Skip to main content

Genesis of Cardiac Arrhythmias Roles of Calcium and Delayed Potassium Channels in the Heart

  • Chapter
Molecular Biology of Membrane Transport Disorders

Abstract

Electrical activity underlies the control of the frequency, strength, and duration of contraction of the heart. During the cardiac cycle, a regular rhythmic pattern must be established in time-dependent changes in ionic conductances in order to ensure events that underlie normal cardiac function. Electrical impulses, originating at the sinoatrial (SA) node, are conducted throughout the atria until they converge at the atrioventricular (AV) node, pass through the bundle of His and the Purkinje fiber conducting system, and eventually excite the working myocardial cells of both ventricles. Coordination of these cellular events is ensured by the unique electrical properties of the different cell types of the heart as well as the junctional connections that join them. Rapid conduction in the His-Purkinje network ensures uniform and synchronous contraction of the ventricle; slow conduction through the AV node coordinates atrial and ventricular contraction. Pacemaker activity of the SA node determines heart rate and latent pacemaker properties of both the AV node and the Purkinje fiber network serve as important pacing reserves.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Weidmann, S. (1951). Effect of current flow on the membrane potential of cardiac muscle. J. Physiol. (London) 115:227–236.

    CAS  Google Scholar 

  2. Noble, D. (1990). Ionic mechanisms in normal cardiac activity. In Cardiac Electrophysiology (J. Jalife and D. P. Zipes, eds.), Saunders, Philadelphia, pp. 163–172.

    Google Scholar 

  3. Noble, D. (1978). The Initiation of the Heartbeat, Oxford University Press (Clarendon), London.

    Google Scholar 

  4. Hodgkin, A. L., and Huxley, A. F. (1952). A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. (London) 117:500–544.

    CAS  Google Scholar 

  5. Noble, D., and Tsien, R. W. (1969). Outward membrane currents activated in the plateau range of potentials in cardiac Purkinje fibres. J. Physiol. (London) 200:205–231.

    CAS  Google Scholar 

  6. McAllister, R. E., Noble, D., and Tsien, R. W. (1975). Reconstruction of the electrical activity of cardiac Purkinje fibres. J. Physiol. (London) 251:1–59.

    CAS  Google Scholar 

  7. McDonald, T. F., and Trautwein, W. (1978). The potassium current underlying delayed rectification in cat ventricular muscle. J Physiol. (London) 274:211–245.

    Google Scholar 

  8. Noma, A., and Irisawa, H. (1976). A time and voltage-dependent potassium current in the rabbit sinoatrial node cell. Pfluegers Arch. 366:251–258.

    Article  CAS  Google Scholar 

  9. Bennett, P. B., McKinney, L. C., Kass, R. S., and Begenisich, T. (1985). Delayed rectification in the calf cardiac Purkinje fiber. Biophys. J. 48:553–567.

    Article  PubMed  CAS  Google Scholar 

  10. Baiser, J. R., and Roden, D. M. (1988). Lanthanum-sensitive current contaminates Ik in guinea pig ventricular myocytes. Biophys. J. 53: 642a.

    Google Scholar 

  11. Baiser, J. R., Bennett, P. B., and Roden, D. M. (1990). Time-dependent outward current in guinea pig ventricular myocytes. Gating kinetics of the delayed rectifier. J. Gen. Physiol. 96:835–863.

    Article  Google Scholar 

  12. Sanguinetti, M. C., and Jurkiewicz, N. K. (1990). Two components of cardiac delayed rectifier K+ current. Differential sensitivity to block by class III antiarrhythmic agents. J. Gen. Physiol. 96:195–215.

    Article  PubMed  CAS  Google Scholar 

  13. Sanguinetti, M. C, and Jurkiewicz, N. K. (1991). Delayed rectifier outward K current is composed of two currents in guinea pig atrial cells. Am. J. Physiol. 260:H393-H399.

    PubMed  CAS  Google Scholar 

  14. DiFrancesco, D., Noma, A., and Trautwein, W. (1979). Kinetics and magnitude of the time-dependent potassium current in the rabbit sinoatrial node. Pfluegers Arch. 381:271–279.

    Article  CAS  Google Scholar 

  15. Kokubun, S., Nishimura, M., Noma, A., and Irisawa, H. (1982). Membrane currents in the rabbit atrioventricular node cell. Pfluegers Arch. 393:15–22.

    Article  CAS  Google Scholar 

  16. Hauswirth, O., Noble, D., and Tsien, R. W. (1969). The mechanism of oscillatory activity at low membrane potentials in cardiac Purkinje fibres. J. Physiol. (London) 200:255:265.

    CAS  Google Scholar 

  17. Irisawa, H. (1978). Comparative physiology of the cardiac pacemaker mechanism. Physiol. Rev. 58:461-498.

    PubMed  CAS  Google Scholar 

  18. Brown, H. F. (1982). Electrophysiology of the sinoatrial node. Physiol. Rev. 62:505–530.

    PubMed  CAS  Google Scholar 

  19. Nakayama, T., Kurachi, Y., Noma, A., and Irisawa, H. (1984). Action potential and membrane currents of single pacemaker cells of the rabbit heart. Pfluegers Arch. 402:248–257.

    Article  CAS  Google Scholar 

  20. Shibasaki, T. (1987). Conductance and kinetics of delayed rectifier potassium channels in nodal cells of the rabbit heart. J. Physiol. (London) 387:227–250.

    CAS  Google Scholar 

  21. Anumonwo, J. M. B., Freeman, L. C, Kwok, W. M., and Kass, R. S. (1992). Delayed rectification in single cells isolated from guinea pig sino-atrial node. Am. J. Physiol. 262:H921-H925.

    PubMed  CAS  Google Scholar 

  22. Fedida, D., Wible, B., Wang, Z., Fermini, B., Faust, F, Nattel, S., and Brown, A. M. (1993). Identity of a novel delayed rectifier current from human heart with a cloned K channel current. Circ. Res. 73: 210–216.

    PubMed  CAS  Google Scholar 

  23. Po, S., Snyders, D. J., Baker, R., Tamkun, M. M., and Bennett, P. B. (1992). Functional expression of an inactivating potassium channel cloned from human heart. Circ. Res. 71:732–736.

    PubMed  CAS  Google Scholar 

  24. Snyders, D. J., Roberds, S. L., Knoth, K. M., Bennett, P. B., and Tamkun, M. M. (1992). Block of a cloned human cardiac delayed rectifier by class III antiarrhythmic agents. Biophys. J. 61:151a.

    Google Scholar 

  25. Roberds, S. L., and Tamkun, M. M. (1991). Cloning and tissue-specific expression of five voltage-gated potassium channel cDNAs expressed in rat heart. Proc. Natl Acad. Sci. USA 88:1798–1802.

    Article  PubMed  CAS  Google Scholar 

  26. Po, S., Roberds, S., Snyders, D. J., Tamkun, M. M., and Bennett, P. B. (1993). Heteromultimeric assembly of human potassium channels: Molecular basis of a transient outward current? Circ. Res. 72:1326–1336.

    PubMed  CAS  Google Scholar 

  27. Kass, R. S., and Wiegers, S. E. (1982). The ionic basis of concentration-related effects of noradrenaline on the action potential of calf cardiac Purkinje fibres. J. Physiol. (London) 322:541–558.

    CAS  Google Scholar 

  28. Tsien, R. W. (1987). Calcium currents in heart cells and neurons. In Neuromodulation: The Biochemical Control of Neuronal Excitability (L. K. Kaczmarek and I. B. Levitan, ed.), Oxford University Press, London, pp. 206–242.

    Google Scholar 

  29. Tsien R. W., Giles, W., and Greengard, P. (1972). Cyclic AMP mediates the effects of adrenaline on cardiac Purkinje fibers. Nature 240:181–183.

    CAS  Google Scholar 

  30. Bennett, P. B., McKinney, L. C, Begenisch, T., and Kass, R. S. (1986). Adrenergic modulation of the delayed rectifier potassium channel in calf cardiac Purkinje fibers. Biophys. J. 49:839–848.

    Article  PubMed  CAS  Google Scholar 

  31. Brown, H. F., and Noble, S. J. (1974). Effects of adrenaline on membrane currents underlying pacemaker activity in frog atrial muscle. J. Physiol. (London) 238:51–52.

    Google Scholar 

  32. Carmeliet, E., and Mubagwa, K. (1986). Changes by acetylcholine of membrane currents in rabbit cardiac Purkinje fibres. J. Physiol. (London) 371:201–217.

    CAS  Google Scholar 

  33. Pappano, A. J., and Carmeliet, E. (1979). Epinephrine and the pace-making mechanism at plateau potentials in sheep cardiac Purkinje fibers. Pfluegers Arch. 382:17–26.

    Article  CAS  Google Scholar 

  34. Umeno, T. (1984). ß-actions of catecholamines on the K-related currents of the bullfrog atrial muscle. Jpn. J. Physiol. 34:513–528.

    Article  PubMed  CAS  Google Scholar 

  35. Walsh, K. B., Begenisich, T., and Kass, R. S. (1988). Beta-adrenergic modulation in the heart: Evidence for independent regulation of K and Ca channels. Biophys. J. 53:460a.

    Google Scholar 

  36. Walsh, K. B., and Kass, R. S. (1988). Regulation of a heart potassium channel by protein kinase A and C. Science 242:67–69.

    Article  PubMed  CAS  Google Scholar 

  37. Duchatelle-Gourdon, I., Hartzeil, H. C, and Lagrutta, A. A. (1989). Modulation of the delayed rectifier potassium current in frog car-diomyocytes by ß-adrenergic agonists and magnesium. J. Physiol. (London) 415:251–274.

    CAS  Google Scholar 

  38. Harvey, R. D., and Hume, J. R. (1989). Autonomic regulation of delayed rectifier K+ current in mammalian heart involves G proteins. Am. J. Physiol. 257:H818-H823.

    PubMed  CAS  Google Scholar 

  39. Yazawa, K., and Kameyama, M. (1990). Mechanism of receptor-mediated modulation of the delayed outward potassium current in guinea-pig ventricular myocytes. J. Physiol. (London) 421:135–150.

    CAS  Google Scholar 

  40. Kokubun, S., Prod’hom, B., Becker, C, Porzig, H., and Reuter, H. (1986). Studies on Ca channels in intact cardiac cells: Voltage-dependent effects and cooperative interactions of dihydropyridine enan-tiomers. Mol. Pharmacol. 30(6) 571–584.

    PubMed  CAS  Google Scholar 

  41. Reuter, H. (1984). Electrophysiology of calcium channels in the heart. In Perspectives in Cardiovascular Research (L. H. Opie, ed.), Raven Press, New York, pp. 43–51.

    Google Scholar 

  42. Kass, R. S., and Sanguinetti, M. C. (1984). Calcium channel inactiva-tion in the cardiac Purkinje fiber. Evidence for voltage- and calcium-mediated mechanisms. J. Gen. Physiol. 84:705–726.

    Article  PubMed  CAS  Google Scholar 

  43. Kass, R. S., and Tsien, R. W. (1976). Control of action potential duration by calcium ions in cardiac Purkinje fibers. J. Gen. Physiol. 67: 599–617.

    Article  PubMed  CAS  Google Scholar 

  44. Busch, A. E., Varnum, M. D., North, R. A., and Adelman, J. P. (1992). An amino acid mutation on a potassium channel that prevents inhibition by protein kinase C. Science 255:1705–1707.

    Article  PubMed  CAS  Google Scholar 

  45. January, C. T., and Riddle, J. M. (1989). Early afterdepolarizations: Mechanism of induction and block. A role for L-type calcium current. Circ. Res. 64:977–990.

    PubMed  CAS  Google Scholar 

  46. Ferrier, G. R., and Moe, G. K. (1973). The effect of calcium on acetylstrophanthidin-induced transient depolarizations in canine Purkinje tissue. Circ. Res. 33:508–515.

    PubMed  CAS  Google Scholar 

  47. Kass, R. S., Tsien, R. W., and Weingart, R. (1978). Ionic basis of transient inward current induced by strophanthidin in cardiac Purkinje fibres. J. Physiol (London) 281:209–226.

    CAS  Google Scholar 

  48. Kass, R. S., Lederer, J. W., Tsien, R. W., and Weingart, R. (1978). Role of calcium ions in transient inward currents and aftercontrac-tions induced by strophanthidin in cardiac Purkinje fibres. J. Physiol (London) 281:187–208.

    CAS  Google Scholar 

  49. Kass, R. S., and Freeman, L. C. (1993). Potassium channels in the heart: Cellular, molecular, and clinical implications. Trends Cardio-vasc.Med. 3:149–159.

    Article  CAS  Google Scholar 

  50. Sanguinetti, M. C. (1992). Modulation of potassium channels by antiarrhythmic and antihypertensive drugs. Hypertension 19:228–236.

    PubMed  CAS  Google Scholar 

  51. Moss, A. J., Schwartz, P. J., Crampton, R. S., Tzivoni, D., Locati, E. H., MacCluer, J., Hall, W. J., Weitkamp, K., Vincent, M., Garso, A., Robinson, J. L., Benhorin, J., and Choi, S. (1991). The long QT syndrome: Prospective longitudinal study of 328 families. Circulation 84:1136–1144.

    PubMed  CAS  Google Scholar 

  52. Moss, A. J., and Robinson, J. (1992). Clinical features of the idiopathic long QT syndrome. Circulation 85(Suppl I) 1140–1144.

    Google Scholar 

  53. Keating, M., Atkinson, D., Dunn, C, Timothy, K., Vincent, G. M., and Leppert, M. (1991). Linkage of a cardiac arrhythmia, the long QT syndrome, and the Harvey ras-1 gene. Science 252:704–706.

    Article  PubMed  CAS  Google Scholar 

  54. Keating, M., Atkinson, D., Dunn, C, Timothy, K., Vincent, G. M., and Leppert, M. (1993). Evidence of genetic heterogeneity in the long QT syndrome. Science 260:1960–1961.

    Article  Google Scholar 

  55. Benhorin, J., Kaiman, Y. M., Medina, A., Towbin, J., Rave-Harel, N., Dyer, T. D., Blangero, J., MacCluer, J. W., and Krem, B. (1993). Evidence of genetic heterogeneity in the long QT syndrome. Science 260:1960–1961.

    Article  PubMed  CAS  Google Scholar 

  56. Papazian, D. M., Schwarz, T. L., Tempel, B. L., Jan, Y. N., and Jan, L. Y. (1987). Cloning of genomic and complementary DNA from Shaker, a putative potassium channels gene from Drosophila. Science 237:749–753.

    Article  PubMed  CAS  Google Scholar 

  57. Pongs, O., Kecskemethy, N., Müller, R., Krah-Jentgens, I., Baumann, A., Kiltz, H. H., Canal, I., Llamazares, S., and Ferrus, A. (1988). Shaker encodes a family of putative potassium channel proteins in the nervous system of Drosophila. EMBO 7:1087–1096.

    CAS  Google Scholar 

  58. Roberds, S. L., Knoth, K. M., Po, S., Blair, T. A., Bennett, P. B., Hartshorne, R. P., Snyders, D. J., and Tamkun, M. M. (1993). Molecular biology of the voltage-gated potassium channels of the cardiovascular system. J. Cardiovasc. ElectroPhysiol. 4:68–80.

    Article  PubMed  CAS  Google Scholar 

  59. Murai, T., Kazikuza, A., Takumi, T., Ohkubo, H., and Nakanishi, S. (1989). Molecular cloning and sequence analysis of human genomic DNA encoding a novel membrane protein which exhibits a slowly activating potassium channel activity. Biochem. Biophys. Res. Commun. 161:176–181.

    Article  PubMed  CAS  Google Scholar 

  60. Pragneil, M., Snay, K. J., Trimmer, J. S., MacLusky, N. J., Naftolin, E, Kaczmarek, L. K., and Boyle, M. (1990). Estrogen induction of a small, putative K channel mRNA in rat uterus. Neuron 4:807–812.

    Article  Google Scholar 

  61. Honore, E., Attali, B., Romey, G., Heurteaux, C, Ricard, P., Lesage, E, Lazdunski, M., and Barhanin, J. (1991). Cloning, expression, pharmacology, and regulation of a delayed rectifier K channel in mouse heart. EMBO 10:2805–2811.

    CAS  Google Scholar 

  62. Kaczmarek, L. K. (1991). Voltage-dependent potassium channels: minK and Shaker families. New Biol. 3:315–323.

    PubMed  CAS  Google Scholar 

  63. Kass, R. S., Arena, J. P., and Walsh, K. B. (1990). Measurement and block of potassium channel currents in the heart: Importance of channel type. Drug Dev. Res. 19:115–127.

    Article  CAS  Google Scholar 

  64. Arena, J. P., and Kass, R. S. (1988). Block of heart potassium channels by clofilium and its tertiary analogs: Relationship between drug structure and type of channel blocked. Mol. Pharmacol. 34:60–66.

    PubMed  CAS  Google Scholar 

  65. Hirano, Y, and Hiraoka, M. (1986). Changes in K+ currents induced by Ba2+ in guinea pig ventricular muscles. Am. J. Physiol. 251: H24-H33.

    PubMed  CAS  Google Scholar 

  66. Ertel, E. A., Smith, M. M., Leibowitz, M. D., and Cohen, C. J. (1994). Isolation of myocardial L-type calcium channel gating currents with the spider toxin omega-Aga-IIIA. J. Gen. Physiol. 103:731–753.

    Article  PubMed  CAS  Google Scholar 

  67. Hausdorff, S. F., Goldstein, S. A. N., Rushin, E. E., and Miller, C. (1991). Functional characterization of a minimal K channel expressed from a synthetic gene. Biochemistry 30:3341–3346.

    Article  PubMed  CAS  Google Scholar 

  68. Goldstein, S. A. N., and Miller, C. (1991). Site-specific mutations in a minimal voltage-dependent K+ channel alter ion selectivity and open-channel block. Neuron 7:403–408.

    Article  PubMed  CAS  Google Scholar 

  69. Freeman, L. C, and Kass, R. S. (1993). minK:expression in mammalian (HEK 293) cells and immunolocalization in guinea pig heart. Biophys. J. 64:A341.

    Google Scholar 

  70. Freeman, L. C, and Kass, R. S. (1993). Expression of a minimal K channel protein in mammalian cells and immunolocalization in guinea pig heart. Circ. Res. 73:968–973.

    PubMed  CAS  Google Scholar 

  71. Chevillard, C, Attali, B., Florian, L., Fontes, M., Barhanin, J., Lazdunski, M., and Mattei, M. (1993). Localization of a potassium channel gene (KCNE1) to 21q22.1-q22.2 by in situ hybridization and somatic cell hybridization. Genomics 15:243–245.

    Article  PubMed  CAS  Google Scholar 

  72. Walsh, K. B., and Kass, R. S. (1991). Distinct voltage-dependent regulation of a heart delayed IK by protein kinases A and C. Am. J. Physiol. 261:C1081-C1090.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Plenum Press, New York

About this chapter

Cite this chapter

Kass, R.S. (1996). Genesis of Cardiac Arrhythmias Roles of Calcium and Delayed Potassium Channels in the Heart. In: Schultz, S.G., Andreoli, T.E., Brown, A.M., Fambrough, D.M., Hoffman, J.F., Welsh, M.J. (eds) Molecular Biology of Membrane Transport Disorders. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1143-0_29

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1143-0_29

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8446-8

  • Online ISBN: 978-1-4613-1143-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics