. J. Clin. Endocrinol. Metab. 67:191–197.PubMedGoogle Scholar
  58. 58.
    Moses, A. M., Miller, J. L., and Levine, M. A. (1988). Two distinct pathophysiological mechanisms in congenital nephrogenic diabetes insipidus. J. Clin. Endocrinol. Metab. 66:1259–1265.PubMedGoogle Scholar
  59. 59.
    Knoers, N., van der Heyden, H., van Oost, B. A., Monnens, L., Willems, J., and Ropers, H. H. (1988). Linkage of X-linked nephrogenic diabetes insipidus with DAS52, a polymorphic DNA marker. Nephron 50:187–193.PubMedGoogle Scholar
  60. 60.
    Knoers, N., van der Heyden, H., van Oost, B. A., Monners, L., Ropers, H. H., and Willems, J. (1988). Nephrogenic diabetes insipidus: Close linkage with markers from the distal long arm of the human X chromosome. Hum. Genet. 80:31–36.PubMedGoogle Scholar
  61. 61.
    Kambouris, M., Dlouhy, S. R., Trofatter, J. A., Conneally, P. M., and Hodes, M. E. (1988). Localization of the gene for X-linked nephrogenic diabetes insipidus to Xq28. Am. J. Med. Genet. 29:239–245.PubMedGoogle Scholar
  62. 62.
    Jans, D. A., van Oost, B. A., Ropers, H. H., and Fahrenholz, F. (1990). Derivatives of somatic cell hybrids which carry the human gene locus for nephrogenic diabetes insipidus (NDI) express functional vasopressin renal V2-type receptors. J. Biol. Chem. 265: 15379–15383.PubMedGoogle Scholar
  63. 63.
    Rosenthal, W., Seibold, A., Antaramian, A., Lonergan, M., Arthus, M.-E, Hendy, G. N., Birnbaumer, M., and Bichet, D. G. (1992). Molecular identification of the gene responsible for congenital nephrogenic diabetes insipidus. Nature 359:233–236.PubMedGoogle Scholar
  64. 64.
    Oksche, A., Dickson, J., Schulein, R., Seyberth, H. W., Muller, M., Rascher, W., Birnbaumer, M., and Rosenthal, W. (1994). Two novel mutations in the vasopressin V2 receptor gene in patients with congenital nephrogenic diabetes insipidus. Biochem. Biophys. Res. Commun. 205:552–557.PubMedGoogle Scholar
  65. 65.
    Holtzman, E. J., Kolakowski, L. F., Jr., Geifman-Holtzman, O., O’Brien, D. G., Rasoulpour, M., Guillot, A. P., and Ausiello, D. A. (1994). Mutations in the vasopressin V2 receptor gene in two families with nephrogenic diabetes insipidus. J. Am. Soc. Neph. 5:169–176.Google Scholar
  66. 66.
    Knoers, N. V., van den Ouweland, A. M., Verdijk, M., Monnens, L. A., and van Oost, B. A. (1994). Inheritance of mutations in the V2 receptor gene in thirteen families with nephrogenic diabetes insipidus. Kidney Int. 46:170–176.PubMedGoogle Scholar
  67. 67.
    Birnbaumer, M., Gilber, S., and Rosenthal, W. (1994). An extracellular congenital nephrogenic diabetes insipidus mutation of the vasopressin receptor reduces cell surface expression, affinity for ligand, and coupling to the Gs/adenylyl cyclase system. Mol Endocrinol. 8:886–894.PubMedGoogle Scholar
  68. 68.
    Langley, J. M., Balfe, J. W., Selander, T., Ray, P. N., and Clarke, J. T. R. (1991). Autosomal recessive inheritance of vasopressin-resistant diabetes insipidus. Am. J. Med. 38:90–93.Google Scholar
  69. 69.
    Deen, P. M. T., Verdijk, M., Knoers, N., Wieringa, B., Monnens, L. A., van Os, C. H., and van Oost, B. A. (1994). Requirement of human renal water channel aquaporin-2 for vasopressin-dependent concentration of urine. Science 264:92–95.PubMedGoogle Scholar
  70. 70.
    van Lieburg, A. K., Verdijk, M. A., Knoers, N. V., van Essen, A. J., Proesmans, W., Mallmann, R., Monnens, L. A., van Oost, B. A., van Os, C. H., and Deen, P. M. (1994). Patients with autosomal nephrogenic diabetes insipidus homozygous for mutations in the aquaporin 2 water-channel gene. Am. J. Hum. Genet. 55:648–652.PubMedGoogle Scholar
  71. 71.
    Bergstein, J. M. Nephrogenic diabetes insipidus. In Textbook of Pediatrics (R. E. Behrman, R. M. Kliegman, W. E. Nelson, and V. C. Vaughan III, eds.), Saunders, Philadelphia.Google Scholar
  72. 72.
    Alon, U., and Chan, J. C. (1985). Hydrochlorothiazide-amiloride in the treatment of congenital nephrogenic diabetes insipidus. Am. J. Nephrol. 5:9–13.PubMedGoogle Scholar
  73. 73.
    Knoers, N., and Monnens, L. A. H. (1990). Amiloride-hydrochlorothiazide versus indomethacin-hydrochlorothiazide in the treatment of nephrogenic diabetes insipidus. J. Pediatr. 117:499–503.PubMedGoogle Scholar
  74. 74.
    Battle, D. C., von Riotte, A. B., Gavina, M., and Grupp, M. (1985). Amelioration of polyuria by amiloride in patients receiving long-term lithium therapy. N. Engl. J. Med. 312:408–411.Google Scholar
  75. 75.
    DuBose, T. D., Jr., and Alpern, R. J. (1995). Renal tubular acidosis. In The Metabolic and Molecular Bases of Inherited Disease, 7th ed. (C. R. Scriver, A. L. Beaudet, W. S. Sly, and D. Valle, eds.), McGraw-Hill, New York, pp. 3655–3689.Google Scholar
  76. 76.
    Murer, H., Hopfer, V., and Kinne, R. (1976). Sodium/protein antiport in brush-border membrane vesicles isolated from rat small intestine and kidney. Biochem. J. 154:597–601.PubMedGoogle Scholar
  77. 77.
    Kinsella, J. L., and Aronson, P. S. (1980). Properties of the Na+-H+ exchange in renal microvillus membrane vesicles. Am. J. Physiol. 238:F401–F410.Google Scholar
  78. 78.
    Aronson, P. S. (1983). Mechanisms of active H+ secretion in the proximal tubule. Am. J. Physiol. 245:F647–F654.PubMedGoogle Scholar
  79. 79.
    Aronson, P. S., Nee, J., and Suhm, M. A. (1982). Modifier role of internal H+ in activating the Na+-H+ in renal microvillus vesicles. Nature 299:161–163.PubMedGoogle Scholar
  80. 80.
    Boron, W. F., and Boulpaep, E. L. (1983). Intracellular pH regulation in the renal proximal tubule of the salamander. Na+-H+ exchange. J. Gen. Physiol. 81:29–41.PubMedGoogle Scholar
  81. 81.
    Tsai, C. J., Ives, H. E., Alpern, R. J., Yee, V. J., Warnock, D. G., and Rector, F. C., Jr. (1984). Increased Vmax for Na+/H+ antiporter activity in proximal tubule brush border vesicles from rabbits with metabolic acidosis. Am. J. Physiol. 247:F339–F346.PubMedGoogle Scholar
  82. 82.
    Casavola, V., Helmle-Kolb, C., and Murer, H. (1989). Separate regulatory control of apical and basolateral Na+/H+ exchange in renal epithelial cells. Biochem. Biophys. Res. Commun. 165:833–837.PubMedGoogle Scholar
  83. 83.
    Haggerty, J. G., Agarwal, N., Reilly, R. F., Adelberg, E. A., and Slayman, C. W. (1988). Pharmacologically different Na/H anti-porters on the apical and basolateral surfaces of cultured porcine kidney cells (LLC-PK1). Proc. Natl. Acad. Sci. USA 85:6797–6801.PubMedGoogle Scholar
  84. 84.
    Sardet, C., Franchi, A., and Pouyssegur, J. (1989). Molecular cloning, primary structure, and expression of the human growth factor-activatable Na+/H+ antiporter. Cell 56:271–280.PubMedGoogle Scholar
  85. 85.
    Helmle-Kolb, C., Counillon, L., Roux, D., Pouyssegur, J., Mrkic, B., and Murer, H. (1993). Na/H exchange activities in NHE1-transfected OK-cells: Cell polarity and regulation. Pfluegers Arch. 425:34–41.Google Scholar
  86. 86.
    Biemesderfer, D., Pizzonia, J., Abu-Alfa, A., Exner, M., Reilly, R., Igarashi, P., and Aronson, P. S. (1993). NHE3: A Na+/H+ exchanger isoform of renal brush border. Am. J. Physiol. 265:F736–F742.PubMedGoogle Scholar
  87. 87.
    Alpern, R. J. (1985). Mechanism of basolateral membrane H+/OH-/HCO- 3 transport in the rat proximal convoluted tubule. A sodium-coupled electrogenic process. J. Gen. Physiol. 86:613–623.PubMedGoogle Scholar
  88. 88.
    Sasaki, S., Shiigai, T., Yoshiyama, N., and Takeuchi, J. (1987). Mechanism of bicarbonate exit across basolateral membrane of rabbit proximal straight tubule. Am. J. Physiol. 21:F11–F20.Google Scholar
  89. 89.
    Sly, W. S., Whyte, M. P., Sundaram, V., Tashian, R. E., Hewett-Emmett, D., Guibaud, P., Vainsel, M., Baluarte, H. J., Gruskin, A., Al-Mosawi, M., Sakati, N., and Ohlsson, A. (1985). Carbonic anhydrase II deficiency in 12 families with autosomal recessing syndrome of osteopetrosis with renal tubular acidosis and cerebral calcification. N. Engl. J. Med. 313:139–143.PubMedGoogle Scholar
  90. 90.
    Bergeron, M., Gougoux, A., and Vinay, P. (1995). The renal Fanconi syndrome. In The Metabolic and Molecular Bases of Inherited Disease, 7th ed. (C. R. Scriver, A. L. Beaudet, W. S. Sly, and D. Valle, eds.), McGraw-Hill, New York, pp. 3691–3704.Google Scholar
  91. 91.
    Sabatini, S., and Kurtzman, N. A. (1991). Pathophysiology of the renal tubular acidoses. Semin. Neph. 11:202–211.Google Scholar
  92. 92.
    Gluck, S. L., Nelson, R. D., and Lee, B. S. (1993). Properties and regulation of the renal vacuolar H+-ATPase and H+-K+-ATPase. Curr. Opin. Neph. Hypertension 2:715–724.Google Scholar
  93. 93.
    Diaz-Diaz, F. D., LaBelle, E. F., Eaton, D. C., and DuBose, T. D., Jr. (1986). ATP-dependent proton transport in human renal medulla. Am. J. Physiol. 20:F297–F305.Google Scholar
  94. 94.
    Gluck, S., and Caldwell, J. (1987). Immunoaffinity purification and characterization of vacuolar H+ ATPase from bovine kidney. J. Biol. Chem. 262:15780–15784.PubMedGoogle Scholar
  95. 95.
    Gluck, S., and Bastani, B. (1991). The biochemistry of distal urinary acidification in health and disease. In Acid-Base Balance (N. G. DeSanto and G. Capasso, eds.), Editoriale Bios, Consenza, Italy, pp. 21–34.Google Scholar
  96. 96.
    Brown, D., Hirsch, S., and Gluck, S. (1988). Localization of a proton-pumping ATPase in rat kidney. J. Clin. Invest. 82:2114–2126.PubMedGoogle Scholar
  97. 97.
    Wingo, C.S. (1989). Active proton secretion and potassium absorption in the rabbit outer medullary collecting duct. J. Clin. Invest. 84:361–369.PubMedGoogle Scholar
  98. 98.
    Dafnis, E., Spohn, M., Lonis, B., Kurtzman, N. A., and Sabatini, S. (1992). Vanadate causes hypokalemic distal renal tubular acidosis. Am. J. Physiol. 262:F449–F453.PubMedGoogle Scholar
  99. 99.
    Sitprija, V., Tungsanga, K., Eiam-Ong, S., Leelhaphunt, N., and Scriboonlue, P. (1990). Renal tubular acidosis, vanadium and buffaloes. Nephron 54:97–98.PubMedGoogle Scholar
  100. 100.
    O’Neil, R. G., and Helman, S. I. (1977). Transport characteristics of renal collecting tubules: Influences of DOCA and diet. Am. J. Physiol. 233:F544–F551.PubMedGoogle Scholar
  101. 101.
    Stone, D. S., Seldin, D. W., Kokko, J. P., and Jacobson, H. R. (1983). Mineralocorticoid modulation of rabbit medullary collecting duct acidification. A sodium-independent acidification. J. Clin. Invest. 72:77–85.PubMedGoogle Scholar
  102. 102.
    Goldstein, M. B., Bear, R., Richardson, R. M. A., Marsden, P. A., and Halperin, M. L. (1986). The urine anion gap: A clinically useful index of ammonium excretion. Am. J. Med. Sci. 292:198–202.PubMedGoogle Scholar
  103. 103.
    Batlle, D. C., Hizon, M., Cohen, E., Gutterman, C., and Gupta, R. (1988). The use of the urinary anion gap in the diagnosis of hyperchloremic metabolic acidosis. N. Engl. J. Med. 318:594–599.PubMedGoogle Scholar
  104. 104.
    Rothstein, M., Obialo, C., and Hruska, K. A. (1990). Renal tubular acidosis. Endocrinol. Metab. Clin. North Am. 19:869–886.PubMedGoogle Scholar
  105. 105.
    Arruda, J. A. L., and Cowell, G. (1994). Distal renal tubular acidosis: Molecular and clinical aspects. Hosp. Pract. 29:75–88.Google Scholar
  106. 106.
    Cohen, E. P., Bastani, B., Cohen, M. R., Kolner, S., Hemkin, P., and Gluck, S. L. (1992). Absence of H+-ATPase in cortical collection tubules of a patient with Sjogren’s syndrome and distal renal tubular acidosis. J. Am. Soc. Neph. 3:264–269.Google Scholar
  107. 107.
    Douglas, J. B., and Healy, J. K. (1969). Nephrotoxic effects of amphotericin B, including renal tubular acidosis. Am. J. Med. 46:154–162.PubMedGoogle Scholar
  108. 108.
    DeFronzo, R. A. (1980). Hyperkalemia and hyporeninemic hypoaldosteronism. Kidney Int. 17:118–125.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1996

Authors and Affiliations

  • W. Brian Reeves
    • 1
  • Thomas E. Andreoli
    • 1
  1. 1.Division of Nephrology and Department of Internal MedicineUniversity of Arkansas College of MedicineLittle RockUSA

Personalised recommendations