Skip to main content

The Membrane-Associated Cytoskeleton and Exoskeleton

  • Chapter
Molecular Biology of Membrane Transport Disorders
  • 367 Accesses

Abstract

The shape and organization of the plasma membrane are influenced not only by the lipid bilayer and its integral membrane proteins, but also by structures lying either just inside or just outside of the cell that provide a scaffolding for the membrane. Structures that interact closely with the extracellular face of the membrane may act as an “exoskeleton.” Structures on the cytoplasmic face of the plasma membrane are generally considered to be part of the “cytoskeleton.” A subset of the cytoskeleton that associates primarily or exclusively with the plasma membrane has been termed the “membrane skeleton.” This chapter considers the biochemistry and morphology of the exoskeleton and of the membrane-associated cytoskeleton, how these two macromolecular complexes interact with the plasma membrane, and finally, how they interact with each other through receptors located in the plasma membrane. A major emphasis is placed on the role of these complexes in forming distinct membrane domains, enriched in particular integral membrane proteins with specific biological functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kirsch, J., Langosch, D., Prior, P., Littauer, U. Z., Schmitt, B., and Betz, H. (1991). The 93-kDa glycine receptor-associated protein binds to tubulin. J. Biol. Chem. 266:22242–22245.

    PubMed  CAS  Google Scholar 

  2. Tilney, L. G., and Detmers, P. (1975). Actin in erythrocyte ghosts and its association with spectrin. J. Cell Biol. 66:508–520.

    Article  PubMed  CAS  Google Scholar 

  3. Tsukita, S., and Ishikawa, H. (1980). Cytoskeletal network underlying the human erythrocyte membrane. J. Cell Biol. 85:567–576.

    Article  PubMed  CAS  Google Scholar 

  4. Lange, Y., Hadesman, R. A., and Steck, T. L. (1982). Role of the reticulum in the stability and shape of the isolated human erythrocyte membrane. J. Cell Biol. 92:714–721.

    Article  PubMed  CAS  Google Scholar 

  5. Winograd, E., Hume, D., and Branton, D. (1991). Phasing the conformational unit of spectrin. Proc. Nat. Acad. Sci. USA 88: 10788–10791.

    Article  PubMed  CAS  Google Scholar 

  6. Yan, Y., Winograd, E., Viel, A., Cronin, T., Harrison, S. C., and Branton, D. (1993). Crystal structure of the repetitive segments of spectrin. Science 262:2027–2030.

    Article  PubMed  CAS  Google Scholar 

  7. Speicher, D. W., and Ursitti, J. A. (1994). Conformation of a mammoth protein. Curr. Biol. 4:154–157.

    Article  PubMed  CAS  Google Scholar 

  8. Lundberg, S., Lehto, V.-P, and Backman, L. (1992). Characterization of calcium binding to spectrins. Biochemistry 31:5665–5671.

    Article  PubMed  CAS  Google Scholar 

  9. Karinch, A. M., Zimmer, W. E., and Goodman, S. R. (1990). The identification and sequence of the actin-binding domain of human red blood cell ß-spectrin. J. Biol. Chem. 265:11833–11840.

    PubMed  CAS  Google Scholar 

  10. Speicher, D. W., Weglarz, L., and DeSilva, T. M. (1992). Properties of human red cell spectrin heterodimer (side-to-side) assembly and identification of an essential nucleation site. J. Biol. Chem. 267: 14775–14782.

    PubMed  CAS  Google Scholar 

  11. Viel, A., and Branton, D. (1994). Interchain binding at the tail end of the Drosophila spectrin molecule. Proc. Natl. Acad. Sci. USA 91:10839–10843.

    Article  PubMed  CAS  Google Scholar 

  12. McGough, A. M., and Josephs, R. (1990). On the structure of erythrocyte spectrin in partially expanded membrane skeletons. Proc. Natl. Acad. Sci. USA 87:5208–5212.

    Article  PubMed  CAS  Google Scholar 

  13. Ursitti, J. A., and Wade, J. B. (1993). Ultrastructure and immuno-cytochemistry of the isolated human erythrocyte membrane skeleton. Cell Motil. Cytoskel. 25:30–42.

    Article  CAS  Google Scholar 

  14. Shen, B. W., Josephs, R., and Steck, T. L. (1986). Ultrastructure of the intact skeleton of the human erythrocyte membrane. J. Cell Biol. 102:997–1006.

    Article  PubMed  CAS  Google Scholar 

  15. Liu, S.-C., Derick, L. H., and Palek, J. (1987). Visualization of the hexagonal lattice in the erythrocyte membrane skeleton. J. Cell Biol. 104:527–536.

    Article  PubMed  CAS  Google Scholar 

  16. Shotton, D. M., Burke, B. E., and Branton, D. (1979). The molecular structure of human erythrocyte spectrin: Biophysical and electron microscopic studies. J. Mol. Biol. 131:303–329.

    Article  PubMed  CAS  Google Scholar 

  17. Byers, T. J., and Branton, D. (1985). Visualization of the protein associations in the erythrocyte membrane skeleton. Proc. Natl. Acad. Sci. USA 82:6153–6157.

    Article  PubMed  CAS  Google Scholar 

  18. Ursitti, J. A., Pumplin, D. W., Wade, J. B., and Bloch, R. J. (1991). Ultrastructure of the human erythrocyte cytoskeleton and its attachment to the membrane. Cell Motil. Cytoskel. 19:227–243.

    Article  CAS  Google Scholar 

  19. Parry, D. A. D., Dixon, T. W., and Cohen, C. (1992). Analysis of the three-α-helix motif in the spectrin superfamily of proteins. Biophys. J. 61:858–867.

    Article  PubMed  CAS  Google Scholar 

  20. Bloch, R. J., and Pumplin, D. W. (1992). A model of spectrin as a concertina in the erythrocyte membrane skeleton. Trends Cell Biol. 2:186–189.

    Article  PubMed  CAS  Google Scholar 

  21. Kennedy, S. P., Weed, S. A., Forget, B. G., and Morrow, J. S. (1994). A partial structural repeat forms the heterodimer self-association site of all ß-spectrins. J. Biol. Chem. 269:11400–11408.

    PubMed  CAS  Google Scholar 

  22. Elgsaeter, A., Stokke, B. T., Mikkelsen, A., and Branton, D. (1986). The molecular basis of erythrocyte shape. Science 234:1217–1223.

    Article  PubMed  CAS  Google Scholar 

  23. Ralston, G. B., and Dunbar, J. C. (1979). Salt and temperature-dependent conformation changes in spectrin from human erythrocyte membranes. Biochim. Biophys. Acta 579:20–30.

    PubMed  CAS  Google Scholar 

  24. Morrow, J. S., Jr., Haigh, W. B., and Marchesi, V. T. (1981). Spectrin oligomers: A structural feature of the erythrocyte cytoskeleton. J. Supramol. Struct. Cell Biochem. 17:275–287.

    Article  PubMed  CAS  Google Scholar 

  25. Morrow, J. S., and Marchesi, V T. (1981). Self-assembly of spectrin oligomers in vitro: A basis for a dynamic cytoskeleton. J. Cell Biol. 88:463–468.

    Article  PubMed  CAS  Google Scholar 

  26. Liu, S.-C., Windisch, P., Kim, S., and Palek, J. (1984). Oligomeric states of spectrin in normal erythrocyte membranes: Biochemical and electron microscopic studies. Cell 37:587–594.

    Article  PubMed  CAS  Google Scholar 

  27. Vandekerckhove, J., and Weber, K. (1978). Mammalian cytoplasmic actins are the products of at least two genes and differ in primary structure in at least 25 identified positions from skeletal muscle actins. Proc. Natl. Acad. Sci. USA 75:1106–1110.

    Article  PubMed  CAS  Google Scholar 

  28. Vandekerckhove, J., and Weber, K. (1978). At least six different actins are expressed in a higher mammal: An analysis based on the amino acid sequence of the amino-terminal tryptic peptide. J. Mol. Biol. 126:783–802.

    Article  PubMed  CAS  Google Scholar 

  29. Gunning, P., Ponte, P., Okayama, H., Engel, J., Blau, H., and Kedes, L. (1983). Isolation and characterization of full-length cDNA clones for human α-, ß- and T-actin mRNA’s: Skeletal but not cytoplasmic actins have an amino terminal cysteine that is subsequently removed. Mol. Cell Biol. 3:787–795.

    PubMed  CAS  Google Scholar 

  30. Gimona, M., Vandekerckhove, J., Goethals, M., Herzog, M., Lando, Z., and Small, J. V (1994). ß-Actin specific monoclonal antibody. Cell Motil. Cytoskel. 27:108–116.

    Article  CAS  Google Scholar 

  31. Pinder, J. C., and Gratzer, W. B. (1983). Structural and dynamic states of actin in the erythrocyte. J. Cell Biol. 96:768–775.

    Article  PubMed  CAS  Google Scholar 

  32. Siegel, D. L., and Branton, D. (1985). Partial purification and characterization of an actin-bundling protein, band 4.9, from human erythrocytes. J. Cell Biol. 100:775–785.

    Article  PubMed  CAS  Google Scholar 

  33. Fowler, V. M., Davis, J. Q., and Bennett, V (1985). Human erythrocyte myosin: Identification and purification. J. Cell Biol. 100:47–55.

    Article  PubMed  CAS  Google Scholar 

  34. Fowler, V. M., and Bennett, V. (1984). Erythrocyte membrane tropomyosin: Purification and properties. J. Biol. Chem. 259: 5978–5989.

    PubMed  CAS  Google Scholar 

  35. Fowler, V. M. (1990). Tropomodulin. A cytoskeletal protein that binds to the end of erythrocyte tropomyosin and inhibits tropomyosin binding to actin. J. Cell Biol. 111:471–482.

    Article  PubMed  CAS  Google Scholar 

  36. Fowler, V. M., Sussman, M. A., Miller, P. G., Flucher, B. E., and Daniels, M. P. (1993). Tropomodulin is associated with the free (pointed) ends of the thin filaments in rat skeletal muscle. J. Cell Biol. 120:411–420.

    Article  PubMed  CAS  Google Scholar 

  37. Fairbanks, G., Steck, T. L., and Wallach, D. F. H. (1971). Electrophoretic analysis of the major polypeptides of the human erythrocyte membrane. Biochemistry 10:2606–2624.

    Article  PubMed  CAS  Google Scholar 

  38. Leto, T. L., and Marchesi, V. T. (1984). A structural model of human erythrocyte protein 4.1. J. Biol. Chem. 259:4603–4608.

    PubMed  CAS  Google Scholar 

  39. Tyler, J. M., Reinhardt, B. N., and Branton, D. (1980). Associations of erythrocyte membrane proteins: Binding of purified bands 2.1 and 4.1 to spectrin. J. Biol. Chem. 255:7034–7039.

    PubMed  CAS  Google Scholar 

  40. Cohen, C. M., and Langley, R. C., Jr. (1984). Functional characterization of human erythrocyte spectrin α and ß chains: Association with actin and erythrocyte protein 4.1. Biochemistry 23:4488–495.

    Article  PubMed  CAS  Google Scholar 

  41. Coleman, T. R., Harris, A. S., Mische, S. M., Mooseker, M. S., and Morrow, J. S. (1987). ß-Spectrin bestows protein 4.1 sensitivity on spectrin-actin interactions. J. Cell Biol. 104:519–526.

    Article  PubMed  CAS  Google Scholar 

  42. Correas, I., Leto, T. L., Speicher, D. W., and Marchesi, V. T. (1986). Identification of the functional site of erythrocyte protein 4.1 involved in spectrin-actin associations. J. Biol. Chem. 261:3310–3315.

    PubMed  CAS  Google Scholar 

  43. Correas, I., Speicher, D. W., and Marchesi, V. T. (1986). Structure of the spectrin-actin binding site of erythrocyte protein 4.1. J. Biol. Chem. 261:13362–13366.

    PubMed  CAS  Google Scholar 

  44. Subrahmanyan, G., Bertics, R J., and Anderson, R. A. (1991). Phosphorylation of protein 4.1 on tyrosine-418 modulates its function in vitro. Proc. Natl. Acad. Sci. USA 88:5222–5226.

    Article  Google Scholar 

  45. Fowler, V., and Taylor, D. L. (1980). Spectrin plus band 4.1 crosslink actin: Regulation by micromolar calcium. J. Cell Biol. 85: 361–376.

    Article  PubMed  CAS  Google Scholar 

  46. Tanaka, T., Kadowaki, K., Lazarides, E., and Sobue, K. (1991). Ca2+-dependent regulation of the spectrin/actin interaction by calmodulin and protein 4.1. J. Biol. Chem. 266:1134–1140.

    PubMed  CAS  Google Scholar 

  47. Anderson, J. P., and Morrow, J. S. (1987). The interaction of calmodulin with human erythrocyte spectrin: Inhibition of protein 4.1-stimulated actin binding. J. Biol. Chem. 262:6365–6372.

    PubMed  CAS  Google Scholar 

  48. Mische, S. M., Mooseker, M. S., and Morrow, J. S. (1987). Erythrocyte adducin: A calmodulin-regulated actin-binding protein that stimulates spectrin-actin binding. J. Cell Biol. 105:2837–2845.

    Article  PubMed  CAS  Google Scholar 

  49. Gardner, K., and Bennett, V. (1986). A new erythrocyte membrane-associated protein with calmodulin binding activity: Identification and purification. J. Biol. Chem. 261:1339–1348.

    PubMed  CAS  Google Scholar 

  50. Joshi, R., Gilligan, D. M., Otto, E., McLaughlin, T., and Bennett, V. (1991). Primary structure and domain organization of human a and ß adducin. J. Cell Biol. 115:665–675.

    Article  PubMed  CAS  Google Scholar 

  51. Cohen, C. M., and Foley, S. F. (1986). Phorbol ester- and Ca2+-dependent phosphorylation of human red cell membrane skeletal proteins. J. Biol. Chem. 261:7701–7709.

    PubMed  CAS  Google Scholar 

  52. Hughes, C. A., and Bennett, V. (1995). Adducin: A physical model with implications for function in assembly of spectrin-actin complexes. J. Biol. Chem. 270:18990–18996.

    Article  PubMed  CAS  Google Scholar 

  53. Bennett, V. (1990). Spectrin-based membrane skeleton: A multipo-tential adaptor between plasma membrane and cytoplasm. Physiol. Rev. 70:1029–1065.

    PubMed  CAS  Google Scholar 

  54. Gardner, K., and Bennett, V. (1987). Modulation of spectrin-actin assembly by erythrocyte adducin. Nature 328:359–362.

    Article  PubMed  CAS  Google Scholar 

  55. Cohen, C. M., and Foley, S. F (1984). Biochemical characterization of complex formation by human erythrocyte spectrin, protein 4.1 and actin. Biochemistry 23:6091–6098.

    Article  PubMed  CAS  Google Scholar 

  56. St-Onge, D., and Gicquaud, C. (1990). Research on the mechanism of interaction between actin and membrane lipids. Biochem. Bio-phys. Res. Commun. 167:40–47.

    Article  CAS  Google Scholar 

  57. Williamson, P., Bateman, J., Kozarsky, K., Mattocks, K., Hermanowicz, N., Choe, H.-R., and Schlegel, R. A. (1982). Involvement of spectrin in the maintenance of phase-state asymmetry in the erythrocyte membrane. Cell 30:725–733.

    Article  PubMed  CAS  Google Scholar 

  58. Cohen, A. M., Liu, S.C., Derick, L. H., and Palek, J. (1986). Ultra-structural studies of the interaction of spectrin with phosphatidyl-serine liposomes. Blood 68:920–926.

    PubMed  CAS  Google Scholar 

  59. Bennett, V., and Stenbuck, P. J. (1979). Identification and partial purification of ankyrin, the high affinity membrane attachment site for human erythrocyte spectrin. J. Biol. Chem. 254:2533–2541.

    PubMed  CAS  Google Scholar 

  60. Bennett, V., and Stenbuck, P. J. (1979). The membrane attachment protein for spectrin is associated with band 3 in human erythrocyte membranes. Nature 280:468–473.

    Article  PubMed  CAS  Google Scholar 

  61. Bennett V. (1992). Ankyrins. Adaptors between diverse plasma membrane proteins and the cytoplasm. J. Biol. Chem. 267:8703–8706.

    PubMed  CAS  Google Scholar 

  62. Platt, O. S., Lux, S. E., and Falcone, J. F. (1993). A highly conserved region of human erythrocyte ankyrin contains the capacity to bind spectrin. J. Biol. Chem. 268:24421–24426.

    PubMed  CAS  Google Scholar 

  63. Hall, T. G., and Bennett, V. (1987). Regulatory domains of erythrocyte ankyrin. J. Biol. Chem. 262:10537–10545.

    PubMed  CAS  Google Scholar 

  64. Davis, L. H., and Bennett, V. (1990). Mapping the binding sites of human erythrocyte ankyrin for the anion exchanger and spectrin. J. Biol. Chem. 265:10589–10596.

    PubMed  CAS  Google Scholar 

  65. Gallagher, P. G., Tse, W. T., Scarpa, A. L., Lux, S. E., and Forget, B. G. (1992). Large number of alternatively spliced isoforms of the regulatory region of human erythrocyte ankyrin. Trans. Assoc. Am. Physicians 105:268–277.

    PubMed  CAS  Google Scholar 

  66. Kennedy, S. P., Warren, S. L., Forget, B. G., and Morrow, J. S. (1991). Ankyrin binds to the 15th repetitive unit of erythroid and nonerythroid ß-spectrin. J. Cell Biol. 115:267–277.

    Article  PubMed  CAS  Google Scholar 

  67. Bennett, V., and Stenbuck, P. J. (1980). Association between ankyrin and the cytoplasmic domain of band 3 isolated from the human erythrocyte membrane. J. Biol. Chem. 255:6424–6432.

    PubMed  CAS  Google Scholar 

  68. Davis, L., Lux, S. E., and Bennett, V. (1989). Mapping the ankyrin-binding site of the human erythrocyte anion exchanger. J. Biol. Chem. 264:9655–9672.

    Google Scholar 

  69. Golan, D. E., and Veatch, W. (1980). Lateral mobility of band 3 in the human erythrocyte membrane studied by fluorescence photo-bleaching recovery: Evidence for control by cytoskeletal interactions. Proc. Natl. Acad. Sci. USA 77:2537–2541.

    Article  PubMed  CAS  Google Scholar 

  70. Tsuji, A., and Ohnishi, S.-I. (1986). Restriction of the lateral motion of band 3 in the erythrocyte membrane by the cytoskeletal network: Dependence on spectrin association state. Biochemistry 25: 6133–6139.

    Article  PubMed  CAS  Google Scholar 

  71. Anderson, R. A., and Lovrien, R. E. (1984). Glycophorin is linked by band 4.1 protein to the human erythrocyte membrane skeleton. Nature 307:655–658.

    Article  PubMed  CAS  Google Scholar 

  72. Anderson, R. A., Correas, I., Mazzucco, C., Castle, J. D., and Marchesi, V. T. (1988). Tissue-specific analogues of erythrocyte protein 4.1 retain functional domains. J. Cell. Biochem. 37:269–284.

    Article  PubMed  CAS  Google Scholar 

  73. Pasternack, G. R., Anderson, R. A., Leto, T. L., and Marchesi, V. T. (1985). Interactions between protein 4.1 and band 3: An alternative binding site for an element of the membrane skeleton. J. Biol. Chem. 260:3676–3683.

    PubMed  CAS  Google Scholar 

  74. Steiner, J. P., and Bennett, V. (1988). Ankyrin-independent membrane protein-binding sites for brain and erythrocyte spectrin. J. Biol. Chem. 263:14417–14425.

    PubMed  CAS  Google Scholar 

  75. Lombardo, C. R., Weed, S. A., Kennedy, S. P., Forget, B. G., and Morrow, J. S. (1994). Beta II-spectrin (fodrin) and beta I sigma II spectrin (muscle) contain NH2- and COOH-terminal membrane association domains (MAD1 and MAD2). J. Biol. Chem. 269:29212–29219.

    PubMed  CAS  Google Scholar 

  76. Davis, L. H., and Bennett, V. (1994). Identification of two regions of ßG spectrin that bind to distinct sites in brain membranes. J. Biol. Chem. 269:4409–4416.

    PubMed  CAS  Google Scholar 

  77. Gallagher, P. G., and Forget, B. G. (1993). Spectrin genes in health and disease. Semin. Hematol. 30:4–21.

    PubMed  CAS  Google Scholar 

  78. Lux, S. E., Tse, W. T., Menninger, J. C., John, K. M., Harris, P., Shalev, O., Chilcote, R. R., Marchesi, S. L., Watkins, P. C., Bennett, V., Mcintosh, S., Collins, F. S., Francke, U., Ward, D. C., and Forget, B. G. (1990). Hereditary spherocytosis associated with deletion of human erythrocyte ankyrin gene on chromosome 8. Nature 345:736–739.

    Article  PubMed  CAS  Google Scholar 

  79. Conboy, J., Mohandas, N., Tchernia, G., and Kan, Y. W. (1986). Molecular basis of hereditary elliptocytosis due to protein 4.1 deficiency. N. Engl. J. Med. 315:680–685.

    Article  PubMed  CAS  Google Scholar 

  80. Winkelmann, J. C., and Forget, B. G. (1993). Erythroid and non-erythroid spectrins. Blood 81:3173–3185.

    PubMed  CAS  Google Scholar 

  81. Levine, J., and Willard, M. (1981). Fodrin: Axonally transported polypeptides associated with the internal periphery of many cells. J. Cell Biol. 90:631–643.

    Article  PubMed  CAS  Google Scholar 

  82. Goodman, S. R., Zagon, I. S., and Kulikowski, R. R. (1981). Identification of a spectrin-like protein in nonerythroid cells. Proc. Natl. Acad. Sci. USA 78:7570–7574.

    Article  PubMed  CAS  Google Scholar 

  83. Davis, J., and Bennett, V. (1983). Brain spectrin. Isolation of sub-units and formation of hybrids with erythrocyte spectrin subunits. J. Biol. Chem. 258:7757–7766.

    PubMed  CAS  Google Scholar 

  84. Wasenius, V.-M., Saraste, M., Salven, P., Eramaa, M., Holm, L., and Lehto, V.-P. (1989). Primary structure of the brain α-spectrin. J. Cell Biol. 108:79–93.

    Article  PubMed  CAS  Google Scholar 

  85. Harris, A. S., Croall, D. E., and Morrow, J. S. (1988). The calmodulin binding site in α-fodrin is near the calcium-dependent protease-I cleavage site. J. Biol. Chem. 263:15754–15761.

    PubMed  CAS  Google Scholar 

  86. Merilainen, J., Palovuori, R., Sormunen, R., Wasneius, V.-M., and Lehto, V.-P. (1993). Binding of the α-fodrin SH3 domain to the leading lamellae of locomoting chicken fibroblasts. J. Cell Sci. 105:647–654.

    PubMed  CAS  Google Scholar 

  87. Harris, A. S., Croall, D. E., and Morrow, J. S. (1989). Calmodulin regulates fodrin susceptibility to cleavage by calcium-dependent protease I. J. Biol. Chem. 264:17401–17408.

    PubMed  CAS  Google Scholar 

  88. Harris, A. S., and Morrow, J. S. (1990). Calmodulin and calcium-dependent protease I coordinately regulate the interaction of fodrin with actin. Proc. Natl. Acad. Sci. USA 87:3009–3013.

    Article  PubMed  CAS  Google Scholar 

  89. Steiner, J. P., Walke, H. T., Jr., and Bennett, V (1989). Calcium/calmodulin inhibits direct binding of spectrin to synaptosomal membranes. J. Biol. Chem. 264:2783–2791.

    PubMed  CAS  Google Scholar 

  90. Clark, M. B., Ma, Y., Bloom, M. L., Barker, J. E., Zagon, I. S., Zimmer, W. E., and Goodman, S. R. (1994). Brain erythroid a spectrin: Identification, compartmentalization and ß spectrin associations. Brain Res. 663:223–236.

    Article  PubMed  CAS  Google Scholar 

  91. Winkelmann, J. C., Costa, F. F., Linzie, B. L., and Forget, B. G. (1990). ß-Spectrin in human skeletal muscle—Tissue specific differential processing of a 3′ ß-spectrin pre-messenger RNA generates a ß-spectrin isoform with a unique carboxyl terminus. J. Biol. Chem. 265:20449–20454.

    PubMed  CAS  Google Scholar 

  92. Porter, G. A., Dmytrenko, G. M., Winkelmann, J. C., and Bloch, R. J. (1991). Dystrophin colocalizes with ß-spectrin in distinct subsarcolemmal domains in mammalian skeletal muscle. J. Cell Biol. 117:997–1005.

    Article  Google Scholar 

  93. Malchiodi-Albedi, F., Ceccarini, M., Winkelmann, J. C., Morrow, J. S., and Petrucci, T. C. (1993). The 270 kDa splice variant of erythrocyte ß-spectrin (ßIΣ2) segregates in vivo and in vitro to specific domains of cerebellar neurons. J. Cell Sci. 106:67–78.

    PubMed  CAS  Google Scholar 

  94. Moon, R. T., and McMahon, A. P. (1990). Generation of diversity in nonerythroid spectrins. Multiple polypeptides are predicted by sequence analysis of cDNAs encompassing the coding region of human non-erythroid α-spectrin. J. Biol. Chem. 265:4427–4432.

    PubMed  CAS  Google Scholar 

  95. Bloch, R. J., and Morrow, J. S. (1989). An unusual ß-spectrin associated with clustered acetylcholine receptors. J. Cell Biol. 108: 481–493.

    Article  PubMed  CAS  Google Scholar 

  96. Glenney, J., and Glenney, P. (1984). Co-expression of spectrin and fodrin in Friend erythroleukemic cells treated with DMSO. Exp. Cell Res. 152:15–21.

    Article  PubMed  CAS  Google Scholar 

  97. Riederer, B. M., Zagon, I. S., and Goodman, S. R. (1986). Brain spectrin (240/235) and brain spectrin (240/235E): Two distinct spectrin subtypes with different locations within mammalian neural cells. J. Cell Biol. 102:2088–2097.

    Article  PubMed  CAS  Google Scholar 

  98. Riederer, B. M., Lopresti, L. L., Krebs, K. E., Zagon, I. S., and Goodman, S. R. (1988). Brain spectrin (240/235) and brain spectrin (240/235E): Conservation of structure and location within mammalian neural tissue. Brain Res. Bull. 21:607–616.

    Article  PubMed  CAS  Google Scholar 

  99. Kunimoto, M., Otto, E., and Bennett, V (1991). A new 440-kD isoform is the major ankyrin in neonatal rat brain. J. Cell Biol. 115: 1319–1331.

    Article  PubMed  CAS  Google Scholar 

  100. Birkenmeier, C. S., White, R. A., Peters, L. L., Barker, J. E., and Lux, S. E. (1993). Complex patterns of sequence variation and multiple 5′ and 3′ ends are found among transcripts of the erythroid ankyrin gene. J. Biol. Chem. 268:9533–9540.

    PubMed  CAS  Google Scholar 

  101. Otto, E., Kunimoto, M., McLaughlin, T., and Bennett, V. (1991). Isolation and characterization of cDNAs encoding human brain ankyrins reveal a family of alternatively spliced genes. J. Cell Biol. 114:241–253.

    Article  PubMed  CAS  Google Scholar 

  102. Kordeli, E., Lambert, S., and Bennett, V. (1995). AnkyrinG: A new ankyrin gene with neural-specific isoforms localized at the axonal initial segment and node of Ranvier. J. Biol. Chem. 270:2352–2359.

    Article  PubMed  CAS  Google Scholar 

  103. Peters, L. L., John, K. M., Lu, F. M., Eicher, E. M., Higgins, A., Yialamas, M., Turtzo, L. C., Otsuka, A. J., and Lux, S. E. (1995). Ank3 (epithelial ankyrin), a widely distributed new member of the ankyrin gene family and the major ankyrin in kidney, is expressed in alternatively spliced forms, including forms that lack the repeat domain. J. Cell Biol. 130:313–330.

    Article  PubMed  CAS  Google Scholar 

  104. Ngai, J., Stack, J. H., Moon, R. T., and Lazarides, E. (1987). Regulated expression of multiple chicken erythroid membrane skeletal protein 4.1 variants is governed by differential RNA processing and translational control. Proc. Natl. Acad. Sci. USA 84:4432–4436.

    Article  PubMed  CAS  Google Scholar 

  105. Conboy, J. G., Chan, J., Mohandas, N., and Kan, Y. W. (1988). Multiple protein 4.1 isoforms produced by alternative splicing in human erythroid cells. Proc. Natl. Acad. Sci. USA 85:9062–9065.

    Article  PubMed  CAS  Google Scholar 

  106. Tang, T. K., Leto, T. L., Correas, I., Alonso, M. A., Marchesi, V. T., and Benz, E. J., Jr. (1988). Selective expression of an erythroid-specific isoform of protein 4.1. Proc. Natl. Acad. Sci. USA 85: 3713–3717.

    Article  PubMed  CAS  Google Scholar 

  107. Dhermy, D. (1991). The spectrin super-family. Biol. Cell 71:249–254.

    PubMed  CAS  Google Scholar 

  108. Pumplin, D. W., and Bloch, R. J. (1993). The membrane skeleton. Trends Cell Biol. 3:113–117.

    Article  PubMed  CAS  Google Scholar 

  109. Ahn, A. H., and Kunkel, L. M. (1993). The structural and functional diversity of dystrophin. Nature Genet. 3:283–291.

    Article  PubMed  CAS  Google Scholar 

  110. Schofield, J. N., Blake, D. J., Simmons, C., Morris, G. E., Tinsley, J. M., Davies, K. E., and Edwards, Y. H. (1994). Apodystrophin-1 and apo-dystrophin-2, products of the Duchenne muscular dystrophy locus: Expression during mouse embryogenesis and in cultured cell lines. Hum. Mol. Genet. 3:1309–1316.

    Article  PubMed  CAS  Google Scholar 

  111. Lidov, H. G., Selig, S., and Kunkel, L. M. (1995). Dp140: A novel 140 kDa CNS transcript from the dystrophin locus. Hum. Mol. Genet. 4:329–335.

    Article  PubMed  CAS  Google Scholar 

  112. Koening, M., Monaco, A. P., and Kunkel, L. M. (1988). The complete sequence of dystrophin predicts a rod-shaped cytoskeletal protein. Cell 53:219–228.

    Article  Google Scholar 

  113. Kahana, E., and Gratzer, W. B. (1995). Minimal folding unit of dystrophin rod domain. Biochemistry 34:8110–8114.

    Article  PubMed  CAS  Google Scholar 

  114. Hemmings, L., Kuhlman, P. A., and Critchely, D. R. (1992). Analysis of the actin-binding domain of α-actinin by mutagenesis and demonstration that dystrophin contains a functionally homologous domain. J. Cell Biol. 116:1369–1380.

    Article  CAS  Google Scholar 

  115. Way, M., Pope, B., Cross, R. A., Kendrick-Jones, J., and Weeds, A. G. (1992). Expression of the N-terminal domain of dystrophin in E. coli and demonstration of binding to F-actin. FEBS Lett. 301:243–245.

    Article  PubMed  CAS  Google Scholar 

  116. Ervasti, J. M., and Campbell, K. P. (1993). A role for the dystrophin-glycoprotein complex as a transmembrane linker between laminin and actin. J. Cell Biol. 122:809–823.

    Article  PubMed  CAS  Google Scholar 

  117. Campbell, K. P., and Kahl, S. D. (1989). Association of dystrophin and an integral membrane glycoprotein. Nature 338:259–262.

    Article  PubMed  CAS  Google Scholar 

  118. Yoshida, M., and Ozawa, E. (1990). Glycoprotein complex anchoring dystrophin to sarcolemma. J. Biochem. 108:748–752.

    PubMed  CAS  Google Scholar 

  119. Ervasti, J. M., and Campbell, K. P. (1991). Membrane organization of the dystrophin-glycoprotein complex. Cell 66:1121–1131.

    Article  PubMed  CAS  Google Scholar 

  120. Adams, M. E., Butler, M. H., Dwyer, T. M., Peters, M. F., Murnane, A. A., and Froehner, S. C. (1993). Two forms of mouse syntrophin, a 58 kd dystrophin-associated protein, differ in primary structure and tissue distribution. Neuron 11:531–540.

    Article  PubMed  CAS  Google Scholar 

  121. Kramarcy, N. R., Vidal, A., Froehner, S. C., and Sealock, R. (1994). Association of utrophin and multiple dystrophin short forms with the mammalian Mr 58,000 dystrophin-associated protein (syntrophin). J. Biol. Chem. 269:2870–2876.

    CAS  Google Scholar 

  122. Yang, B., Jung, D., Rafael, J. A., Chamerlain, J. S., and Campbell, K. P. (1995). Identification of α-syntrophin binding to syntrophin triplet, dystrophin and utrophin. J. Biol. Chem. 270:4975–4978.

    Article  PubMed  CAS  Google Scholar 

  123. Suzuki, A., Yoshida, M., and Ozawa, E. (1995). Mammalian aland ß1-syntrophin bind to the alternative splice-prone region of the dystrophin COOH terminus. J. Cell Biol. 128:373–381.

    Article  PubMed  CAS  Google Scholar 

  124. Ahn, A., and Kunkel, L. M. (1995). Syntrophin binds to an alternatively spliced exon of dystrophin. J. Cell Biol. 128:363–371.

    Article  PubMed  CAS  Google Scholar 

  125. Suzuki, A., Yoshida, M., Yamamoto, H., and Ozawa, E. (1992). Glycoprotein-binding site of dystrophin is confined to the cysteine-rich domain and the first half of the carboxy-terminal domain. FEBS Lett. 308:154–160.

    Article  PubMed  CAS  Google Scholar 

  126. Suzuki, A., Yoshida, M., Hayashi, K., Mizuno, Y., Hagiwara, Y., and Ozawa, E. (1994). Molecular organization at the glycoprotein-complex-binding site of dystrophin. Three dystrophin associated proteins bind directly to the carboxy-terminal portion of dystrophin. Eur. J. Biochem. 220:283–292.

    Article  PubMed  CAS  Google Scholar 

  127. Ibraghimov-Beskrovnaya, O., Ervasti, J. M., Leveille, C. J., Slaughter, C. A., Sernett, S. W., and Campbell, K. P. (1992). Primary structure of dystrophin-associated glycoproteins linking dystrophin to the extracellular matrix. Nature 355:696–702.

    Article  PubMed  CAS  Google Scholar 

  128. Pons, F., Augier, N., Heilig, R., Leger, J., Mornet, D., and Leger, J. J. (1990). Isolated dystrophin molecules as seen by electron microscopy. Proc. Natl. Acad. Sci. USA 87:7851–7855.

    Article  PubMed  CAS  Google Scholar 

  129. Sato, O., Nonomura, Y., Kimura, S., and Maruyama, K. (1992). Molecular shape of dystrophin. J. Biochem. 112:631–636.

    PubMed  CAS  Google Scholar 

  130. Dmytrenko, G. M., Pumplin, D. W., and Bloch, R. J. (1993). Membrane and cytoskeletal localization of dystrophin in cultured rat myotubes. J. Neurosci. 13:547–558.

    PubMed  CAS  Google Scholar 

  131. Wakayama, Y (1991). Dystrophin is localized to the plasma membrane of human skeletal muscle fibers by electron-microscopic cytochemical study. Muscle Nerve 14:576–577.

    PubMed  CAS  Google Scholar 

  132. Wakayama, Y., and Shibuya, S. (1991). Gold-labelled dystrophin molecule in muscle plasmalemma of mdx control mice as seen by electron microscopy of deep etching replica. Acta Neuropathol. 82:178–184.

    Article  PubMed  CAS  Google Scholar 

  133. Pardo, J. V., Siliciano, J. D., and Craig, S. W. (1983). A vinculin-containing cortical lattice in skeletal muscle: Transverse lattice elements (“costameres”) mark sites of attachment between myofibrils and sarcolemma. Proc. Natl. Acad. Sci. USA 80:1008–1012.

    Article  PubMed  CAS  Google Scholar 

  134. Pardo, J. V., Siliciano, J. D., and Craig, S. W. (1983). Vinculin is a component of an extensive network of myofibril-sarcolemma attachment regions in cardiac muscle fibers. J. Cell Biol. 97:1081–1088.

    Article  PubMed  CAS  Google Scholar 

  135. Nelson, W. J., and Lazarides, E. (1984). Goblin (ankyrin) in striated muscle: Identification of the potential membrane receptor for erythroid spectrin in muscle cells. Proc. Natl. Acad. Sci. USA 81: 3292–3296.

    Article  PubMed  CAS  Google Scholar 

  136. Terrado, L., Gullberg, D., Rubin, K., Craig, S., and Borg, T. K. (1989). Expression of collagen adhesion proteins and their association with the cytoskeleton in cardiac myocytes. Anat. Rec. 223:62–71.

    Article  Google Scholar 

  137. Lakonishok, M., Muschler, J., and Horwitz, A. F. (1992). The a5ßl integrin associates with a dystrophin-containing lattice during muscle development. Dev. Biol. 152:209–220.

    Article  PubMed  CAS  Google Scholar 

  138. Senter, L., Luise, M., Presotto, C., Betto, R., Teresi, A., Ceoldo, S., and Salviati, G. (1993). Interaction of dystrophin with cytoskeletal proteins: Binding to talin and actin. Biochem. Biophys. Res. Commun. 192:899–904.

    Article  PubMed  CAS  Google Scholar 

  139. Kramarcy, N. R, and Sealock, R. (1990). Dystrophin as a focal adhesion protein. Colocalization with talin and the Mr 48,000 sarcolemmal protein in cultured Xenopus muscle. FEBS Lett. 274:171–174.

    Article  PubMed  CAS  Google Scholar 

  140. Straub, V., Bittner, R. E., Leger, J. J., and Voit, T. (1992). Direct visualization of the dystrophin network on skeletal muscle fiber membrane. J. Cell Biol. 119:1183–1191.

    Article  PubMed  CAS  Google Scholar 

  141. North, A. J., Galazkiewicz, B., Byers, T. J., Glenney, J. R., Jr., and Small, J. V. (1993). Complementary distributions of vinculin and dystrophin define two distinct sarcolemma domains in smooth muscle. J. Cell Biol. 120:1159–1167.

    Article  PubMed  CAS  Google Scholar 

  142. Khurana, T. S., Hoffman, E. P., and Kunkel, L. M. (1990). Identification of a chromosome 6-encoded dystrophin-related protein. J. Biol. Chem. 265:16717–16720.

    PubMed  CAS  Google Scholar 

  143. Love, D. R., Hill, D. F., Dickson, G., Spurr, N. K., Byth, B. C., Marsden, R. F., Walsh, F. S., Edwards, Y H., and Davies, K. E. (1989). An autosomal transcript in skeletal muscle with homology to dystrophin. Nature 339:55–58.

    Article  PubMed  CAS  Google Scholar 

  144. Man, N. T., Thanh, L. T., Blake, D. J., Davies, K. E., and Morris, G. E. (1992). Utrophin, the autosomal homologue of dystrophin, is widely-expressed and membrane-associated in cultured cell lines. FEBS Lett. 313:19–22.

    Article  Google Scholar 

  145. Man, N. T., Helliwell, T. R., Simmons, C., Winder, S. J., Kendrick-Jones, J., Davies, K. E., and Morris, G. E. (1995). Full-length and short forms of utrophin, the dystrophin-related protein. FEBS Lett. 358:262–266.

    Article  Google Scholar 

  146. Winder, S. J., Hemmings, L., Maciver, S. K., Bolton, S. J., Simmons, C., Tinsley, J. M., Davies, K. E., Critchley, D. R., and Kendrick-Jones, J. (1995). Utrophin actin binding domain: Analysis of actin binding and cellular targeting. J. Cell Sci. 108:63–71.

    PubMed  CAS  Google Scholar 

  147. Matsumura, K., Ervasti, J. M., Ohlendieck, K., Kahl, S. D., and Campbell, K. P (1992). Association of dystrophin-related protein with dystrophin-associated proteins in mdx mouse muscle. Nature 360:588–591.

    Article  PubMed  CAS  Google Scholar 

  148. Ohlendieck, K., Ervasti, J. M., Matsumura, K., Kahl, S. D., Leveille, C. J., and Campbell, K. P. (1991). Dystrophin-related protein is localized to neuromuscular junctions of skeletal muscle. Neuron 7:499–508.

    Article  PubMed  CAS  Google Scholar 

  149. Campanelli, J. T., Roberds, S. L., Campbell, K. P., and Serieller, R. H. (1994). A role for dystrophin-associated glycoproteins and utrophin in agrin-induced AChR clustering. Cell 77:663–674.

    Article  PubMed  CAS  Google Scholar 

  150. Phillips, W. D., Noakes, P. G., Roberds, S. L., Campbell, K. P., and Merlie, J. P. (1993). Clustering and immobilization of acetylcholine receptors by the 43-kD protein: A possible role for dystrophin-related protein. J. Cell Biol. 123:729–740.

    Article  PubMed  CAS  Google Scholar 

  151. Peters, M. F., Kramarcy, N. R., Sealock, R., and Froehner, S. C. (1944). ß2-Syntrophin: Localization at the neuromuscular junction in skeletal muscle. Neuroreport 5:1577–1580.

    Article  Google Scholar 

  152. Pons, F., Augier, N., Leger, J. O. C., Robert, A., Tome, F. M. S., Fardeau, M., Voit, T., Nicholson, L. V. B., Mornet, D., and Leger, J. J. (1991). A homologue of dystrophin is expressed at the neuromuscular junctions of normal individuals and DMD patients, and of normal and mdx mice. FEBS Lett. 282:161–165.

    Article  PubMed  CAS  Google Scholar 

  153. Lidov, H. G. W., Byers, T. J., Watkins, S. C., and Kunkel, L. M. (1990). Localization of dystrophin to postsynaptic regions of central nervous system cortical neurons. Nature 348:725–728.

    Article  PubMed  CAS  Google Scholar 

  154. Khurana, T. S., Watkins, S. C., and Kunkel, L. M. (1992). The subcellular distribution of chromosome 6-encoded dystrophin-related protein in the brain. J. Cell Biol. 119:357–366.

    Article  PubMed  CAS  Google Scholar 

  155. Matsudaira, P. (1991). Modular organization of actin crosslinking proteins. Trends Biochem. Sci. 17:87–92.

    Article  Google Scholar 

  156. Davison, M. D., and Critchley, D. R. (1988). α-Actinins and the DMD protein contain spectrin-like repeats. Cell 52:159–160.

    Article  PubMed  CAS  Google Scholar 

  157. Davison, M.D., Baron, M. D., Critchley, D. R., and Wootton, J. C. (1989). Structural analysis of homologous repeated domains in α-actinin and spectrin. Int. J. Biol. Macromol. 11:81–90.

    Article  PubMed  CAS  Google Scholar 

  158. Gilmore, A. P., Parr, T., Patel, B., Gratzer, W. B., and Critchley, D. R. (1994). Analysis of the phasing of four spectrin-like repeats in α-actinin. Eur. J. Biochem. 225:235–242.

    Article  PubMed  CAS  Google Scholar 

  159. Otey, C. A., Pavalko, F. M., and Burridge, K. (1990). An interaction between α-actinin and the ß-1 integrin subunit in vitro. J. Cell Biol. 111:721–729.

    Article  PubMed  CAS  Google Scholar 

  160. Otey, C. A., Vasquez, G. B., Burridge, K., and Erickson, B. W. (1993). Mapping of the α-actinin binding site within the beta 1 integrin cytoplasmic domain. J. Biol. Chem. 268:21193–21197.

    PubMed  CAS  Google Scholar 

  161. Lazarides, E., and Burridge, K. (1975). α-Actinin: Immunofluorescent localization of a muscle structural protein in nonmuscle cells. Cell 6:289–298.

    Article  PubMed  CAS  Google Scholar 

  162. Burridge, K., Fath, K., Kelly, T., Nuckolls, G., and Turner, C. (1988). Focal adhesions: Transmembrane junctions between the extracellular matrix and the cytoskeleton. Annu. Rev. Cell Biol. 4:487–525.

    Article  PubMed  CAS  Google Scholar 

  163. Street, S. F (1983). Lateral transmission of tension in frog myofibers: A myofibrillar network and transverse cytoskeletal connections are possible transmitters. J. Cell. Physiol. 114:346–364.

    Article  PubMed  CAS  Google Scholar 

  164. Pierobon-Bormioli, S. (1981). Transverse sarcomere filamentous systems: ‘Z- and M-cables.’ J. Muse. Res. Cell Modi. 2:401–413.

    Article  Google Scholar 

  165. Garamvölgi, N. (1965). Inter-Z bridges in the flight muscle of the bee. J. Ultrastruct. Res. 13:435–443.

    Article  Google Scholar 

  166. Shear, C. R., and Bloch, R. J. (1985). Vinculin in subsarcolemmal densities in chicken skeletal muscle: Localization and relationship to intracellular and extracellular structures. J. Cell Biol. 101:240–256.

    Article  PubMed  CAS  Google Scholar 

  167. Pasternak, C., Wong, S., and Elson, E. L. (1995). Mechanical function of dystrophin in muscle cells. J. Cell Biol. 128:355–361.

    Article  PubMed  CAS  Google Scholar 

  168. Hoffman, E. P., Fischbeck, K. H., Brown, R. H., Johnson, M., Medori, R., Loike, J. D., Harris, J. B., Waterston, R., Brooke, M., Specht, L., Kupsky, W., Chamberlain, J., Caskey, C. T., Shapiro, F., and Kunkel, L. M. (1988). Characterization of dystrophin in muscle-biopsy specimens from patients with Duchenne’s or Becker’s muscular dystrophy. N. Engl. J. Med. 318:1363–1368.

    Article  PubMed  CAS  Google Scholar 

  169. England, S. B., Nicholson, L. V. B., Johnson, M. A., Forrest, S. M., Love, D. R., Zubrzycka-Gaarn, E. E., Bulman, D. E., Harris, J. B., and Davies, K. E. (1990). Very mild muscular dystrophy associated with the deletion of 46% of dystrophin. Nature 343: 180–182.

    Article  PubMed  CAS  Google Scholar 

  170. Matsumura, K., Tome, F. M., Ionasescu, V., Ervasti, J. M., Anderson, R. D., Romero, N. B., Simon, D., Recan, D., Kaplan, J. C., Fardeau, M., et al. (1993). Deficiency of dystrophin-associated proteins in Duchenne muscular dystrophy patients lacking COOH-terminal domains of dystrophin. J. Clin. Invest. 92:866–871.

    Article  PubMed  CAS  Google Scholar 

  171. Matsumura, K., Burghes, A. H., Mora, M., Tome, F. M., Morandi, L., Cornello, F., Leturcq, F., Jeanpierre, M., Kaplan, J. C., Reinert, P., et al. (1994). Immunohistochemical analysis of dystrophin-associated proteins in Becker/Duchenne muscular dystrophy with huge in-frame deletions in the NH2-terminal and rod domains of dystrophin. J. Clin. Invest. 93:99–105.

    Article  PubMed  CAS  Google Scholar 

  172. Kobzik, L., Reid, M. B., Bredt, D. S., and Stamler, J. S. (1994). Nitric oxide in skeletal muscle. Nature 372:546–548.

    Article  PubMed  CAS  Google Scholar 

  173. Brenman, J. E., Chao, D. S., Zia, H. H., Aldape, K., and Bredt, D. S. (1995). Nitric oxide synthase complexed with dystrophin and absent from muscle sarcolemma in Duchenne muscular dystrophy. Cell 82:743–752.

    Article  PubMed  CAS  Google Scholar 

  174. Florence, J. M., Fox, P. T., Planer, G. J., and Brooke, M. H. (1985). Activity creatine kinase, and myoglobin in Duchenne muscular dystrophy: A clue to etiology? Neurology 35:758–761.

    PubMed  CAS  Google Scholar 

  175. Webster, C., Silberstein, L., Hays, A. P., and Blau, H. M. (1988). Fast muscle fibers are preferentiailly affected in Duchenne’s muscular dystrophy. Cell 52:503–513.

    Article  PubMed  CAS  Google Scholar 

  176. Weiler, B., Karparti, G., and Carpenter, S. (1990). Dystrophin-deficient mdx muscle fibers are preferentially vulnerable to necrosis induced by experimental lengthening contractions. J. Neuro. Sci. 100:9–13.

    Article  Google Scholar 

  177. Froehner, S. C., Murnane, A. A., Tobler, M., Peng H. B., and Sealock, R. (1987). A postsynaptic Mr 58,000 (58K) protein concentrated at acetylcholine receptor-rich sites in Torpedo electro-plaques and skeletal muscle. J. Cell Biol. 104:1633–1646.

    Article  PubMed  CAS  Google Scholar 

  178. Ohlendieck, K., and Campbell, K. P. (1991). Dystrophin-associated proteins are greatly reduced in skeletal muscle from mdx mice. J. Cell Biol. 115:1685–1694.

    Article  PubMed  CAS  Google Scholar 

  179. Ahn, A. H., Yoshida, M., Anderson, M. S., Feener, C. A., Selig, S., Hagiwara, Y., Ozawa, E., and Kunkel, L. M. (1994). Cloning of human basic Al, a distinct 59-kDa dystrophin-associated protein encoded on chromosome 8Q23–24. Proc. Natl. Acad. Sci. USA 91: 4446–4450.

    Article  PubMed  CAS  Google Scholar 

  180. Yang, B., Ibraghimov-Beskrovnaya, O., Moomaw, C. R., Slaughter, C. A., and Campbell, K. P. (1994). Heterogeneity of the 59-kDa dystrophin-associated protein revealed by cDNA cloning and expression. J. Biol. Chem. 269:6040–6044.

    PubMed  CAS  Google Scholar 

  181. Matsumura, K., Tome, F. M. S., Collin, H., Azibi, K., Chaouch, M., Kaplan, J.-C., Fardeau, M., and Campbell, K. P. (1992). Deficiency of the 50K dystrophin-associated glycoprotein in severe childhood autosomal recessive muscular dystrophy. Nature 359:320–322.

    Article  PubMed  CAS  Google Scholar 

  182. Yamanouchi, Y., Mizuno, Y., Yamamoto, H., Takemitsu, M., Yoshida, M., Nonaka, U., and Ozawa, E. (1994). Selective defect in dystrophin-associated glycoproteins 50DAG (A2) and 35DAG (A4) in the dystrophic hamster: An animal model for severe childhood autosomal recessive muscular dystrophy (SCARMD). Neuromusc. Disorders 4:49–54.

    Article  PubMed  CAS  Google Scholar 

  183. Roberds, S. L., and Campbell, K. P. (1995). Adhalin mRNA and cDNA sequence are normal in the cardiomyopathic hamster. FEBS Lett. 364:245–249.

    Article  PubMed  CAS  Google Scholar 

  184. Campbell, K. P. (1995). Three muscular dystrophies: Loss of cytoskeleton-extracellular matrix linkage. Cell 80:675–679.

    Article  PubMed  CAS  Google Scholar 

  185. Nelson, W. J., Shore, E. S., Wang, A. Z., and Hammerton, R. W. (1990). Identification of a membrane-cytoskeletal complex containing the cell adhesion molecule uvomorulin (E-cadherin), ankyrin, and fodrin in Madin-Darby canine kidney epithelial cells. J. Cell Biol. 110:349–357.

    Article  PubMed  CAS  Google Scholar 

  186. Nelson, W. J., and Hammerton, R. W. (1989). A membrane-cytoskeletal complex containing Na,K-ATPase, ankyrin and fodrin in Madin-Darby canine kidney (MDCK) cells: Implications for the biogenesis of epithelial cell polarity. J. Cell Biol. 108:893–902.

    Article  PubMed  CAS  Google Scholar 

  187. Nelson, W. J., and Veshnock, P. J. (1987). Ankyrin binding to (Na+ + K+) ATPase and implications for the organization of membrane domains in polarized cells. Nature 328:533–536.

    Article  PubMed  CAS  Google Scholar 

  188. Morrow, J. S., Cianci, C. D., Ardito, T., Mann, A. S., and Kashgarian, M. (1989). Ankyrin links fodrin to the a subunit of Na,K-ATPase in Madin-Darby canine kidney cells and in intact renal tubule cells. J. Cell Biol. 108:455–465.

    Article  PubMed  CAS  Google Scholar 

  189. Davis, J., Davis, L., and Bennett, V. (1989). Diversity in membrane binding sites of ankyrins. Brain ankyrin, erythrocyte ankyrin, and processed erythrocyte ankyrin associate with distinct sites in kidney microsomes. J. Biol. Chem. 264:6417–6426.

    PubMed  CAS  Google Scholar 

  190. Hu, R.-J., Moorthy, S., and Bennett, V. (1995). Expression of functional domains of betaG-spectrin disrupts epithelial morphology in cultured cells. J. Cell Biol. 128:1069–1080.

    Article  PubMed  CAS  Google Scholar 

  191. Gumbiner, B. (1987). Structure, biochemistry, and assembly of epithelial tight junctions. Am. J. Physiol. 253:C749–C758.

    PubMed  CAS  Google Scholar 

  192. Srinivasan, Y., Elmer, L., Davis, J., Bennett, V., and Angelides, K. (1988). Ankyrin and spectrin associate with voltage-dependent sodium channels in brain. Nature 333:177–180.

    Article  PubMed  CAS  Google Scholar 

  193. Srinivasan, Y., Lewallen, M., and Angelides, K. J. (1992). Mapping the binding site on ankyrin for the voltage-dependent sodium channel from brain. J. Biol. Chem. 267:7483–7489.

    PubMed  CAS  Google Scholar 

  194. Black, J. A., Friedman, B., Waxman, S. G., Elmer, L. W., and Angelides, K. J. (1989). Immuno-ultrastructural localization of sodium channels at nodes of Ranvier and perinodal astrocytes in rat optic nerve. Proc. Roy. Soc. London Ser. B 238:39–51.

    Article  CAS  Google Scholar 

  195. Kordeli, E., and Bennett, V. (1991). Distinct ankyrin isoforms at neuron cell bodies and nodes of Ranvier resolved using ankyrin-deficient mice. J. Cell Biol. 1145:1243–1259.

    Article  Google Scholar 

  196. Ichimura, T., and Ellisman, M. H. (1991). Three-dimensional fine structure of cytoskeletal-membrane interactions at nodes of Ranvier. J. Neurocytol. 20:667–681.

    Article  PubMed  CAS  Google Scholar 

  197. Davis, J. Q., and Bennett, V. (1984). Brain ankyrin. A membrane-associated protein with binding sites for spectrin, tubulin, and the cytoplasmic domain of the erythrocyte anion channel. J. Biol. Chem. 259:13550–13559.

    PubMed  CAS  Google Scholar 

  198. Langley, R. C., Jr., and Cohen, C. M. (1986). Association of spectrin with desmin intermediate filaments. J. Cell Biochem. 30:101–109.

    Article  PubMed  CAS  Google Scholar 

  199. Davis, J. Q., McLaughlin, T., and Bennett, V. (1993). Ankyrin-binding proteins related to nervous system cell adhesion molecules: Candidates to provide transmembrane and intercellular connections in adult brain. J. Cell Biol. 121:121–133.

    Article  PubMed  CAS  Google Scholar 

  200. Peters, L. L., Birkenmeier, C. S., Bronson, R. T., White, R. A., Lux, S. E., Otto, E., Bennett, V., Higgins, A., and Barker, J. E. (1991). Purkinje cell degeneration associated with erythroid ankyrin deficiency in nb/nb mice. J. Cell Biol. 114:1233–1241.

    Article  PubMed  CAS  Google Scholar 

  201. Bloch, R. J., and Geiger, B. (1980). The localization of acetylcholine receptor clusters in areas of cell-substrate contact in cultures of rat myotubes. Cell 21:25–35.

    Article  PubMed  CAS  Google Scholar 

  202. Pollerberg, G. E., Burridge, K., Krebs, K. E., Goodman, S. R., and Schachner, M. (1987). The 180-kD component of the neural cell adhesion molecule N-CAM is involved in cell-cell contacts and cytoskeleton-membrane interactions. Cell Tissue Res. 250:227–236.

    Article  PubMed  CAS  Google Scholar 

  203. Lombardo, C. R., Rimm, D. L., Kennedy, S. P., Forget, B. G., and Morrow, J. S. (1993). Ankyrin independent membrane sites for non-erythroid spectrin. Mol. Biol. Cell 4:57.

    Google Scholar 

  204. Otto, J. J. (1990). Vinculin. Cell Motil. Cytoskel. 16:1–6.

    Article  CAS  Google Scholar 

  205. Geiger, B. (1979). A 130K protein from chicken gizzard: Its localization at the termini of microfilament bundles in cultured chicken cells. Cell 18:193–205.

    Article  PubMed  CAS  Google Scholar 

  206. Feramisco, J. R., and Burridge, K. (1980). A rapid purification of α-actinin, filamin, and a 130,000-dalton protein from smooth muscle J. Biol. Chem. 255:1194–1199.

    PubMed  CAS  Google Scholar 

  207. Wachsstock, D. H., Wilkins, J. A., and Lin, S. (1987). Specific interaction of vinculin with α-actinin. Biochem. Biophys. Res. Commun. 146:554–560.

    Article  PubMed  CAS  Google Scholar 

  208. Geiger, B. (1982) Microheterogeneity of avian and mammalian vinculin distinctive subcellular distribution of different isovinculins. J. Mol. Biol. 159:685–701.

    Article  PubMed  CAS  Google Scholar 

  209. Price, G. J., Jones, P., Davison, M. D., Patel, B., Bendori, R., Geiger, B., and Critchley, D. R. (1989). Primary sequence and domain structure of chicken vinculin. Biochem. J. 259:453–461.

    PubMed  CAS  Google Scholar 

  210. Bendori, R., Salomon, D., and Geiger, B. (1989). Identification of two distinct functional domains on vinculin involved in its association with focal contacts. J. Cell Biol. 108:2383–2393.

    Article  PubMed  CAS  Google Scholar 

  211. Molony, L., and Burridge, K. (1985). Molecular shape and self-association of vinculin and meta-vinculin. J. Cell Biochem. 29: 31–36.

    Article  PubMed  CAS  Google Scholar 

  212. Turner, C. E., Glenney, J. R., and Burridge, K. (1990). Paxillin—a new vinculin-binding protein present in focal adhesions. J. Cell Biol. 111:1059–1068.

    Article  PubMed  CAS  Google Scholar 

  213. Koteliansky, V. E., Ogryzko, E. P., Zhidkova, N. I., Weiler, P. A., Critchley, D. R., Vancompernolle, K., Vandekerckhove, J., Strasser, P., Way, M., Gimona, M., and Small, J. V. (1992). An additional exon in the human vinculin gene specifically encodes meta-vinculin-specific difference peptide. Cross-species comparison reveals variable and conserved motifs in the meta-vinculin insert. Eur. J. Biochem. 204:767–772.

    Article  PubMed  CAS  Google Scholar 

  214. Feramisco, J. R., Smart, J. E., Burridge, K., Helfman, D. M., and Thomas, G. P. (1982). Co-existence of vinculin and a vinculin-like protein of higher molecular weight in smooth muscle. J. Biol. Chem. 257:11024–11031.

    PubMed  CAS  Google Scholar 

  215. Glukhova, M. A., Kabakov, A. E., Belkin, A. M., Frid, M. G., Ornatsky, O. I., Zhidkova, N. I., and Koteliansky, V. E. (1986). Metavinculin distribution in adult human tissues and cultured cells. FEBS Lett. 207:139–141.

    Article  PubMed  CAS  Google Scholar 

  216. Gilmore, A. P., Jackson, P., Waites, G. T., and Critchley, D. R. (1992). Further characterisation of the talin-binding site in the cytoskeletal protein vinculin. J. Cell Sci. 103:719–731.

    PubMed  CAS  Google Scholar 

  217. Beckerle, M. C., and Yeh, R. K. (1990). Talin: Role at sites of cell-substratum adhesion. Cell Motil. Cytoskel. 16:7–13.

    Article  CAS  Google Scholar 

  218. Molony, L., McCaslin, D., Abernethy, J., Paschal, B., and Burridge, K. (1987). Properties of talin from chicken gizzard smooth muscle. J. Biol. Chem. 282:7790–7795.

    Google Scholar 

  219. Burridge, K., and Mangeat, P. (1984). An interaction between vinculin and talin. Nature 308:744–746.

    Article  PubMed  CAS  Google Scholar 

  220. Burridge, K., Turner, C. E., and Romer, L. H. (1992). Tyrosine phosphorylation of paxillin and ppl25FAK accompanies cell adhesion to extracellular matrix: A role in cytoskeletal assembly. J. Cell Biol. 119:893–903.

    Article  PubMed  CAS  Google Scholar 

  221. Lo, S. H., Janmey, P. A., Hartwig, J. H., and Chen, L. B. (1994). Interactions of tensin with actin and identification of its three distinct actin-binding domains. J. Cell Biol. 125:1067–1075.

    Article  PubMed  CAS  Google Scholar 

  222. Chuang, J. Z., Lin, D. C., and Lin, S. (1995). Molecular cloning, expression, and mapping of the high affinity, actin-capping domain of chicken cardiac muscle. J. Cell Biol. 128:1095–1109.

    Article  PubMed  CAS  Google Scholar 

  223. Davis, S., Lu, M. L., Lo, S. H., Lin, S., Butler, J. A., Druker, B. J., Roberts, T. M., An, Q., and Chen, L. B. (1991). Presence of an SH2 domain in the actin-binding protein tensin. Science 252:712–715.

    Article  PubMed  CAS  Google Scholar 

  224. Horwitz, A. F., Duggan, K., Buck, C., Beckerle, M. C., and Burridge, K. (1986). Interaction of plasma membrane fibronectin with talin—A transmembrane linkage. Nature 320:531–533.

    Article  PubMed  CAS  Google Scholar 

  225. Rohrschneider, L. R. (1980). Adhesion plaques of Rous sarcoma virus-transformed cells contain the src gene product. Proc. Natl. Acad. Sci. USA 77:3514–3518.

    Article  PubMed  CAS  Google Scholar 

  226. Hirst, R., Horwitz, A., Buck, C., and Rohrschneider, L. (1986). Phosphorylation of the fibronectin receptor complex in cells transformed by oncogenes that encode tyrosine kinases. Proc. Natl. Acad. Sci USA 83:6470–6474.

    Article  PubMed  CAS  Google Scholar 

  227. Kornberg, L., Earp, H. S., Parsons, J. T., Schaller, M., and Juliano, R. L. (1992). Cell adhesion or integrin clustering increases phosphorylation of a focal adhesion-associated tyrosine kinase. J. Biol. Chem. 267:23439–23442.

    PubMed  CAS  Google Scholar 

  228. Samuelsson, S. J., Luther, P. W., Pumplin, D. W., and Bloch, R. J. (1993). Structures linking microfilament bundles to the membrane at focal contacts. J. Cell Biol. 122:485–496.

    Article  PubMed  CAS  Google Scholar 

  229. Pavalko, F. M., Schneider, G., Burridge, K., and Lim, S. S. (1995). Immunodetection of α-actinin in focal adhesions is limited by antibody inaccessibility. Exp. Cell Res. 217:534–540.

    Article  PubMed  CAS  Google Scholar 

  230. Yurchenco, P. D. (1990). Assembly of basement membranes. Ann. N.Y. Acad. Sci. 580:195–213.

    Article  PubMed  CAS  Google Scholar 

  231. Engel, J. (1992). Laminins and other strange proteins. Biochemistry 31:10643–10651.

    Article  PubMed  CAS  Google Scholar 

  232. Timpl, R., and Brown, J. C. (1994). The laminins. Matrix Biol. 14:275–281.

    Article  PubMed  CAS  Google Scholar 

  233. Burgeson, R. E., Chiquet, M., Deutzmann, R., Ekblom, P., Engel, J., Kleinman, H., Martin, G. R., Meneguzzi, G., Paulsson, M., Sanes, J., et al. (1994). A new nomenclature for the laminins. Matrix Biol. 14:209–211.

    Article  PubMed  CAS  Google Scholar 

  234. Mecham, R. P. (1991). Receptors for laminin on mammalian cells. FASEB J. 5:2538–2546.

    PubMed  CAS  Google Scholar 

  235. Yurchenco, P. D., Sung, U., Ward, M. D., Yamada, Y., and O’Rear, J. J. (1993). Recombinant laminin G domain mediates myoblast adhesion and heparin binding. J. Biol. Chem. 268:8356–8365.

    PubMed  CAS  Google Scholar 

  236. Mayer, U., Nischt, R., Poschl, E., Mann, K., Fukuda, K., Gerl, M., Yamada, Y., and Timpl, R. (1993). A single EGF-like motif of laminin is responsible for high affinity nidogen binding. EMBO J. 12:1879–1885.

    PubMed  CAS  Google Scholar 

  237. Gerl, M., Mann, K., Aumailley, M., and Timpl, R. (1991). Localization of a major nidogen-binding site to domain III of laminin B2 chain. Eur. J. Biochem. 202:167–174.

    Article  PubMed  CAS  Google Scholar 

  238. Colognato-Pyke, H., O’Rear, J. J., Yamada, Y., Carbonetto, S., Cheng, Y. S., and Yurchenco, P. D. (1995). Mapping of network-forming, heparin-binding, and α1ß1 integrin-recognition sites within the α-chain short arm of laminin-1. J. Biol. Chem. 270: 9398–9406.

    Article  PubMed  CAS  Google Scholar 

  239. Lievo, I., and Engvall, E. (1988). A protein specific for basement membranes of Schwann cells, striated muscle, and trophoblast, is expressed late in nerve and muscle development. Proc. Natl. Acad. Sci. USA 85:1544–1548.

    Article  Google Scholar 

  240. Hunter, D. D., Shah, V., Merlie, J. P., and Sanes, J. R. (1989). A laminin-like adhesive protein concentrated in the synaptic cleft of the neuromuscular junction. Nature 338:229–234.

    Article  PubMed  CAS  Google Scholar 

  241. Gerecke, D. R., Wagman, D. W., Champliaud, M.-R., and Burgeson, R. E. (1994). The complete primary structure for a novel laminin chain, the laminin Blk chain. J. Biol. Chem. 269:11073–11080.

    PubMed  CAS  Google Scholar 

  242. Vailly, J., Verrando, P., Champliaud, M. F., Gerecke, D., Wagman, D. W., Baudoin, C., Aberdam, D., Burgeson, R., Bauer, E., and Ortonne, J.-P. (1994). The 100-kDa chain of nicein/kalinin is a laminin B2 chain variant. Eur. J. Biochem. 219:209–218.

    Article  PubMed  CAS  Google Scholar 

  243. Utani, A., Nomizu, M., Timpl, R., Roller, P. P., and Yamada, Y (1994). Laminin chain assembly. Specific sequences at the C terminus of the long arm are required for the formation of specific double- and triple-stranded coiled-coil structures. J. Biol. Chem. 269:19167–19175.

    PubMed  CAS  Google Scholar 

  244. Kammerer, R. A., Antonsson, P., Schulthess, T., Fauser, C., and Engel, J. (1995). Selective chain recognition in the C-terminal α-helical coiled-coil region of laminin. J. Mol. Biol. 250:64–73.

    Article  PubMed  CAS  Google Scholar 

  245. Yurchenco, P. D., Cheng, Y.-S., and Schittny, J. C. (1990). Heparin modulation of laminin polymerization. J. Biol. Chem. 265:3981–3991.

    PubMed  CAS  Google Scholar 

  246. Yurchenco, P. D., Cheng, Y.-S., and Colognato, H. (1992). Laminin forms an independent network in basement membranes. J. Cell Biol. 117:1119–1133.

    Article  PubMed  CAS  Google Scholar 

  247. Schittny, J. C., and Yurchenco, P. D. (1990). Terminal short arm domains of basement membrane laminin are critical for its self-assembly. J. Cell Biol. 110:825–832.

    Article  PubMed  CAS  Google Scholar 

  248. Leivo, I., Vaheri, A., Timpl, R., and Wartiovaara, J. (1980). Appearance and distribution of collagens and laminin in the early mouse embryo. Dev. Biol. 76:100–114.

    Article  PubMed  CAS  Google Scholar 

  249. Fox, J. W., Mayer, U., Nischt, R., Aumailley, M., Reinhardt, D., Wiedemann, H., Mann, K., Timpl, R., Krieg, T., Engel, J., and Chu, M.-L. (1991). Recombinant nidogen consists of three globular domains and mediates binding of laminin to collagen type IV. EMBO J. 10:3137–3146.

    PubMed  CAS  Google Scholar 

  250. Nagayoshi, T., Sanborn, D., Hickok, N. J., Olsen, D. R., Fazio, M. J., Chu, M.-L., Knowlton, R., Mann, K., Deutzmann, R., Timpl, R., and Uitto, J. (1989). Human nidogen: Complete amino acid sequence and structural domains deduced from cDNAs, and evidence for polymorphism of the gene. DNA 8:581–594.

    Article  PubMed  CAS  Google Scholar 

  251. Reinhardt, D., Mann, K., Nischt, R., Fox, J. W., Chu, M.-L., Krieg, T., and Timpl, R. (1993). Mapping of nidogen binding sites for collagen type IV, heparan sulfate proteoglycan, and zinc. J. Biol. Chem. 268:10881–10887.

    PubMed  CAS  Google Scholar 

  252. Noonan, D. M., Fülle, A., Valente, P., Cai, S., Horigan, E., Sasaki, M., Yamada, Y., and Hassell, J. R. (1991). The complete sequence of perlecan, a basement membrane heparan sulfate proteoglycan, reveals extensive similarity with laminin A chain, low density lipoprotein-receptor, and the neural cell adhesion molecule. J. Biol. Chem. 266:22939–22947.

    PubMed  CAS  Google Scholar 

  253. Laurie, G. W., Inoue, S., Bing, J. T., and Hassell, J. R. (1988). Visualization of the large heparan sulfate proteoglycan from basement membrane. Am. J. Anat. 181:320–326.

    Article  PubMed  CAS  Google Scholar 

  254. Yurchenco, P. D., Cheng, Y.-S., and Ruben, G. C. (1987). Self-assembly of high molecular weight basement membrane heparan sulfate proteoglycan into dimers and oligomers. J. Biol. Chem. 262:17668–17676.

    PubMed  CAS  Google Scholar 

  255. Battaglia, C., Mayer, U., Aumailley, M., and Timpl, R. (1992). Basement-membrane heparan sulfate proteoglycan binds to laminin by its heparan sulfate chains and to nidogen by sites in the protein core. Eur. J. Biochem. 208:359–366.

    Article  PubMed  CAS  Google Scholar 

  256. Ali, I. U., Mautner, V., Lanza, R., and Hynes, R. O. (1977). Restoration of normal morphology, adhesion and cytoskeleton in transformed cells by addition of a transformation-sensitive surface protein. Cell 11:115–126.

    Article  PubMed  CAS  Google Scholar 

  257. Yamada, K. M., and Weston, J. A. (1974). Isolation of a major cell surface glycoprotein from fibroblasts. Proc. Natl. Acad. Sci. USA 71:3492–3496.

    Article  PubMed  CAS  Google Scholar 

  258. Yamada, K. M., Yamada, S. S., and Pastan, I. (1976). Cell surface protein partially restores morphology, adhesiveness, and contact inhibition of movement to transformed fibroblasts. Proc. Natl. Acad. Sci. USA 73:1217–1221.

    Article  PubMed  CAS  Google Scholar 

  259. Hynes, R. O., and Yamada, K. M. (1982). Fibronectins: Multifunctional modular glycoproteins. J. Cell Biol. 95:369–377.

    Article  PubMed  CAS  Google Scholar 

  260. Hynes, R. O. (1990). Fibronectins, Springer-Verlag, Berlin.

    Google Scholar 

  261. Hynes, R. O. (1993). Fibronectins. In Guidebook to the Extracellular Matrix and Adhesion Proteins (T. Kreis and R. Vale, eds.), Oxford University Press, London, pp. 56–58.

    Google Scholar 

  262. Paul, J. I., Schwarzbauer, J. E., Tamkun, J. W., and Hynes, R. O. (1986). Cell-type-specific fibronectin subunits generated by alternative splicing. J. Biol. Chem. 261:12258–12265.

    PubMed  CAS  Google Scholar 

  263. Colombi, M., Barlati, S., Kornblihtt, A., Baralle, F. E., and Vaheri, A. (1986). A family of fibronectin mRNAs in human normal and transformed cells. Biochim. Biophys. Acta 868:207–214.

    PubMed  CAS  Google Scholar 

  264. Hayashi, M., and Yamada, K. M. (1981). Differences in domain structures between plasma and cellular fibronectins. J. Biol. Chem. 256:11292–11300.

    PubMed  CAS  Google Scholar 

  265. Tamkun, J. W., Schwarzbauer, J. E., and Hynes, R. O. (1984). A single rat fibronectin gene generates three different mRNAs by alternative splicing of a complex exon. Proc. Natl. Acad. Sci. USA 81:5140–5144.

    Article  PubMed  CAS  Google Scholar 

  266. Hirano, H., Yamada, Y., Sullivan, M., DeCroimbrugghe, B., Pastan, I., and Yamada, K. M. (1983). Isolation of genomic DNA clones spanning the entire fibronectin gene. Proc. Natl. Acad. Sci. USA 80:46–50.

    Article  PubMed  CAS  Google Scholar 

  267. Ruoslahti, E., Hayman, E. G., Kuusela, P., Shively, J. E., and Engvall, E. (1979). Isolation of a tryptic fragment containing the collagen-binding site of plasma fibronectin. J. Biol. Chem. 254:6054–6059.

    PubMed  CAS  Google Scholar 

  268. Hayashi, M., Schlesinger, D. H., Kennedy, D. W., and Yamada, K. M. (1980). Isolation and characterization of a heparin-binding domain of cellular fibronectin. J. Biol. Chem. 255:10017–10020.

    PubMed  CAS  Google Scholar 

  269. Wagner, D. D., and Hynes, R. O. (1980). Topological arrangement of the major structural features of fibronectin. J. Biol. Chem. 255: 4304–4312.

    PubMed  CAS  Google Scholar 

  270. Ruoslahti, E., Hayman, E. G., and Engvall, E. (1981). Alignment of biologically active domains in the fibronectin molecule. J. Biol. Chem. 256:7277–7281.

    PubMed  CAS  Google Scholar 

  271. Dickinson, C. D., Gay, D. A., Parello, J., Ruoslahti, E., and Ely, K. R. (1994). Crystals of the cell-binding module of fibronectin obtained from a series of recombinant fragments differing in length. J. Mol. Biol. 238:123–127.

    Article  PubMed  CAS  Google Scholar 

  272. Dickinson, C. D., Veerapandian, B., Dai, X. P., Hamlin, R. C., Xuong, N. H., Ruoslahti, E., and Ely, K. R. (1994). Crystal structure of the tenth type III cell adhesion module of human fibronectin. J. Mol. Biol. 236:1079–1092.

    Article  PubMed  CAS  Google Scholar 

  273. Wu, C., Bauer, J. S., Juliano, R. L., and McDonald, J. A. (1993). The a5ßl integrin fibronectin receptor, but not the α5 cytoplasmic domain, functions in an early and essential step in fibronectin matrix assembly. J. Biol. Chem. 268:21883–21888.

    PubMed  CAS  Google Scholar 

  274. Singer, I. I. (1979). The fibronexus: A transmembrane association of fibronectin-containing fibers and bundles of 5 nm microfilaments in hamster and human fibroblasts. Cell 16:675–685.

    Article  PubMed  CAS  Google Scholar 

  275. Ruoslahti, E., and Pierschbacher, M. D. (1987). New perspectives in cell adhesion: RGD and integrins. Science 238:491–497.

    Article  PubMed  CAS  Google Scholar 

  276. Hynes, R. O. (1987). Integrins: A family of cell surface receptors. Cell 48:549–554.

    Article  PubMed  CAS  Google Scholar 

  277. Hynes, R. O. (1992). Integrins: Versatility, modulation, and signaling in cell adhesion. Cell 69:11–25.

    Article  PubMed  CAS  Google Scholar 

  278. Albelda, S. M., and Buck, C. A. (1990). Integrins and other cell adhesion molecules. FASEB J. 4:2868–2880.

    PubMed  CAS  Google Scholar 

  279. Ruoslahti, E. (1988). Fibronectin and its receptor. Annu. Rev. Biochem. 57:375–413.

    Article  PubMed  CAS  Google Scholar 

  280. Pierschbacher, M., Hayman, E. G., and Ruoslahti, E. (1983). Synthetic peptide with cell attachment activity of fibronectin. Proc. Natl. Acad. Sci. USA 80:1224–1227.

    Article  PubMed  CAS  Google Scholar 

  281. Pytela, R., Pierschbacher, M. D., and Ruoslahti, E. (1985). Identification and isolation of a 140 kd cell surface glycoprotein with properties expected of a fibronectin receptor. Cell 40:191–198.

    Article  PubMed  CAS  Google Scholar 

  282. Suzuki, S., Argraves, W. S., Pytela, R., Arai, H., Krusius, T., Pierschbacher, M. D., and Ruoslahti, E. (1986). cDNA and amino acid sequences of the cell adhesion protein receptor recognizing vitronectin reveal a transmembrane domain and homologies with other adhesion protein receptors. Proc. Natl. Acad. Sci. USA 83:8614–8618.

    Article  PubMed  CAS  Google Scholar 

  283. Pytela, R., Pierschbacher, M. D., and Ruoslahti, E. (1985). A 125/115-kDa cell surface receptor specific for vitronectin interacts with the arginine-glycine-aspartic acid adhesion sequence derived from fibronectin. Proc. Nad. Acad. Sci. USA 82:5766–5770.

    Article  CAS  Google Scholar 

  284. Neff, N. T., Lowrey, C., Decker, C., Tovar, A., Damsky, C., Buck, C., and Horwitz, A. F. (1982). A monoclonal antibody detaches embryonic skeletal muscle from extracellular matrices. J. Cell Biol. 95:654–666.

    Article  PubMed  CAS  Google Scholar 

  285. Horwitz, A. F., Duggan, K., Greggs, R., Decker, C., and Buck, C. (1985). The cell substrate attachment (CSAT) antigen has properties of a receptor for laminin and fibronectin. J. Cell Biol. 101: 2134–2144.

    Article  PubMed  CAS  Google Scholar 

  286. Damsky, C. H., Knudsen, K. A., Bradley, D., Buck, C. A., and Horwitz, A. F. (1985). Distribution of the cell substratum attachment (CSAT) antigen on myogenic and fibroblastic cells in culture. J. Cell Biol. 100:1528–1539.

    Article  PubMed  CAS  Google Scholar 

  287. Nermut, M. V., Green, N. M., Eason, P., Yamada, S. S., and Yamada, K. M. (1988). Electron microscopy and structural model of human fibronectin receptor. EMBO J. 7:4093–4099.

    PubMed  CAS  Google Scholar 

  288. Kirchhofer, D., Gailit, J., Ruoslahti, E., Grzesiak, J., and Pierschbacher, M. D. (1990). Cation-dependent changes in the binding specificity of the platelet receptor GPIIIb/IIIa. J. Biol. Chem. 265: 18525–18530.

    PubMed  CAS  Google Scholar 

  289. Smith, J. W., and Cheresh, D. A. (1990). Integrin (αvß3)-ligand interaction: Identification of a heterodimeric RGD binding site on the vitronectin receptor. J. Biol. Chem. 265:2168–2172.

    PubMed  CAS  Google Scholar 

  290. D’Souza, S. E., Ginsberg, M. H., Burke, T. A., and Plow, E. F (1990). The ligand binding site of the platelet integrin receptor GPIIb-IIIa is proximal to the second calcium binding domain of its a subunit. J. Biol. Chem. 265:3440–3446.

    PubMed  Google Scholar 

  291. Loftus, J. C., O’Toole, T. E., Plow, E. F., Glass, A., Frelinger, A. L., III, and Ginsberg, M. H. (1990). A ß3 integrin mutation abolishes ligand binding and alters divalent cation-dependent conformation. Science 249:915–918.

    Article  PubMed  CAS  Google Scholar 

  292. Pierschbacher, M. D., and Ruoslahti, E. (1987). Influence of stereochemistry of the sequence of Arg-Gly-Asp-Xaa on binding specificity in cell adhesion. J. Biol. Chem. 262:17294–17298.

    PubMed  CAS  Google Scholar 

  293. Mould, A. P., Wheldon, L. A., Komoriya, A., Wayner, E. A., Yamada, K. M., and Humphries, M. J. (1990). Affinity chromatographic isolation of the melanoma adhesion receptor for the IIICS region of fibronectin and its identification as the integrin a4ß1. J. Biol. Chem. 265:4020–4024.

    PubMed  CAS  Google Scholar 

  294. Gehlsen, K. R., Dillner, L., Engvall, E., and Ruoslahti, E. (1988). The human laminin receptor is a member of the integrin family of cell adhesion receptors. Science 241:1228–1229.

    Article  PubMed  CAS  Google Scholar 

  295. Kirchhofer, D., Languino, L. R., Ruoslahti, E., and Pierschbacher, M. D. (1990). α2ß1 integrins from different cell types show different binding specificities. J. Biol. Chem. 265:615–618.

    PubMed  CAS  Google Scholar 

  296. Cheresh, D. A., and Klier, F. G. (1986). Asialoganglioside GD2 distributes preferentially into substrate-associated microprocesses on human melanoma cells during their attachment to fibronectin. J. Cell Biol. 102:1887–1897.

    Article  PubMed  CAS  Google Scholar 

  297. Yamada, K. M., Critchley, D. R., Fishman, P. H., and Moss, J. (1983). Exogenous gangliosides enhance the interaction of fibronectin with ganglioside-deficient cells. Exp. Cell Res. 143: 295–302.

    Article  PubMed  CAS  Google Scholar 

  298. Brown, E., Hooper, L., Ho, T., and Gresham, H. (1990). Integrin-associated protein: A 50 kDa plasma membrane antigen physically and functionally associated with integrin. J. Cell Biol. 111: 2785–2794.

    Article  PubMed  CAS  Google Scholar 

  299. Agraves, W. S., Dickerson, K., Burgess, W. H., and Ruoslahti, E. (1990). Fibulin, a novel protein that interacts with the fibronectin receptor ß subunit cytoplasmic domain. Cell 58:623–629.

    Article  Google Scholar 

  300. Regen, C. M., and Horwitz, A. F. (1992). Dynamics of ß1 integrin-mediated adhesive contacts in motile fibroblasts. J. Cell Biol. 119: 1347–1359.

    Article  PubMed  CAS  Google Scholar 

  301. Singer, I.I., Scott, S., Kawka, D. W., Kazazis, D. M., Gailit, J., and Ruoslahti, E. (1988). Cell surface distribution of fibronectin and vitronectin receptors depends on substrate composition and extracellular matrix accumulation. J. Cell Biol. 106:2171–2182.

    Article  PubMed  CAS  Google Scholar 

  302. LaFlamme, S. E., Akiyama, S. K., and Yamada, K. M. (1992). Regulation of fibronectin receptor distribution. J. Cell Biol. 117: 437–447.

    Article  PubMed  CAS  Google Scholar 

  303. Wayner, E. A., Orlando, R. A., and Cheresh, D. A. (1991). Integrins avß3 and avß5 contribute to cell attachment to vitronectin but differentially distribute on the cell surface. J. Cell Biol. 113:919–929.

    Article  PubMed  CAS  Google Scholar 

  304. Fath, K. R., Edgell, C.-J. S., and Burridge, K. (1989). The distribution of distinct integrins in focal contacts is determined by the substratum composition. J. Cell Sci. 92:67–75.

    PubMed  Google Scholar 

  305. Juliano, R. L., and Haskill, S. (1993). Signal transduction from the extracellular matrix. J. Cell Biol. 120:577–585.

    Article  PubMed  CAS  Google Scholar 

  306. Chen, W.-T., Greve, J. M., Gottlieb, D. I., and Singer, S. J. (1985). Immunocytochemical localization of 140 kD cell adhesion molecules in cultured chicken fibroblasts, and in chicken smooth muscle and intestinal epithelial tissues. J. Histochem. Cytochem. 33:576–586.

    Article  PubMed  CAS  Google Scholar 

  307. Schaller, M. D., Parsons, J. T. (1994). Focal adhesion kinase and associated proteins. Curr. Opin. Cell Biol. 6:705–710.

    Article  PubMed  CAS  Google Scholar 

  308. Schaller, M. D., Borgman, C. A., Cobb, B. S., Vines, R. R., Reynolds, A. B., and Parsons, J.T. (1992). pp125FAK, a structurally distinctive protein-tyrosine kinase associated with focal adhesions. Proc. Natl. Acad. Sci. USA 89:5192–5196.

    Article  PubMed  CAS  Google Scholar 

  309. Lipfert, L., Haimovich, B., Schaller, M. D., Cobb, B. S., Parsons, J. T., and Brugge, J. S. (1992). Integrin-dependent phosphorylation and activation of the protein tyrosine kinase ppl25FAK in platelets. J. Cell Biol. 119:905–912.

    Article  PubMed  CAS  Google Scholar 

  310. Reynolds, A. B., Rosel, D. J., Kanner, S. B., and Parsons, J. T. (1989). Transformation-specific tyrosine phosphorylation of a novel cellular protein in chicken cells expressing oncogenic variants of the avian cellular src gene. Mol. Cell. Biol. 9:629–638.

    PubMed  CAS  Google Scholar 

  311. Nigg, E. A., Sefton, B. M., Hunter, T., Walter, G., and Singer, S. J. (1982). Immunofluorescent localization of the transforming protein of Rous sarcoma virus with antibodies against a synthetic src peptide. Proc. Natl. Acad. Sci. USA 79:5322–5326.

    Article  PubMed  CAS  Google Scholar 

  312. Huhtala, P., Humphries, M. J., McCarthy, J. B., Tremble, P. M., Werb, Z., and Damsky, C. H. (1995). Cooperative signaling by α5ß1 and α4ß1 integrins regulates metalloproteinase gene expression in fibroblasts adhering to fibronectin. J. Cell Biol. 129:867–879.

    Article  PubMed  CAS  Google Scholar 

  313. Tremble, P. M., Damsky, C. H., and Werb, Z. (1995). Components of nuclear signaling cascade that regulate collagenase gene expression in response to integrin-derived signals. J. Cell Biol. 129: 1707–1720.

    Article  PubMed  CAS  Google Scholar 

  314. Ginsberg, M. H., Du, X., and Plow, E. F. (1992). Inside-out integrin signalling. Curr. Opin. Cell Biol. 4:766–771.

    Article  PubMed  CAS  Google Scholar 

  315. Sims, P. J., Ginsberg, M. H., Plow, E. F., and Shattil, S. J. (1991). Effect of platelet activation on the conformation of the plasma membrane glycoprotein IIb-IIIa complex. J. Biol. Chem. 266:7345–7352.

    PubMed  CAS  Google Scholar 

  316. Chen, Y.-P, O’Toole, T. E., Shipley, T., Forsyth, J., LaFlamme, S. E., Yamada, K. M., Shattil, S. J., and Ginsberg, M. H. (1994). “Inside-out” signal transduction inhibited by isolated integrin cytoplasmic domains. J. Biol. Chem. 269:18307–18310.

    PubMed  CAS  Google Scholar 

  317. Vlodavsky, I., Bar-Shavit, R., Ishai-Michaeli, R., Bashkin, P., and Fuks, Z. (1991). Extracellular sequestration and release of fibroblast growth factor: A regulatory mechanism? Trends Biochem. Sci. 16:268–271.

    Article  PubMed  CAS  Google Scholar 

  318. Gitay-Cohen, H., Soker, S., Vlodavsky, I., and Neufeld, G. (1992). The binding of vascular endothelial growth factor to its receptors is dependent on cell surface-associated heparin-like molecules. J. Biol. Chem. 267:6093–6098.

    Google Scholar 

  319. Yayon, A., Klagsbrun, M., Esko, J. D., Leder, P., and Ornitz, D. M. (1991). Cell surface, heparin-like molecules are required for binding of basic fibroblast growth factor to its high affinity receptor. Cell 64:841–848.

    Article  PubMed  CAS  Google Scholar 

  320. Kokenyesi, R., and Bernfield, M., (1994). Core protein structure and sequence determine the site and presence of heparan sulfate and chondroitin sulfate on syndecan-1. J. Biol. Chem. 269:12304–12309.

    PubMed  CAS  Google Scholar 

  321. Ohlendieck, K., Ervasti, J. M., Snook, J. B., and Campbell, K. P. (1991). Dystrophin-glycoprotein complex is highly enriched in isolated skeletal muscle sarcolemma. J. Cell Biol. 112:135–148.

    Article  PubMed  CAS  Google Scholar 

  322. Brancaccio, A., Schulthess, T., Gesemann, M., and Engel, J. (1995). Electron microscopic evidence for a mucin-like region in chick muscle α-dystroglycan. FEBS Lett. 368:139–142.

    Article  PubMed  CAS  Google Scholar 

  323. Hagiwara, Y., Yoshida, M., Nonaka, I., and Ozawa, E. (1989). Developmental expression of dystrophin on the plasma membrane of rat muscle cells. Protoplasma 151:11–18.

    Article  Google Scholar 

  324. Tome, F. M., Evangelista, T., Leclerc, A., Sunada, Y., Manole, E., Estournet, B., Barois, A., Campbell, K. P., and Fardeau, M. (1994). Congenital muscular dystrophy with merosin deficiency. C. R. Acad. Sci. Ser. C 317:351–357.

    CAS  Google Scholar 

  325. Xu, H., Christmas, P., Wu, X.-R., Wewer, U. M., and Engvall, E. (1994). Defective muscle basement membrane and lack of M-laminin in the dystrophic dy/dy mouse. Proc. Natl. Acad. Sci. USA 91:5572–5576.

    Article  PubMed  CAS  Google Scholar 

  326. Ushkaryov, Y. A., Petrenko, A. G., Geppert, M., and Sudhof, T. C., (1992). Neurexins: Synaptic cell surface proteins related to the α-latrotoxin receptor and laminin. Science 257:50–56.

    Article  PubMed  CAS  Google Scholar 

  327. Sugrue, S. P., and Hay, E. D. (1981). Response of basal epithelial cell surface and cytoskeleton to solubilized extracellular matrix molecules. J. Cell Biol. 91:45–54.

    Article  PubMed  CAS  Google Scholar 

  328. Sanes, J. R., Engvall, E., Butkowski, R., and Hunter, D. D. (1990). Molecular heterogeneity of basal laminae: Isoforms of laminin and collagen IV at the neuromuscular junction and elsewhere. J. Cell Biol. 111:1685–1699.

    Article  PubMed  CAS  Google Scholar 

  329. McMahan, U. J., Sanes, J. R., and Marshall, L. M. (1978). Acetylcholinesterase is associated with the basal lamina at the neuromuscular junction. Nature 193:281–282.

    Google Scholar 

  330. Brandan, E., Maldonado, M., Garrido, J., and Inestrosa, N. C. (1985). Anchorage of collagen-tailed acetylcholinesterase to the extracellular matrix is mediated by heparan sulfate proteoglycans. J. Cell Biol. 101:985–992.

    Article  PubMed  CAS  Google Scholar 

  331. Fertuck, H. C., and Salpeter, M. M. (1976). Quantitation of junctional and extrajunctional acetylcholine receptors by electron microscope autoradiography after 125I-α-bungarotoxin binding at mouse neuromuscular junctions. J. Cell Biol. 69:144–158.

    Article  PubMed  CAS  Google Scholar 

  332. Heuser, J. E., and Salpeter, S. R. (1979). Organization of acetylcholine receptors in quick-frozen, deep-etched, and rotary-replicated Torpedo postsynaptic membrane. J. Cell Biol. 82:150–173.

    Article  PubMed  CAS  Google Scholar 

  333. Froehner, S. C. (1991). The sub-membrane machinery for nicotinic acetylcholine receptor clustering. J. Cell Biol. 114:1–7.

    Article  PubMed  CAS  Google Scholar 

  334. Marshall, L. M., Sanes, J. R., and McMahan, U. J. (1977). Reinnervation of original synaptic sites on muscle fiber basement membrane after disruption of the muscle cells. Proc. Natl. Acad. Sci. USA 74:3073–3077.

    Article  PubMed  CAS  Google Scholar 

  335. Hunter, D. D., Cashman, N., Morris-Valero, R., Bulock, J. W., Adams, S. P., and Sanes, J. R. (1991). An LRE (leucine-arginine-glutamate)-dependent mechanism for adhesion of neurons to Slaminin. J. Neurosci. 11:3960–3971.

    PubMed  CAS  Google Scholar 

  336. Porter, B. E., Weis, J., and Sanes, J. R. (1995). A motoneuron-selective stop signal in the synaptic protein S-laminin. Neuron 14: 549–559.

    Article  PubMed  CAS  Google Scholar 

  337. Noakes, P. G., Gautam, M., Mudd, J., Sanes, J. R., and Merlie, J. P. (1995). Aberrant differentiation of neuromuscular junctions in mice lacking s-laminin/laminin ß2. Nature 374:258–262.

    Article  PubMed  CAS  Google Scholar 

  338. Burden, S. J., Sargent, P. B., and McMahan, U. J. (1979). Acetylcholine receptors in regenerating muscle accumulate at original synaptic sites in the absence of the nerve. J. Cell Biol. 82:412–425.

    Article  PubMed  CAS  Google Scholar 

  339. McMahan, U. J., and Slater, C. R. (1984). The influence of basal lamina on the accumulation of acetylcholine receptors at synaptic sites in regenerating muscle. J. Cell Biol. 98:1453–1473.

    Article  PubMed  CAS  Google Scholar 

  340. Ruegg, M. A., Tsim, K. W. K., Horton, S. E., Kroger, S., Escher, G., Gensch, E. M., and McMahan, U. J. (1992). The agrin gene codes for a family of basal lamina proteins that differ in function and distribution. Neuron 8:691–699.

    Article  PubMed  CAS  Google Scholar 

  341. Tsim, K. W. K., Ruegg, M. A., Escher, G., Kroger, S., and McMahan, U. J. (1992). cDNA that encodes active agrin. Neuron 8: 677–689.

    Article  PubMed  CAS  Google Scholar 

  342. Rupp, F., Payan, D. G., Magill-Solc, C., Cowan, D. M., and Serieller, R. H. (1991). Structure and expression of a rat agrin. Neuron 6:811–823.

    Article  PubMed  CAS  Google Scholar 

  343. Ferns, M., Hoch, W., Campanelli, J. T., Rupp, F., Hall, Z. W., and Serieller, R. H. (1992). RNA splicing regulates agrin-mediated acetylcholine receptor clustering activity on cultured myotubes. Neuron 8:1079–1086.

    Article  PubMed  CAS  Google Scholar 

  344. Hoch, W., Ferns, M., Campanelli, J. T., Hall, Z. W., and Serieller, R. H. (1993). Developmental regulation of highly active alternatively spliced forms of agrin. Neuron 11:479–490.

    Article  PubMed  CAS  Google Scholar 

  345. Ferns, M. J., Campanelli, J. T., Hoch, W., Scheller, R. H., and Hall, Z. W. (1993). The ability of agrin to cluster AChRs depends on alternative splicing and on cell surface proteoglycans. Neuron 11: 491–502.

    Article  PubMed  CAS  Google Scholar 

  346. Nitkin, R. M., Smith, M. A., Magill, C., Fallon, J. R., Yao, Y.-M. M., Wallace, B. G., and McMahan, U. J. (1987). Identification of agrin, a synaptic organizing protein from Torpedo electric organ. J. Cell Biol. 105:2471–2478.

    Article  PubMed  CAS  Google Scholar 

  347. Magill-Solc, C., and McMahan, U. J. (1988). Motor neurons contain agrin-like molecules. J. Cell Biol. 107:1825–1833.

    Article  PubMed  CAS  Google Scholar 

  348. Reist, N. E., Werle, M. J., and McMahan, U. J. (1992). Agrin released by motor neurons induces the aggregation of acetylcholine receptors at neuromuscular junctions. Neuron, 8:865–868.

    Article  PubMed  CAS  Google Scholar 

  349. Cohen, M. W., and Godfrey, E. W. (1992). Early appearance of and neuronal contribution to agrin-like molecules at embryonic frog nerve-muscle synapses formed in culture. J. Neurosci. 12:2982–2992.

    PubMed  CAS  Google Scholar 

  350. Tsen, G., Halfter, W., Kroger, S., and Cole, G. J. (1995). Agrin is a heparan sulfate proteoglycan. J. Biol. Chem. 270:3392–3399.

    Article  PubMed  CAS  Google Scholar 

  351. Gee, S. H., Montanaro, F., Lindenbaum, M. H., and Carbonetto, S. (1994). Dystroglycan-α, a dystrophin-associated glycoprotein, is a functional agrin receptor. Cell 77:675–686.

    Article  PubMed  CAS  Google Scholar 

  352. Bowe, M. A., Deyst, K. A., Leszyk, J. D., and Fallon, J. R. (1994). Identification and purification of an agrin receptor from Torpedo postsynaptic membranes: A heteromeric complex related to the dystroglycans. Neuron 12:1173–1180.

    Article  PubMed  CAS  Google Scholar 

  353. Sugiyama, J., Bowen, D. C., and Hall, Z. W. (1994). Dystroglycan binds nerve and muscle agrin. Neuron 13:1–20.

    Article  Google Scholar 

  354. Singer, S. J., and Nicholson, G. L. (1972). The fluid mosaic model of the structure of cell membranes. Science 175:720–731.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Plenum Press, New York

About this chapter

Cite this chapter

Bloch, R.J. (1996). The Membrane-Associated Cytoskeleton and Exoskeleton. In: Schultz, S.G., Andreoli, T.E., Brown, A.M., Fambrough, D.M., Hoffman, J.F., Welsh, M.J. (eds) Molecular Biology of Membrane Transport Disorders. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1143-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1143-0_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8446-8

  • Online ISBN: 978-1-4613-1143-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics