Skip to main content

Cell Adhesion

  • Chapter
  • 368 Accesses

Abstract

The central role of cell adhesion in multicellular organisms is self-evident. In order to form functional tissues, cells must physically adhere to one another and to extracellular matrix (ECM) materials. Somewhat more subtle is the role that regulated and selective cell adhesion plays in the development, function, and regeneration of vertebrate organisms. Studies of a variety of biological phenomena by zoologists early in this century led to the formulation of quite specific models of selective cell and tissue affinities1–3 including their hypothetical molecular basis (Figure 2.1). As reflected in this early molecular diagram of the cell membrane, little was known about molecular details of cell adhesion. Nonetheless, as noted in the legend, several of the molecular principles envisioned by Weiss half a century ago have now been given molecular form. During the past 15–20 years, the application of immunologic and molecular genetic tools to these problems has begun to give more detailed form to the hypothetical black bar molecules in Figure 2.1. The list of identified cell adhesion molecules (CAMs) has grown from a handful in 1980 to nearly 100 today.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Holtfreter, J. (1939). Gewebeaffinitat, ein Mittel der embryonalen Formbildung. Arch. Exp. Zellforsch. 23:169–209, as translated in Foundations in Experimental Embryology (B. Willier and J. Oppenheimer, eds.), Prentice-Hall, Englewood Cliffs, NJ (1964).

    Google Scholar 

  2. Weiss, P. (1947). The problem of specificity in growth and development. Yale J. Biol Med. 19:235–278.

    PubMed  CAS  Google Scholar 

  3. Steinberg, M. S. (1963). Reconstruction of tissues by dissociated cells. Science 141:401–408.

    PubMed  CAS  Google Scholar 

  4. Wilson, H. V. (1907). On some phenomena of coalescence and regeneration in sponges. J. Exp. Zool. 5:245–258.

    Google Scholar 

  5. Moscona, A. A. (1962). Analysis of cell recombinations in experimental synthesis of tissues in vitro. J. Cell. Comp. Physiol. 60:65–81.

    Google Scholar 

  6. Roth, S. (1968). Studies on intercellular adhesive selectivity. Dev. Biol. 18:602–631.

    PubMed  CAS  Google Scholar 

  7. Brackenbury, R., Thiery, J. P., Rutishauser, U., and Edelman, G. M. (1977). Adhesion among neural cells of the chick embryo. I. An immunological assay for molecules involved in cell-cell binding. J. Biol. Chem. 252:6835–6840.

    PubMed  CAS  Google Scholar 

  8. Thiery, J. P., Brackenbury, R., Rutischauser, U., and Edelman, G. M. (1977). Adhesion among neural cells of the chick embryo. II. Purification and characterization of a cell adhesion molecule from neural retina. J. Biol. Chem. 252:6841–6845.

    PubMed  CAS  Google Scholar 

  9. Kemler, R., Babinet, C., Eisen, H., and Jacob, F. (1977). Surface antigen in early differentiation. Proc. Natl. Acad. Sci. USA 74:4449–4452.

    PubMed  CAS  Google Scholar 

  10. Grumet, M., and Edelman, G. M. (1984). Heterotypic binding between neuronal membrane vesicles and glial cells is mediated by a specific cell adhesion molecule. J. Cell Biol. 98:1746–1756.

    PubMed  CAS  Google Scholar 

  11. Bertolotti, R., Rutishauser, R., and Edelman, G. M. (1980). A cell surface molecule involved in aggregation of embryonic liver cells. Proc. Natl Acad. Sci. USA 77:4831–4835.

    PubMed  CAS  Google Scholar 

  12. Hyafil, F., Morello, D., Babinet, C., and Jacob, F. (1980). A cell surface glycoprotein involved in the compaction of embryonal carcinoma cells and cleavage stage embryos. Cell 21:927–934.

    PubMed  CAS  Google Scholar 

  13. Damsky, C. H., Knudsen, K. A., Dorio, R. J., and Buck, C. A. (1981). Manipulation of cell-cell and cell-substratum interactions in mouse mammary tumor epithelial cells using broad spectrum antisera. J. Cell Biol. 89:173–184.

    PubMed  CAS  Google Scholar 

  14. Damsky, C. H., Richa, J., Solter, D., Knudsen, K., and Buck, C. A. (1983). Identification and purification of a cell surface glycoprotein mediating intercellular adhesion in embryonic and adult tissue. Cell 34:455–466.

    PubMed  CAS  Google Scholar 

  15. Knudsen, K. A., Rao, P. E., Damsky, C. H., and Buck, C. A. (1981). Membrane glycoproteins involved in cell-substratum adhesion. Proc. Natl Acad. Sci. USA 78:6071–6075.

    PubMed  CAS  Google Scholar 

  16. Nagafuchi, A., Shirayoshi, Y., Okazaki, K., Yasuda, K., and Takeichi, M. (1987). Transformation of cell adhesion properties by ex-ogenously introduced E-cadherin cDNA. Nature 329:341–343.

    PubMed  CAS  Google Scholar 

  17. Filbin, M. T., Walsh, F. S., Trapp, B. D., Pizzey, J. A., and Tennekoon, G. I. (1990). Role of myelin Po protein as a homophilic adhesion molecule. Nature 344:871–872.

    PubMed  CAS  Google Scholar 

  18. St. John, T., Meyer, J., Idzerda, R. and Gallatin, W. M. (1990). Expression of CD44 confers a new adhesive phenotype on transfected cells. Cell 60:45–52.

    PubMed  CAS  Google Scholar 

  19. Nose, A., Nagafuchi, A., and Takeichi, M. (1988). Expressed recombinant Cadherins mediate cell sorting in model systems. Cell 54:993–1001.

    PubMed  CAS  Google Scholar 

  20. Hynes, R. O., and Lander, A. D. (1992). Contact and adhesive specificities in the associations, migrations and targeting of cells and axons. Cell 68:303–322.

    PubMed  CAS  Google Scholar 

  21. Geiger, B., and Ayalon, O. (1992). Cadherins. Annu. Rev. Cell Biol 8:307–332.

    PubMed  CAS  Google Scholar 

  22. Takeichi, M. (1990). Cadherins: A molecular family important in selective cell-cell adhesion. Annu. Rev. Biochem. 59:237–252.

    PubMed  CAS  Google Scholar 

  23. Edelman, G. M., and Crossin, K. L. (1991). Cell adhesion molecules: Implications for a molecular histology. Annu. Rev. Biochem. 60:155–190.

    PubMed  CAS  Google Scholar 

  24. Hynes, R. O. (1992). Integrins: Versatility, modulation, and signaling in cell adhesion. Cell 69:11–25.

    PubMed  CAS  Google Scholar 

  25. Lasky, L. A. (1992). Selectins: Interpreters of cell-specific carbohydrate information during inflammation. Science 258:964–969.

    PubMed  CAS  Google Scholar 

  26. Stoeckli, E. T., Kuhn, T. B., Duc, C. O., Ruegg, M. A., and Sonderegger, P. (1991). The axonally secreted protein axonin-1 is a potent substratum for neurite growth. J. Cell Biol. 112:449–455.

    PubMed  CAS  Google Scholar 

  27. Low, M. (1989). Glycosyl-phosphatidylinositol: A versatile anchor for cell surface proteins. FASEB J. 3:1600–1608.

    PubMed  CAS  Google Scholar 

  28. Stefanova, I., Horejsi, V., Ansotegui, I. J., Knapp, W., and Stockinger, H. (1991). GPI-anchored cell-surface molecules complexed to protein tyrosine kinases. Science 254:1016–1019.

    PubMed  CAS  Google Scholar 

  29. Owens, G. C., Edelman, G. M., and Cunningham, B. A. (1987). Organization of the neural cell adhesion molecule (N-CAM) gene: Alternative exon usage as the basis for different membrane-associated domains. Proc. Natl Acad. Sci. USA 84:294–298.

    PubMed  CAS  Google Scholar 

  30. Small, S. J., Haines, S. L., and Akeson, R. A. (1988). Polypeptide variation in an NCAM extracellular immunoglobulin-like fold is developmentally regulated through alternative splicing. Neuron 1:1007–1017.

    PubMed  CAS  Google Scholar 

  31. Thompson, J., Dickson, G., Moore, S. E., Gower, H. J., Putt, W., Kenimer, J. G., Barton, C. H., and Walsh, F. S. (1989). Alternative splicing of the neural cell adhesion molecule gene generates variant extracellular domain structure in skeletal muscle and brain. Genes Dev. 3:348–357.

    PubMed  CAS  Google Scholar 

  32. Reyes, A. A., Schulte, S. V., Small, S., and Akeson, R. (1993). Distinct NCAM splicing events are differentially regulated during rat brain development. Mol Brain Res. 17:201–211.

    PubMed  CAS  Google Scholar 

  33. Pollerberg, G. E., Schachner, M., and Davoust, J. (1986). Differentiation state-dependent surface mobilities of two forms of the neural cell adhesion molecule. Nature 324:462–465.

    PubMed  CAS  Google Scholar 

  34. Hall, A. K., and Rutishauser, U. (1987). Visualization of neural cell adhesion molecule by electron microscopy. J. Cell Biol. 104:1579–1586.

    PubMed  CAS  Google Scholar 

  35. Becker, J. W, Erickson, H. P., Hoffman, S., Cunningham, B. A., and Edelman, G. M. (1989). Topology of cell adhesion molecules. Proc. Natl. Acad. Sci. USA 86:1088–1092.

    PubMed  CAS  Google Scholar 

  36. Staunton, D. E., Dustin, M. L., Erickson, H. P., and Springer, T. A. (1990). The arrangement of the immunoglobulin-like domains of ICAM-1 and the binding sites for LFA-1 and rhinovirus. Cell 61:243–254.

    PubMed  CAS  Google Scholar 

  37. Nermut, M. V., Green, N.M., Eason, P., Yamada, S.S., and Yamada, K. M. (1988). Electron microscopy and structural model of human fibronectin receptor. EMBO J. 7:4093–4099.

    PubMed  CAS  Google Scholar 

  38. Ringwald, M., Schuh, R., Vestweber, D., Eistetter, H., Lottspeich, F., Engel, J., Dolz, R., Jahnig, F., Epplen, J., Mayer, S., Muller, C., and Kemler, R. (1987). The structure of cell adhesion molecule uvomorulin. Insights into the molecular mechanism of Ca-dependent cell adhesion. EMBO J. 6:3647–3653.

    PubMed  CAS  Google Scholar 

  39. Nagafuchi, A., Takeichi, M. (1988). Cell binding function of Ecadherin is regulated by the cytoplasmic domain. EMBO J. 7:3679–3684.

    PubMed  CAS  Google Scholar 

  40. Ozawa, M., Baribault, H., and Kemler, R. (1989). The cytoplasmic domain of the cell adhesion molecule uvomorulin associates with three independent proteins structurally related in different species. EMBO J. 8:1711–1717.

    PubMed  CAS  Google Scholar 

  41. Ozawa, M, Ringwald, M., and Kemler, R. (1990). Uvomorulincatenin complex formation is regulated by a specific domain in the cytoplasmic region of the cell adhesion molecule. Proc. Natl. Acad. Sci. USA 87:4246–4250.

    PubMed  CAS  Google Scholar 

  42. Nagafuchi, A., and Takeichi, M. (1989). Transmembrane control of cadherin-mediated cell adhesion: A 94 kDa protein functionally associated with a specific region of the cytoplasmic domain of E-cadherin. Cell Regul. 1:37–44.

    PubMed  CAS  Google Scholar 

  43. Hirano, S., Kimoto, N., Shimoyama, Y., Hirohashi, S., and Takeichi, M. (1992). Identification of a neural α-catenin as a key regulator of Cadherin function and multicellular organization. Cell 70:293–301.

    PubMed  CAS  Google Scholar 

  44. Nose, A., Tsuji, K., and Takeichi, M. (1990). Localization of specificity determining sites in Cadherin cell adhesion molecules. Cell 61:147–155.

    PubMed  CAS  Google Scholar 

  45. Blaschuk, O. W., Sullivan, R., David, S., and Pouliot, Y. (1990). Identification of a Cadherin cell adhesion recognition sequence. Dev. Biol. 139:227–229.

    PubMed  CAS  Google Scholar 

  46. Ozawa, M., Engel, J., and Kemler, R. (1990). Single amino acid substitutions in one Ca binding site of uvomorulin abolish the adhesive function. Cell 63:1033–1038.

    PubMed  CAS  Google Scholar 

  47. Suzuki, S., Sano, K., and Tanihara, H. (1991). Diversity of the Cadherin family: Evidence for eight new Cadherins in nervous tissue. Cell Regul 2:261–270.

    PubMed  CAS  Google Scholar 

  48. Williams, A. E, and Barclay, A. N. (1988). The immunoglobulin superfamily-domains for cell surface recognition. Annu. Rev. Immunol. 6:380–405.

    Google Scholar 

  49. Hunkapiller, T., and Hood, L. (1989). Diversity of the immunoglobulin gene superfamily. Adv. Immunol. 44:1–63.

    PubMed  CAS  Google Scholar 

  50. Edmundson, A. B., Ely, K. R., Abola, E. E., Schiffer, M., and Panagiotopoulos, N. (1975). Rotational allomerism and divergent evolution of domains in immunoglobulin light chains. Biochemistry 14:3953–3961.

    CAS  Google Scholar 

  51. Frelinger, A. L., III, and Rutishauser, U. (1986). Topography of N-CAM structural and functional determinants. II. Placement of monoclonal antibody epitopes. J. Cell Biol. 103:1729–1737.

    PubMed  CAS  Google Scholar 

  52. Cole, G. J., and Akeson, R. (1989). Identification of a heparin binding domain of the neural cell adhesion molecule NCAM using synthetic peptides. Neuron 2:1157–1165.

    PubMed  CAS  Google Scholar 

  53. Diamond, M. S., Staunton, D. E., Marlin, S. D., and Springer, T. A. (1991). Binding of the integrin Mac-1 (CD11b/CD18) to the third immunoglobulin-like domain of ICAM-1 (CD54) and its regulation by glycosylation. Cell 65:961–971.

    PubMed  CAS  Google Scholar 

  54. Tian, S. S., Tsoulfas, P., and Zinn, K. (1991). Three receptorlinked protein-tyrosine phosphatases are selectively expressed on central nervous system axons in the Drosophila embryo. Cell 67:675–685.

    PubMed  CAS  Google Scholar 

  55. Yang, X., Seow, K. T., Bahri, S. M., Oon, S. H., and Chia, W. (1991). Two Drosophila receptor-like tyrosine phosphatase genes are expressed in a subset of developing axons and pioneer neurons in the embryonic CNS. Cell 67:661–673.

    PubMed  CAS  Google Scholar 

  56. Leahy, D. J., Hendrickson, W. A., Aukhil, I., and Erickson, H. P. (1992). Structure of a fibronectin type III domain from tenascin phased by MAD analysis of the selenomethionyl protein. Science 258:987–991.

    PubMed  CAS  Google Scholar 

  57. Davis, J. Q., McLaughlin, T., and Bennett, V. (1993). Ankyrin-binding proteins related to nervous system cell adhesion molecules: Candidates to provide transmembrane and intercellular connections in adult brain. J. Cell Biol. 121:121–133.

    PubMed  CAS  Google Scholar 

  58. Tamkun, J. W., DeSimone, D. W., Fonda, D., Patel, R. S., Buck, C., Horwitz, A. F., and Hynes, R. O. (1986). Structure of integrin, a glycoprotein involved in the transmembrane linkage between fibronectin and actin. Cell 46:271–282.

    PubMed  CAS  Google Scholar 

  59. Pierschbacher, M. D., and Ruoslahti, E. (1984). Cell attachment activity of fibronectin can be duplicated by small synthetic fragments of the molecule. Nature 309:30–33.

    PubMed  CAS  Google Scholar 

  60. Ruoslahti, E., and Pierschbacher, M. D. (1987). New perspectives in cell adhesion: RGD and integrins. Science 238:491–497.

    PubMed  CAS  Google Scholar 

  61. Horwitz, A., Duggan, K., Buck, C., Beckerle, M. C., and Burridge, D. (1986). Interaction of plasma membrane fibronectin receptor with talin—a transmembrane linkage. Nature 320:531.

    PubMed  CAS  Google Scholar 

  62. Otey, C. A., Pavalko, F. M., and Burridge, K. (1990). An interaction between α-actinin and the β1 integrin subunit in vitro. J. Cell Biol. 111:721–729.

    PubMed  CAS  Google Scholar 

  63. Erbe, D. V., Watson, S. R., Presta, L. G., Wolitsky, B. A., Foxall, C., Brandley, B. K., and Lasky, L. A. (1993). P- and E-selectin use common sites for carbohydrate ligand recognition and cell adhesion. J. Cell Biol. 120:1227–1235.

    PubMed  CAS  Google Scholar 

  64. Gallatin, W. M., Weissman, I. L., and Butcher, E. C. (1983). A cell-surface molecule involved in organ-specific homing of lymphocytes. Nature 304:30–34.

    PubMed  CAS  Google Scholar 

  65. Siegelman, M. H., van de Rijn, M., and Weissman, I. L. (1989). Mouse lymph node homing receptor cDNA clone encodes a glycoprotein revealing tandem interaction domains. Science 243:1165–1172.

    PubMed  CAS  Google Scholar 

  66. Lasky, L. A., Singer, M. S., Yednock, T. A., Dowbenko, D., Fennie, C., Rodriguez, H., Nguyen, T., Stachel, S., and Rosen, S. D. (1989). Cloning of a lymphocyte homing receptor reveals a lectin domain. Cell 56:1045–1055.

    PubMed  CAS  Google Scholar 

  67. Bevilacqua, M. P., Pober, J. S., Mendrick, D. L., Cotran, R. S., and Gimbrone, M. A., Jr., (1987). Identification of an inducible endothelial-leukocyte adhesion molecule. Proc. Natl. Acad. Sci. USA 84:9238–9242.

    PubMed  CAS  Google Scholar 

  68. Bevilacqua, M. P., Stengelin, S., Gimbrone, M. A., and Seed, B. (1989). Endothelial leukocyte adhesion molecule 1: An inducible receptor for neutrophils related to complement regulatory proteins and lectins. Science 243:1160–1165.

    PubMed  CAS  Google Scholar 

  69. Larsen, R., Celi, A., Gilbert, G. E., Furie, B. C., Erban, J. K., Bonfanti, R., Wagner, D. D., and Furie, B. (1989). PADGEM protein: A receptor that mediates the interaction of activated platelets with neutrophils and monocytes. Cell 59:305–312.

    PubMed  CAS  Google Scholar 

  70. Lowe, J. B., Stoolman, L. M., Nair, R. P., Larsen, R. D., Berhend, T. L., and Marks, R. M. (1990). ELAM-1-dependent cell adhesion to vascular endothelium determined by a transfected human fucosyltransferase cDNA. Cell 63:475–484.

    PubMed  CAS  Google Scholar 

  71. Foxall, C., Watson, S. R., Dowbenko, D., Fennie, C., Lasky, L. A., Kiso, M., Hasegawa, A., Asa, D., and Brandley, B. K. (1992). The three members of the selectin receptor family recognize a common carbohydrate epitope, the sialyl Lewisx oligosaccharide. J. Cell Biol. 117:895–902.

    PubMed  CAS  Google Scholar 

  72. Moore, K. L., Stults, N. L., Diaz, S., Smith, D. F., Cummings, R. D., Varki, A., and McEver, R. P. (1992). Identification of a specific glycoprotein ligand for P-selectin (CD62) on myeloid cells. J. Cell Biol. 118:445–456.

    PubMed  CAS  Google Scholar 

  73. Lasky, L. A., Singer, M. S., Dowbenko, D., Imai, Y, Henzel, W. J., Grimley, C., Fennie, C., Gillett, N., Watson, S. R., and Rosen, S. D. (1992). An endothelial ligand for L-selectin is a novel mucin-like molecule. Cell 69:927–938.

    PubMed  CAS  Google Scholar 

  74. Levinovitz, A., Muhlhoff, J., Isenmann, S., and Vestweber, D. (1993). Identification of a glycoprotein ligand for E-selectin on mouse myeloid cells. J. Cell Biol. 121:449–459.

    PubMed  CAS  Google Scholar 

  75. Brummendorf, T., Hubert, M., Treubert, U., Leuschner, R., Tarnok, A., and Rathjen, F. G. (1993). The axonal recognition molecule F11 is a multifunctional protein: Specific domains mediate interactions with Ng-CAM and restrictin. Neuron 10:711–727.

    PubMed  CAS  Google Scholar 

  76. Pesheva, P., Gennarini, G., Goridis, C., and Schachner, M. (1993). The F3/11 cell adhesion molecule mediates the repulsion of neurons by the extracellular matrix glycoprotein J1–160/180. Neuron 10:69–82.

    PubMed  CAS  Google Scholar 

  77. Ferrel, J. E., and Martin, G. S. (1989). Tyrosine-specific protein phosphorylation is regulated by glycoprotein IIb-IIa in platelets. Proc. Natl Acad. Sci. USA 86:2234–2238.

    Google Scholar 

  78. Atashi, J. R., Klinz, S. G., Ingraham, C. A., Matten, W. T., Schachner, M., and Maness, P. F. (1992). Neural cell adhesion molecules modulate tyrosine phosphorylation of tubulin in nerve growth cone membranes. Neuron 8:831–842.

    PubMed  CAS  Google Scholar 

  79. Burridge, K., Turner, C. E., and Romer, L. H. (1992). Tyrosine phosphorylation of paxillin and pp125FAK accompanies cell adhesion to extracellular matrix: A role in cytoskeletal assembly. J. Cell Biol. 119:893–903.

    PubMed  CAS  Google Scholar 

  80. Kornberg, L. J., Earp, H. S., Turner, C. E., Prockop, C., and Juliano, R. J. (1991). Signal transduction by integrins: Increased protein tyrosine phosphorylation caused by clustering of β1 integrins. Proc. Natl. Acad. Sci. USA 88:8392–8396.

    PubMed  CAS  Google Scholar 

  81. Schwartz, M. A. (1993). Spreading of human endothelial cells on fibronectin or vitronectin triggers elevation of intracellular free calcium. J. Cell Biol. 120:1003–1010.

    PubMed  CAS  Google Scholar 

  82. Jaconi, M. E. E., Theler, J. M., Schlegel, W., Appel, R. D., Wright, S. D., and Lew, P. D. (1991). Multiple elevations of cytosolic-free Ca2+ in human neutrophils: Initiation by adherence receptors of the integral family. J. Cell Biol. 112:1249–1257.

    PubMed  CAS  Google Scholar 

  83. Doherty, P., Ashton, S. V., Moore, S. E., and Walsh, F. S. (1991). Morphoregulatory activities of NCAM and N-cadherin can be accounted for by G protein-dependent activation of L- and N-type neuronal Ca2+ channels. Cell 67:21–33.

    PubMed  CAS  Google Scholar 

  84. Doherty, P., Rowett, L. H., Moore, S. E., Mann, D. A., and Walsh, F. S. (1991). Neurite outgrowth in response to transfected N-CAM and N-cadherin reveals fundamental differences in neuronal responsiveness to CAMs. Neuron 6:247–258.

    PubMed  CAS  Google Scholar 

  85. Williams, E. J., Doherty, P., Turner, G., Reid, R. A., Hemperly, J. J., and Walsh, F. S. (1992). Calcium influx into neurons can solely account for cell contact-dependent neurite outgrowth stimulated by transfected L1. J. Cell Biol. 119:883–892.

    PubMed  CAS  Google Scholar 

  86. Ingber, D. E., Prusty, D., Frangioni, J. V., Cragoe, E. J., Lechene, C., and Schwartz, M. A. (1990). Control of intracellular pH and growth by fibronectin in capillary endothelial cells. J. Cell Biol. 110:1803–1811.

    PubMed  CAS  Google Scholar 

  87. Schwartz, M. A., Lechene, C., and Ingber, D. E. (1991). Insoluble fibronectin activates the Na/H antiporter by clustering and immobilizing integrin α5β1, independent of cell shape. Proc. Natl. Acad. Sci. USA 88:7849–7853.

    PubMed  CAS  Google Scholar 

  88. Becchetti, A., Arcangeli, A., Riccarda del Bene, M., Olivotto, M., and Wanke, E. (1992). Response to fibronectin-integrin interaction in leukaemia cells: Delayed enhancing of a K+ current. Proc. R. Soc. London B Ser. 248:235–240.

    CAS  Google Scholar 

  89. Nathan, C., Srimal, S., Farber, C., Sanchez, E., Kabbash, L., Asch, A., Gailit, J., and Wright, S. D. (1989). Cytokine-induced respiratory burst of human neutrophils: Dependence on extracellular matrix proteins and CD11/CD18 integrins. J. Cell Biol. 109:1341–1349.

    PubMed  CAS  Google Scholar 

  90. Fuortes, M., Jin, W.W., and Nathan, C. (1993). Adhesion-dependent protein tyrosine phosphorylation in neutrophils treated with tumor necrosis factor. J. Cell Biol. 120:777–784.

    PubMed  CAS  Google Scholar 

  91. Farquhar, M. G., and Palade, G. E. (1963). Junctional complexes in various epithelia. J. Cell Biol. 17:375–412.

    PubMed  CAS  Google Scholar 

  92. Schneeberger, E. E., and Lynch, R. D. (1992). Structure, function, and regulation of cellular tight junctions. Am. J. Physiol. 262: L647-L661.

    PubMed  CAS  Google Scholar 

  93. Gumbiner, B. (1987). The structure, biochemistry and assembly of epithelial tight junctions. Am. J. Physiol. 253:C749-C758.

    PubMed  CAS  Google Scholar 

  94. Ducibella, T., and Anderson, E. (1975). Cell shape and membrane changes in the eight-cell mouse embryo: Prerequisites for morphogenesis of the blastocyst. Dev. Biol. 47:45–58.

    PubMed  CAS  Google Scholar 

  95. Hyafil, F., Babinet, C., and Jacob, F. (1981). Cell-cell interactions in early embryogenesis: A molecular approach to the role of calcium. Cell 26:447–454.

    PubMed  CAS  Google Scholar 

  96. Vestweber, D., Gossler, A., Boller, K. and Kemler, R. (1987). Expression and distribution of cell adhesion uvomorulin in mouse preimplantation embryos. Dev. Biol. 124:451–456.

    PubMed  CAS  Google Scholar 

  97. Winkel, G. K., Ferguson, J. E., Takeichi, M., and Nuccitelli, R. (1990). Activation of protein kinase C triggers premature compaction in the four-cell stage mouse-embryo. Dev. Biol. 138:1–15.

    PubMed  CAS  Google Scholar 

  98. Boller, K., Vestweber, D., and Kemler, R. (1985). Cell-adhesion molecule uvomorulin is localized in the intermediate junctions of adult intestinal epithelial cells. J. Cell Biol. 100:327–332.

    PubMed  CAS  Google Scholar 

  99. Gumbiner, B., and Simons, D. (1986). A functional assay for proteins involved in establishing an epithelial occluding barrier: Identification of a uvomorulin-like polypeptide. J. Cell Biol. 102:457–468.

    PubMed  CAS  Google Scholar 

  100. Mege, R.-M., Matsuzaki, F., Gallin, W. J., Goldberg, J. I., Cunningham, B. A., and Edelman, G. M. (1988). Construction of epithelioid sheets by transfection of mouse sarcoma cells with cDNAs for chicken cell adhesion molecules. Proc. Natl. Acad. Sci. USA 85:7274–7278.

    PubMed  CAS  Google Scholar 

  101. McNeill, H., Ozawa, M., Kemler, R., and Nelson, W. J. (1990). Novel function of the cell adhesion molecule uvomorulin as an inducer of cell surface polarity. Cell 62:309–316.

    PubMed  CAS  Google Scholar 

  102. Volk, T., and Geiger, B. (1986). A-CAM: A 135-kD receptor of intercellular adherens junctions. I. Immunoelectron microscopic localization and biochemical studies. J. Cell Biol. 103:1441–1450.

    PubMed  CAS  Google Scholar 

  103. Buxton, R. S., Cowin, P., Franke, W. W., Garrod, D. R., Green, K. J., King, I. A., Koch, P. J., Magee, A. I., Rees, D. A., Stanley, J. R., and Steinberg, M. S. (1993). Nomenclature of the desmosomal Cadherins. J. Cell Biol. 121:481–483.

    PubMed  CAS  Google Scholar 

  104. Amagai, M., Klaus-Kovtun, V, and Stanley, J. R. (1991). Autoantibodies against a novel epithelial Cadherin in pemphigus vulgaris, a disease of cell adhesion. Cell 67:869–877.

    PubMed  CAS  Google Scholar 

  105. Schiltz, J. R., and Michel, B. (1976). Production of epidermal acantholysis in normal human skin in vitro by the IgG fraction from pemphigus serum. J. Invest. Dermatol. 67:254–260.

    PubMed  CAS  Google Scholar 

  106. Rock, B., Labib, R. S., and Diaz, L. A. (1990). Monovalent Fab’ immunoglobulin fragments from endemic pemphigus foliaceus autoantibodies reproduce the human disease in neonatal Balb/c mice. J. Clin. Invest. 85:296–299.

    PubMed  CAS  Google Scholar 

  107. Gumbiner, B., Stevenson, B., and Grimaldi, A. (1988). The role of the cell adhesion molecule uvomorulin in the formation and maintenance of the epithelial junctional complex. J. Cell Biol. 107:1575–1587.

    PubMed  CAS  Google Scholar 

  108. Itoh, M., Nagafuchi, A., Yonemura, S., Kitani-Yasuda, T., Tsukita, S., and Tsukita, S. (1993). The 220-kD protein colocalizing with Cadherins in non-epithelial cells is identical to ZO-1, a tight junction-associated protein in epithelial cells: cDNA cloning and immunoelectron microscopy. J. Cell Biol. 121:491–502.

    PubMed  CAS  Google Scholar 

  109. Shimizu, Y, Newman, W, Tanaka, Y, and Shaw, S. (1992). Lymphocyte interactions with endothelial cells. Immunol. Today 13:106–112.

    PubMed  CAS  Google Scholar 

  110. Zimmerman, G. A., Prescott, S. M., and McIntyre, T. M. (1992). Endothelial cell interactions with granulocytes: Tethering and signalling molecules. Immunol. Today 13:93–100.

    PubMed  CAS  Google Scholar 

  111. Dustin, M. L., and Springer, T. A. (1991). Role of lymphocyte adhesion receptors in transient interactions and cell locomotion. Annu. Rev. Immunol. 9:27–66.

    PubMed  CAS  Google Scholar 

  112. Picker, L. J., and Butcher, E. C. (1992). Physiological and molecular mechanisms of lymphocyte homing. Annu. Rev. Immunol. 10:561–591.

    PubMed  CAS  Google Scholar 

  113. Woodruff, J. J., Clarke, L. M., and Chin, Y. H. (1987). Specific cell-adhesion mechanisms determining migration pathways of recirculating lymphocytes. Annu. Rev. Immunol. 5:201–222.

    PubMed  CAS  Google Scholar 

  114. Stamler, H. B., and Woodruff, J. J. (1976). Lymphocyte homing into lymph nodes: In vitro demonstration of the selective affinity of recirculating lymphocytes for high-endothelial venules. J. Exp. Med. 144:828–833.

    Google Scholar 

  115. Rasmussen, R. A., Chin, Y.-H., Woodruff, J. J., and Easton, T. G. (1985). Lymphocyte recognition of lymph node high endothelium. VII. Cell surface proteins involved in adhesion defined by monoclonal anti-HEBFLN(A.11) antibody. 7. Immunol. 135:19–24.

    CAS  Google Scholar 

  116. Chin, Y.-H., Rasmussen, R. A., Woodruff, J. J., and Easton T. G. (1986). A monoclonal anti-HEBFPP antibody with specificity for lymphocyte surface molecules mediating adhesion to Peyer’s patch high endothelium of the rat. J. Immunol. 136:2556–2561.

    PubMed  CAS  Google Scholar 

  117. Jalkanen, S., Bargatze, R. F., de los Toyos, J., and Butcher, E. C. (1987). Lymphocyte recognition of high endothelium: Antibodies to distinct epitopes of an 85–95-kD glycoprotein antigen differentially inhibit lymphocyte binding to lymph node, mucosal, or synovial endothelial cells. J. Cell Biol. 105:983–990.

    PubMed  CAS  Google Scholar 

  118. Holzmann, B., McIntyre, B. W., and Weissman, I. L. (1989). Identification of a murine Peyer’s patch-specific lymphocyte homing receptor as an integrin molecule with an α chain homologous to human VLA-4α. Cell 56:37–46.

    PubMed  CAS  Google Scholar 

  119. Streeter, P. R., Rouse, B. T. N., and Butcher, E. C. (1988). Immunohistologic and functional characterization of a vascular addressin involved in lymphocyte homing into peripheral lymph nodes. J. Cell Biol. 107:1853–1862.

    PubMed  CAS  Google Scholar 

  120. Streeter, P. R., Berg, E. L., Rouse, B. T. N., Bargatze, R. F., and Butcher, E. C. (1988). A tissue-specific endothelial cell molecule involved in lymphocyte homing. Nature 331:41–46.

    PubMed  CAS  Google Scholar 

  121. Nakache, M., Berg, E. L., Streeter, P. R., and Butcher, E. C. (1989). The mucosal vascular addressin is a tissue-specific endothelial cell adhesion molecule for circulating lymphocytes. Nature 337:179–181.

    PubMed  CAS  Google Scholar 

  122. Stamenkovic, I., Amiot, M., Pesando, J. M., and Seed, B. (1989). A lymphocyte molecule implicated in lymph node homing is a member of the cartilage link protein family. Cell 56:1057–1062.

    PubMed  CAS  Google Scholar 

  123. Goldstein, L. A., Zhou, D. F. H., Picker, L. J., Minty, C. N., Bargatze, R. F., Ding, J. F, and Butcher, E. C. (1989). Ahuman lymphocyte homing receptor the Hermes antigen, is related to cartilage proteoglycan core and link proteins. Cell 56:1063–1072.

    PubMed  CAS  Google Scholar 

  124. Picker, L. J., Nakache, M., and Butcher, E. C. (1989). Monoclonal antibodies to human lymphocyte homing receptors define a novel class of adhesion molecules on diverse cell types. J. Cell Biol. 109:927–937.

    PubMed  CAS  Google Scholar 

  125. Berg, E. L., Yoshino, T., Rott, L. S., Robinson, M. K., Warnock, R. A., Kishimoto, T. K., Picker, L. J., and Butcher, E. C. (1991). The cutaneous lymphocyte antigen is a skin lymphocyte homing receptor for the vascular lectin endothelial cell-leukocyte adhesion molecule 1. J. Exp. Med. 174:1461–1466.

    PubMed  CAS  Google Scholar 

  126. Picker, L. J., Kishimoto, T. K., Smith, C. W., Warnock, R. A., and Butcher, E. C. (1991). ELAM-1 is an adhesion molecule for skinhoming T cells. Nature 349:796–799.

    PubMed  CAS  Google Scholar 

  127. Picker, L. J., Terstappen, L. W. M. M., Rott, L. S., Streeter, P. R., Stein, H., and Butcher, E. C. (1990). Differential expression of homing-associated adhesion molecules by T cell subsets in man. J. Immunol. 145:3247–3255.

    PubMed  CAS  Google Scholar 

  128. von Andrian, U. H., Chambers, J. D., McEvoy, L. M., Bargatze, R. F, Arfors, K. E., and Butcher, E. C. (1991). Two-step model of leukocyte-endothelial cell interaction in inflammation: Distinct roles for LECAM-1 and the leukocyte β2 integrins in vivo. Proc. Natl. Acad. Sci. USA 88:7538–7542.

    Google Scholar 

  129. von Andrian, U. H., Hansell, R., Chambers, J. D., Berger, E. M., Filho, I. T., Butcher, E. C., and Arfors, K. E. (1992). L-selectin function is required for β2-integrin-mediated neutrophil adhesion at physiological shear rates in vivo. Am. J. Physiol. 263:H1034-H1044.

    Google Scholar 

  130. Butcher, E. C. (1991). Leukocyte-endothelial cell recognition: Three (or more) steps to specificity and diversity. Cell 67:1033–1036.

    PubMed  CAS  Google Scholar 

  131. Sugama, Y, Tiruppathi, C., Janakidevi, K., Andersen, T. T., Fenton, J. W., II, and Malik, A. B., (1992). Thrombin-induced expression of endothelial P-selectin and intercellular adhesion molecule-1: A mechanism for stabilizing neutrophil adhesion. J. Cell Biol. 119:935–944.

    PubMed  CAS  Google Scholar 

  132. Lorant, D. E., Patel, K. D., Mclntyre, T. M., McEver, R. P., Prescott, S. M., and Zimmerman, G. A. (1991). Coexpression of GMP-140 and PAF by endothelium stimulated by histamine or thrombin: A justacrine system for adhesion and activation of neutrophils. J. Cell Biol. 115:223–234.

    PubMed  CAS  Google Scholar 

  133. Shimizu, Y, Newman, W., Gopal, T. V., Horgan, K. J., Graber, N., Beall, L. D., van Seventer, G. A., and Shaw, S. (1991). Four molecular pathways of T cell adhesion to endothelial cells: Roles of LFA-1, VCAM-1, and ELAM-1 and changes in pathway hierarchy under different activation conditions. J. Cell Biol. 113:1203–1212.

    PubMed  CAS  Google Scholar 

  134. Dustin, M. L., and Springer, T. A. (1988). Lymphocyte function-associated antigen-1 (LFA-1) interaction with intercellular adhesion molecule-1 (ICAM-1) is one of at least three mechanisms for lymphocyte adhesion to cultured endothelial cells. J. Cell Biol. 107:321–331.

    PubMed  CAS  Google Scholar 

  135. Osborn, L., Hession, C., Tizard, R., Vassallo, C., Luhowskyj, S., Chi-Rosso, G., and Lobb, R. (1989). Direct expression cloning of vascular cell adhesion molecule 1, a cytokine-induced endothelial protein that binds to lymphocytes. Cell 59:1203–1211.

    PubMed  CAS  Google Scholar 

  136. Lawrence, M. B., and Springer, T. A. (1991). Leukocytes roll on a selectin at physiologic flow rates: Distinction from and prerequisite for adhesion through integrins. Cell 65:859–873.

    PubMed  CAS  Google Scholar 

  137. Picker, L. J., Warnock, R. A., Burns, A. R., Doerschuk, C. M., Berg, E. L., and Butcher, E. C. (1991). The neutrophil selectin LECAM-1 presents carbohydrate ligands to the vascular selectins ELAM-1 and GMP-140. Cell 66:921–933.

    PubMed  CAS  Google Scholar 

  138. Mayadas, T. N., Johnson, R. C., Rayburn, H., Hynes, R. O., and Wagner, D. D. (1993). Leukocyte rolling and extravasation are severely compromised in P selectin-deficient mice. Cell 74:541–554.

    PubMed  CAS  Google Scholar 

  139. Kishimoto, T. K., Jutila, M. A., Berg, E. L., and Butcher, E. C. (1989). Neutrophil Mac-1 and MEL-14 adhesion proteins inversely regulated by chemotatic factors. Science 245:1238–1241.

    PubMed  CAS  Google Scholar 

  140. Detmers, P. A., Lo, S. K., Olsen-Egbert, E., Walz, A., Baggiolini, M., and Cohn, Z. A. (1990). Neutrophil-activating protein 1/interleukin 8 stimulates the binding activity of the leukocyte adhesion receptor CD11b/CD18 on human neutrophils. J. Exp. Med. 171:1155–1162.

    PubMed  CAS  Google Scholar 

  141. Hermanowski-Vosatka, A., Van Strijp, J. A. G., Siggard, W. J., and Wright, S.D. (1992). Integrin modulating factor-1: A lipid that alters the function of leukocyte integrins. Cell 68:341–352.

    PubMed  CAS  Google Scholar 

  142. Elices, M. J., Osborn, L., Takada, Y, Crouse, C., Luhowskyj, S., Hemler, M. E., and Lobb, R. R. (1990). VCAM-1 on activated endothelium interacts with the leukocyte integrin VLA-4 at a site distinct from the VLA-4/fibronectin binding site. Cell 60:577–584.

    PubMed  CAS  Google Scholar 

  143. Covault, J. (1989). Molecular biology of cell adhesion in neural development. In Molecular Neurobiology (D. M. Glover and B. D. Hames, eds.), Oxford University Press, London, pp. 143–200.

    Google Scholar 

  144. Hortsch, M., and Goodman, C. S. (1991). Cell and substrate adhesion molecules in Drosophila. Annu. Rev. Cell Biol. 7:505–557.

    PubMed  CAS  Google Scholar 

  145. Reichardt, L. F, and Tomaselli, K. J. (1991). Extracellular matrix molecules and their receptors: Functions in neural development. Annu. Rev. Neurosci. 14:531–570.

    PubMed  CAS  Google Scholar 

  146. Rathjen, F. G., and Jessell, T. M. (1991). Glycoproteins that regulate the growth and guidance of vertebrate axons: Domains and dynamics of the immunoglobulin/fibronectin type III subfamily. Semin. Neurosci. 3:297–307.

    Google Scholar 

  147. Finne, J., Finne, U., Deagostini-Bazin, H., and Goridis, C. (1983). Occurrence of α2–8 linked polysialosyl units in a neural cell adhesion molecule. Biochem. Biophys. Res. Commun. 112:482–487.

    PubMed  CAS  Google Scholar 

  148. Nedelec, J., Boucraut, J., Garnier, J. M., Bernard, D., and Rougon, G. (1990). Evidence for autoimmune antibodies directed against embryonic neural cell adhesion molecules (NCAM) in patients with group B meningitis. J. Neuroimmunol. 29:49–56.

    PubMed  CAS  Google Scholar 

  149. Chuong, C.-M., and Edelman, G. M. (1984). Alterations in neural cell adhesion molecules during development of different regions of the nervous system. J. Neurosci. 4:2354–2368.

    PubMed  CAS  Google Scholar 

  150. Sunshine, J., Balak, K., Rutishauser, R., and Jacobson, M. (1987). Changes in neural cell adhesion molecule (NCAM) structure during vertebrate neural development. Proc. Natl. Acad. Sci. USA 84:5986–5990.

    PubMed  CAS  Google Scholar 

  151. Yang, P., Yin, X., and Rutishauser, U. (1992). Intercellular space is affected by the polysialic acid content of NCAM. J. Cell Biol. 116:1487–1496.

    PubMed  CAS  Google Scholar 

  152. Rutishauser, U., Acheson, A., Hall, A. K., Mann, D. M., and Sunshine, J. (1988). The neural cell adhesion molecule (NCAM) as a regulator of cell-cell interactions. Science 240:53–57.

    PubMed  CAS  Google Scholar 

  153. Letourneau, P. C. (1975). Cell-to-substratum adhesion and guidance of axonal elongation. Dev. Biol. 44:92–101.

    PubMed  CAS  Google Scholar 

  154. Lemmon, V., Burden, S. M, Payne, H. R., Elmslie, G. J., and Hlavin, M. L. (1992). Neurite growth on different substrates: Permissive versus instructive influences and the role of adhesive strength. J. Neurosci. 12:818–826.

    PubMed  CAS  Google Scholar 

  155. Tosney, K. W., and Landmesser, L. (1985). Growth cone morphology and trajectory in the lumbosacral region of the chick embryo. J. Neurosci. 5:2345–2358.

    PubMed  CAS  Google Scholar 

  156. Tang, J., Landmesser, L., and Rutishauser, U. (1992). Polysialic acid influences specific pathfinding by avian motoneurons. Neuron 8:1031–1044.

    PubMed  CAS  Google Scholar 

  157. Tang, J. (1992). Role of polysialic acid in motoneuron pathfinding and naturally occurring cell death. Ph. D. thesis. University of Connecticut, Storrs.

    Google Scholar 

  158. Nose, A., Mahajan, V. B., and Goodman, C. S. (1992). Connectin: A homophilic cell adhesion molecule expressed on a subset of muscles and the motoneurons that innervate them in Drosophila. Cell 70:553–567.

    PubMed  CAS  Google Scholar 

  159. Tosney, K. W., Watanabe, M., Landmesser, L., and Rutishauser, U. (1986). The distribution of NCAM in the chick hindlimb during axon outgrowth and synaptogenesis. Dev. Biol. 114:437–452.

    PubMed  CAS  Google Scholar 

  160. Hahn, C.-G., and Covault, J. (1992). Neural regulation of N-cadherin gene expression in developing and adult skeletal muscles. J. Neurosci. 12:4677–4687.

    PubMed  CAS  Google Scholar 

  161. El-Deeb, S., Thompson, S. C., and Covault, J. (1992). Characterization of a cell surface adhesion molecule expressed by a subset of developing chick neurons. Dev. Biol. 149:213–227.

    PubMed  CAS  Google Scholar 

  162. Landmesser, L., Dahm, L., Schultz, K., and Rutishauser, U. (1988). Distinct roles for adhesion molecules during innervation of embryonic chick muscle. Dev. Biol. 130:645–670.

    PubMed  CAS  Google Scholar 

  163. Landmesser, L., Dahm, L., Tang, J., and Rutishauser, U. (1990). Polysialic acid as a regulator of intramuscular nerve branching during embryonic development. Neuron 4:655–667.

    PubMed  CAS  Google Scholar 

  164. Tang, J., and Landmesser, L. (1993). Reduction of intramuscular nerve branching and synaptogenesis is correlated with decreased motoneuron survival. J. Neurosci. 13:3095–3103.

    PubMed  CAS  Google Scholar 

  165. Sanes, J. R., Hunter, D. D., Green, T. L., and Merlie, J. P. (1990). S-laminin. Cold Spring Harbor Symp. Quant. Biol. 55:419–430.

    PubMed  CAS  Google Scholar 

  166. Covault, J., and Sanes, J. R. (1986). Distribution of N-CAM in synaptic and extrasynaptic portions of developing and adult skeletal muscle. J. Cell Biol. 102:716–730.

    PubMed  CAS  Google Scholar 

  167. Covault, J., and Sanes, J. R. (1985). Neural cell adhesion molecule (N-CAM) accumulates in denervated and paralyzed skeletal muscles. Proc. Natl. Acad. Sci. USA 82:4544–4548.

    PubMed  CAS  Google Scholar 

  168. Booth, C. M., Kemplay, S. K., and Brown, M. C. (1990). An antibody to neural cell adhesion molecule impairs motor nerve terminal sprouting in a mouse muscle locally paralyzed with botulinum toxin. Neuroscience, 35:85–91.

    PubMed  CAS  Google Scholar 

  169. Mayford, M., Barzilai, A., Keller, F., Schacher, S., and Kandel, E. R. (1992). Modulation of an NCAM-related cell adhesion molecule with long-term synaptic plasticity in Aplysia. Science 256:638–644.

    PubMed  CAS  Google Scholar 

  170. Bailey, C. H., Chen, M., Keller, F., and Kandel, E. R. (1992). Serotonin-mediated endocytosis of apCAM: An early step of learning-related synaptic growth in Aplysia. Science 256:645–649.

    PubMed  CAS  Google Scholar 

  171. Greve, J. M., Davis, G., Meyer, A. M., Forte, C. P., Connolly Yost, S., Marlor, C. W., Kamarck, M. E., and McClelland, A. (1989). The major human rhinovirus receptor is ICAM-1. Cell 56:839–847.

    PubMed  CAS  Google Scholar 

  172. Stauton, D. E., Merluzzi, V. J., Rothlein, R., Barton, R., Marlin, S. D., and Springer, T. A. (1989). A cell adhesion molecule, ICAM-1, is the major surface receptor for rhinoviruses. Cell 56:849–853.

    Google Scholar 

  173. Tomassini, J. E., Grahm, D., De Witt, C. M., Lineberger, D. W., Rodkey, J. A., and Colonno, R. J. (1989). cDNA cloning reveals that the major group rhinovirus receptor on HeLa cells is intercellular adhesion molecule 1. Proc. Natl. Acad. Sci. USA 86:4907–4911.

    PubMed  CAS  Google Scholar 

  174. Maddon, P. J., Dalgleish, A. G., McDougal, J. S., Clapham, P. R., Weiss, R. A., and Axel, R. (1986). The T4 gene encodes the AIDS virus receptor and is expressed in the immune system and the brain. Cell 47:333–348.

    PubMed  CAS  Google Scholar 

  175. Sattentau, Q. J., and Weiss, R. A. (1988). The CD4 antigen: Physiological ligand and HIV receptor. Cell 52:631–633.

    PubMed  CAS  Google Scholar 

  176. Dveksler, G. S., Pensiero, M. N., Cardellichio, C. B., Williams, R. K., Jiang, G.-S., Holmes, K. V., and Dieffenbach, C. W. (1991). Cloning of the mouse hepatitis virus (MHV) receptor: Expression in human and hamster cell lines confers susceptibility to MHV. J. Virol. 65:6881–6891.

    PubMed  CAS  Google Scholar 

  177. Yokomori, K., and Lai, M. (1992). Mouse hepatitis virus utilizes two carcinoembryonic antigens as alternative receptors. J. Virol. 66:6194–6199.

    PubMed  CAS  Google Scholar 

  178. Mendelsohn, C. L., Wimmer, E., and Racaniello, V. R. (1989). Cellular receptor for poliovirus: Molecular cloning, nucleotide sequence, and expression of a new member of the immunoglobulin superfamily. Cell 56:855–865.

    PubMed  CAS  Google Scholar 

  179. Koike, S., Taya, C., Kurata, T., Abe, S., Ise, I., Yonekawa, H., and Nomoto, A. (1991). Transgenic mice susceptible to poliovirus. Proc. Natl. Acad. Sci. USA 88:951–955.

    PubMed  CAS  Google Scholar 

  180. Rossmann, M. G., Arnold, E., Erickson, J. W., Frankenberger, E. A., Griffith, J. P., Hecht, H.-J., Johnson, J. E., Kamer, G., Luo, M., Mosser, A. G., Rueckert, R. R., Sherry, B., and Vriend, G. (1985). Structure of a human common cold virus and functional relationship to other picornaviruses. Nature 317:145–153.

    PubMed  CAS  Google Scholar 

  181. Rossmann, M. G. (1989). The canyon hypothesis. J. Biol. Chem. 264:14587–14590.

    PubMed  CAS  Google Scholar 

  182. Giranda, V L., Chapman, M. S., and Rossmann, M. G. (1990). Modeling of the human intercellular adhesion molecule-1, the human rhinovirus major group receptor. Proteins 7:227–233.

    PubMed  CAS  Google Scholar 

  183. Olson, N. H., Kolatkar, P. R., Oliveira, M. A., Cheng, R. H., Greve, J. M., McClelland, A., Baker, T. S., and Rossmann, M, G. (1993). Structure of a human rhinovirus complexed with its receptor. Proc. Natl. Acad. Sci. USA 90:507–511.

    PubMed  CAS  Google Scholar 

  184. Bergelson, J. M., Shepley, M. P., Chan, B. M. C., Hemler, M. E., and Finberg, R. W. (1992). Identification of the integrin VLA-2 as a receptor for echovirus 1. Science 255:1718–1720.

    PubMed  CAS  Google Scholar 

  185. Wickham, T. J., Mathias, P., Cheresh, D. A., and Nemerow, G. R. (1993). Integrins αvβ3 and αvβ5 promote adenovirus internalization but not virus attachment. Cell 73:309–319.

    PubMed  CAS  Google Scholar 

  186. Wright, S. D., and Silverstein, S. C. (1983). Receptors for C3b and C3bi promote phagocytosis but not the release of toxic oxygen from human phagocytes. J. Exp. Med. 158:2016–2023.

    PubMed  CAS  Google Scholar 

  187. Rao, S. P., Ogata, K., Catanzaro, A. (1993). Mycobacterium avium-M, intracellulare binds to the integrin receptor αvβ3 on human monocytes and monocyte-derived macrophages. Infect. Immun. 61:663–670.

    PubMed  CAS  Google Scholar 

  188. Isberg, R. R., and Leong, J. M. (1990). Multiple B1 chain integrins are receptors for invasin, a protein that promotes bacterial penetration into mammalian cells. Cell 60:861–871.

    PubMed  CAS  Google Scholar 

  189. Bullock, W. E., and Wright, S. D. (1987). Role of the adherence-promoting receptors, CR3, LFA-1, and p150,95, in binding of Histoplasma capsulatum by human macrophages. J. Exp. Med. 165:195–210.

    PubMed  CAS  Google Scholar 

  190. Payne, N. R., and Horwitz, M. A. (1987). Phagocytosis of Legionella pneumophila is mediated by human monocyte complement receptors. J. Exp. Med. 166:1377–1389.

    PubMed  CAS  Google Scholar 

  191. Relman, D., Tuomanen, E., Falkow, S., Golenbock, D. T., Saukkonen, K., and Wright, S. D. (1990). Recognition of a bacterial adhesin by an integrin: Macrophage CR3 (amB2, CD11b/CD18) binds filamentous hemagglutinin of Bordetella pertussis. Cell 61:1375–1382.

    PubMed  CAS  Google Scholar 

  192. Talamas-Rohana, P., Wright, S. D., Lennartz, M. R., and Russell, D. G. (1990). Lipophosphoglycan from Leishmania mexicana promastigotes binds to members of the CR3, p150,95 and LFA-1 family of leukocyte integrins. J. Immunol. 144:4817–4824.

    PubMed  CAS  Google Scholar 

  193. Albelda, S. M. (1993). Role of integrins and other cell adhesion molecules in tumor progression and metastasis. Lab. Invest. 68:4–17.

    PubMed  CAS  Google Scholar 

  194. Giroldi, L. A., and Schalken, J. A. (1993). Decreased expression of the intercellular adhesion molecule E-cadherin in prostate cancer: Biological significance and clinical implications. Cancer Metast. Rev. 12:29–37.

    CAS  Google Scholar 

  195. Frixen, U. H., Behrens, J., Sachs, M., Eberle, G., Voss, B., Warda, A., Löchner, D., and Birchmeier, W. (1991). E-cadherin-mediated cell-cell adhesion prevents invasiveness of human carcinoma cells. J. Cell Biol. 113:173–185.

    PubMed  CAS  Google Scholar 

  196. Oka, H., Shiozaki, H., Kobayashi, K., Inoue, M., Tahara, H., Kobayashi, T., Takatsuka, Y. Matsuyoshi, N., Hirano, S., Takeichi, M., and Mori, T. (1993). Expression of E-cadherin cell adhesion molecules in human breast cancer tissues and its relationship to metastasis. Cancer Res. 53:1696–1701.

    PubMed  CAS  Google Scholar 

  197. Shiozaki, H., Tahara, H., Oka, H., Miyata, M., Kobayashi, K., Tamura, S., Iihara, K., Koki, Y., Hirano, M., Takeichi, M., and Mori, T. (1991). Expression of immuno-reactive E-cadherin adhesion molecules in human cancers. Am. J. Pathol. 139:17–23.

    PubMed  CAS  Google Scholar 

  198. Schipper, J. H., Frixen, E. H., Behrens, J., Unger, A., Jahnke, K., and Birchmeier, W. (1991). E-cadherin expression in squamous cell carcinomas of head and neck: Inverse correlation with tumor dedifferentiation and lymph node metastasis. Cancer Res. 51:6328–6337.

    PubMed  CAS  Google Scholar 

  199. Vleminckx, K., Vakaet, L., Jr., Mareel, M., Fiers, W., and Van Roy, F. (1991). Genetic manipulation of E-cadherin expression by epithelial tumor cells reveals an invasion suppressor role. Cell 66:107–119.

    PubMed  CAS  Google Scholar 

  200. Mareel, M. M., Behrens, J., Birchmeier, W., De Bruyne, G. K., Vleminckz, K., Hoogewijs, A., Fiers, W. C., and Van Roy, F. M. (1991). Down-regulation of E-cadherin expression in Madin Darby canine kidney (MDCK) cells inside tumors of nude mice. Int. J. Cancer 47:922–928.

    PubMed  CAS  Google Scholar 

  201. Fearon, E. R., Cho, K. R., Nigro, J. M., Kern, S. E., Simons, J. W., Ruppert, J. M., Hamilton, S. R., Preisinger, A. C., Thomas, G., Kinzler, K. W., and Vogelstein, B. (1990). Identification of a chromosome 18q gene that is altered in colorectal cancers. Science 247:49–56.

    PubMed  CAS  Google Scholar 

  202. Mahoney, P. A., Weber, U., Onofrechuk, P., Biessmann, H., Bryant, P. J., and Goodman, C. S. (1991). The fat tumor suppressor gene in Drosophila encodes a novel member of the Cadherin gene superfamily. Cell 67:853–868.

    PubMed  CAS  Google Scholar 

  203. Roth, J., Zuber, C., Wagner, P., Blaha, I., Bitter-Suermann, D., and Heitz, P. U. (1988). Presence of the long chain form of polysialic acid of the neural cell adhesion molecule in Wilms’ tumor: Identification of a cell adhesion molecule as an onco-developmental antigen and implications for tumor histogenesis. Am. J. Pathol. 133:227.

    PubMed  CAS  Google Scholar 

  204. Moolenaar, K. C. E. C., Muller, E. G., Schol, D. J., Figdor, C. G., Bock, E., Bitter-Suermann, D., and Michalides, R. J. A. M. (1990). Expression of neural cell adhesion molecule-related sialoglycoprotein in small cell lung cancer and neuroblastoma cell lines H69 and CHP-212. Cancer Res. 50:1102–1106.

    PubMed  CAS  Google Scholar 

  205. Livingstone, B., Jacobs, J. L., Glick, M. C., and Troy, F. A. (1989). Extended polysialic acid chains (on 755) in glycoproteins from human neuroblastoma cells. J. Biol. Chem. 263:9443–9448.

    Google Scholar 

  206. Benchimol, S., Fuks, A., Jothy, S., Beauchemin, N., Shirota, K., and Stanners, C. P. (1989). Carcinoembryonic antigen, a human tumor marker, functions as an intercellular adhesion molecule. Cell 57:327–334.

    PubMed  CAS  Google Scholar 

  207. Günthert, U., Hofmann, M., Rudy, W., Reber, S., Zöller, M., Haubmann, I., Matzku, S., Wenzel, A., Ponta, H., and Herrlich, P. (1991). A new variant of glycoprotein CD44 confers metastatic potential to rat carcinoma cells. Cell 65:13–24.

    PubMed  Google Scholar 

  208. Hofmann, M., Rudy, W., Zöller, M., Tölg, C., Ponta, H., Herrlich, P., and Giinthert, U. (1991). CD44 splice variants confer metastatic behavior in rats: Homologous sequences are expressed in human tumor cell lines. Cancer Res. 51:5292–5297.

    PubMed  CAS  Google Scholar 

  209. Itzkowitz, S. H., Yuan, M., Fukushi, Y, Palekar, A., Phelps, P. C., Shamsuddin, A. M., Trum, B. F, Hakomori, S.-L, and Kim, Y S. (1986). Lewisx- and sialylated Lewisx-related antigen expression in human malignant and nonmalignant colonic tissues. Cancer Res. 46:2627–2632.

    PubMed  CAS  Google Scholar 

  210. Auerbach, R., Lu, W. C., Pardon, E., Gumkowski, F., Kaminska, G., and Kaminski, M. (1987). Specificity of adhesion between murine tumor cells and capillary endothelium: An in vitro correlate of preferential metastasis in vivo. Cancer Res. 47:1492–1496.

    PubMed  CAS  Google Scholar 

  211. Rice, G. E., and Bevilacqua, M. P. (1989). An inducible endothelial cell surface glycoprotein mediates melanoma adhesion. Science 246:1303–1306.

    PubMed  CAS  Google Scholar 

  212. Zhu, D., Cheng, C.-F., and Pauli, B. U. (1991). Mediation of lung metastasis of murine melanomas by a lung-specific endothelial cell adhesion molecule. Proc. Natl. Acad. Sci. USA 88:9568–9572.

    PubMed  CAS  Google Scholar 

  213. Arnaout, M. A., Pitt, J., Cohen, H. J., Melamed, J., Rosen, F. S., and Colten, H. R. (1982). Deficiency of a granulocyte-membrane glycoprotein (gp150) in a boy with recurrent bacterial infections. N. Engl. J. Med. 306:693–699.

    PubMed  CAS  Google Scholar 

  214. Crowley, C. A., Curnette, J. T., Rosin, R. E., Andre-Schwartz, J., Klempner, M., Snyderman, R., Southwick, F. S., Stossel, T. P., and Babior, B. M. (1980). An inherited abnormality of neutrophil adhesion. Its genetic transmission and its association with a missing protein. N. Engl. J. Med. 302:1163–1168.

    PubMed  CAS  Google Scholar 

  215. Bowen, T. J., Ochs, H. D., and Altman, L. C. (1982). Severe recurrent bacterial infections associated with defective adherence and Chemotaxis in two patients with neutrophils deficient in a cell-associated glycoprotein. J. Pediatr. 101:932.

    PubMed  CAS  Google Scholar 

  216. Anderson, D. C., Smith, C. W., and Springer, T. A. (1989). Leukocyte adhesion deficiency and other disorders of leukocyte motility. In The Metabolic Basis of Inherited Disease, 6th ed. (C. R. Scriver, A. L. Beaudet, W. S. Sly, and D. Valle, eds.) McGraw-Hill, New York, pp. 2751–2777.

    Google Scholar 

  217. Arnaout, M. A. (1990). Leukocyte adhesion molecules deficiency: Its structural basis, pathophysiology and implications for modulating the inflammatory response. Immunol. Rev. 114:145–180.

    PubMed  CAS  Google Scholar 

  218. Kishimoto, T. K., Hollander, N., Roberts, T. M., Anderson, D. C., and Springer, T. A. (1987). Heterogeneous mutations in the β subunit common to the LFA-1, Mac-1 and p150,95 glycoproteins cause lymphocyte adhesion deficiency. Cell 50:193–202.

    PubMed  CAS  Google Scholar 

  219. Kishimoto, T. K., Hollander, N., Roberts, T. M., Anderson, D. C., and Springer, T. A. (1989). Leukocyte adhesion deficiency: Aberrant splicing of a conserved integrin sequence causes a moderate deficiency phenotype. J. Biol. Chem. 264:3588.

    PubMed  CAS  Google Scholar 

  220. Arnaout, M. A., Dana, N., Gupta, S. K., Tenen, D., and Fathallah, D. (1990). Point mutations impairing cell surface expression of the common β subunit CD18 in a patient with Leu-CAM deficiency. J. Clin. Invest. 85:977–981.

    PubMed  CAS  Google Scholar 

  221. Etzioni, A., Frydman, M., Pollack, S., Avidor, I., Phillips, M. L., Paulson, J. C., and Gershoni-Baruch, R. (1992). Recurrent severe infections caused by a novel leukocyte adhesion deficiency. N. Engl. J. Med. 327:1789–1792.

    PubMed  CAS  Google Scholar 

  222. Rosenthal, A., Jouet, M., and Kenwrick, S. (1992). Aberrant splicing of neural cell adhesion molecule L1 mRNA in a family with X-linked hydrocephalus. Nature Genet 2:107–112.

    PubMed  CAS  Google Scholar 

  223. White, B. J., Rogol, A. D., Brown, K. S., Lieblich, J. M., and Rosen, S. W. (1983). The syndrome of anosmia with hypogonadotropic hypogonadism: A genetic study of 18 new families and a review. Am. J. Med. Genet. 15:417–435.

    PubMed  CAS  Google Scholar 

  224. Schwanzel-Fukuda, M., Bick, D., and Pfaff, D. W. (1989). Luteinizing hormone-releasing hormone (LHRH)-expressing cells do not migrate normally in an inherited hypogonadal (Kallmann) syndrome. Mol. Brain Res. 6:311–326.

    PubMed  CAS  Google Scholar 

  225. Franco, B., Guioli, S., Pragliola, A., Incerti, B., Bardoni, B., Tonlorenzi, R., Carrozzo, R., Maestrini, E., Pieretti, M., Taillon-Miller, P., Brown, C. J., Willard, H. F., Lawrence, C., Persico, M. G., Camerino, G., and Ballabio, A. (1991). A gene deleted in Kallmann’s syndrome shares homology with neural cell adhesion and axonal path-finding molecules. Nature 353:529–536.

    PubMed  CAS  Google Scholar 

  226. Legouis, R., Hardelin, J.-P., Levilliers, J., Claverie, J.-M., Compain, S., Wunderle, V., Millasseau, P., Le Paslier, D., Cohen, D., Caterina, D., Bougueleret, L., de Waal, H. D.V., Lutfalla, G., Weissenbach, J., and Petit, C. (1991). The candidate gene for the X-linked Kallmann syndrome encodes a protein related to adhesion molecules. Cell 67:423–435.

    PubMed  CAS  Google Scholar 

  227. Rugarli, E. I., Lutz, B., Kuratani, S. C., Wawersik, S., Borsani, G., Ballabio, A., and Eichele, G. (1993). Expression pattern of the Kallmann syndrome gene in the olfactory system suggests a role in neuronal targeting. Nature Genet. 4:19–26.

    PubMed  CAS  Google Scholar 

  228. Schwankhaus, J. D., Currie, J., Jaffe, M. J., Rose, S. R., and Sherins, R. J. (1989). Neurologic findings in men with isolated hypogonadotropic hypogonadism. Neurology 39:223–226.

    PubMed  CAS  Google Scholar 

  229. Woerly, S., Marchand, R., and Lavallee, C. (1990). Intracerebral implantation of synthetic polymer/biopolymer matrix: A new perspective for brain repair. Biomaterials 11:97–107.

    PubMed  CAS  Google Scholar 

  230. Woerly, S., Maghami, G., Duncan, R., Subr, V., and Ulbrich, K. (1993). Synthetic polymer derivatives as substrata for neuronal adhesion and growth. Brain Res. Bull 30:423–432.

    PubMed  CAS  Google Scholar 

  231. Travis, J. (1993). Biotech gets a grip on cell adhesion. Science 260:906–908.

    PubMed  CAS  Google Scholar 

  232. Vollmers, H. P., and Birchmeier, W. (1983). Monoclonal antibodies inhibit the adhesion of mouse B16 melanoma cells in vitro and block lung metastasis in vivo. Proc. Natl. Acad. Sci. USA 80:3729–3733.

    PubMed  CAS  Google Scholar 

  233. Humphries, M. J., Olden, K., and Yamada, K. M. (1986). A synthetic peptide from fibronectin inhibits experimental metastasis of murine melanoma cells. Science 233:467–470.

    PubMed  CAS  Google Scholar 

  234. Iwamoto, Y., Robey, F. A., Graf, J., Sasaki, M., Kleinman, H. K., Yamada, Y., and Martin, G. R. (1987). YIGSR, a synthetic laminin pentapeptide, inhibits experimental metastasis formation. Science 238:1132–1134.

    PubMed  CAS  Google Scholar 

  235. Cronstein, B. N., Kimmel, S. C., Levin, R. I., Martiniuk, F., and Weissmann, G. (1992). A mechanism for the antiinflammatory effects of corticosteroids: The glucocorticoid receptor regulates leukocyte adhesion to endothelial cells and expression of endothelial-leukocyte adhesion molecule 1 and intercellular adhesion molecule 1. Proc. Natl. Acad. Sci. USA 89:9991–9995.

    PubMed  CAS  Google Scholar 

  236. Abramson, S. B., and Weissmann, G. (1989). The mechanisms of action of nonsteroidal antiinflammatory drugs. Arthritis Rheum. 32:1–9.

    PubMed  CAS  Google Scholar 

  237. Cronstein, B. N., and Weissmann, G. (1993). The adhesion molecules of inflammation. Arthritis Rheum. 36:147–157.

    PubMed  CAS  Google Scholar 

  238. Vedder, N. B., Winn, R. K., Rice, C. L., Chi, E. Y, Arfors, K.-E., and Harlan, J. M. (1988). A monoclonal antibody to the adherence-promoting leukocyte glycoprotein, CD18, reduces organ injury and improves survival from hemorrhagic shock and resuscitation in rabbits. J. Clin. Invest. 81:939–944.

    PubMed  CAS  Google Scholar 

  239. Simpson, P. J., Todd, R. F., III, Fantone, J. C., Mickelson, J. K., Griffin, J. D., and Lucchesi, B. R. (1988). Reduction of experimental canine myocardial reperfusion injury by a monoclonal antibody (anti-Mol, anti-CD11b) that inhibits leukocyte adhesion. J. Clin. Invest. 81:624–629.

    PubMed  CAS  Google Scholar 

  240. Mileski, W. J., Winn, R. K., Vedder, N. B., Pohlman, T. H., Harlan, J. M., and Rice, C. L. (1990). Inhibition of CD18-dependent neutrophil adherence reduces organ injury after hemorrhagic shock in primates. Surgery 108:206–212.

    PubMed  CAS  Google Scholar 

  241. Gundel, R. H., Wegner, C. D., Torcellini, C. A., and Letts, L. G. (1992). The role of intercellular adhesion molecule-1 in chronic airway inflammation. Clin. Exp. Allergy 22:569–575.

    PubMed  CAS  Google Scholar 

  242. Wegner, C. D., Gundel, R. H., Reilly, P., Haynes, N., Letts, L. G., and Rothlein, R. (1990). Intercellular adhesion molecule-1 (ICAM-1) in the pathogenesis of asthma. Science 247:456–459.

    PubMed  CAS  Google Scholar 

  243. Kawasaki, K., Yaoita, E., Yamamoto, T., Tamatani, T., Miyasaka, M., and Kihara, I. (1993). Antibodies against intercellular adhesion molecule-1 and lymphocyte function-associated antigen-1 prevent glomerular injury in rat experimental crescentic glomerulonephritis. J. Immunol. 150:1074–1083.

    PubMed  CAS  Google Scholar 

  244. Tuomanen, E. I., Saukkonen, K., Sande, S., Cioffe, C., and Wright, S. D. (1989). Reduction of inflammation, tissue damage, and mortality in bacterial meningitis in rabbits treated with monoclonal antibodies against adhesion-promoting receptors of leukocytes. J. Exp. Med. 170:959–968.

    PubMed  CAS  Google Scholar 

  245. Whicup, S. M., DeBarge, L. R., Rosen, H., Nussenblatt, R. B., and Chan, C.-C. (1993). Monoclonal antibody against CD11b/CD18 inhibits endotoxin-induced uveitis. Invest. Ophthalmol. Vis. Sci. 34:673–681.

    Google Scholar 

  246. Isobe, M., Yagita, H., Okumura, K., and Ihara, A. (1992). Specific acceptance of cardiac allograft after treatment with antibodies to ICAM-1 and LFA-1. Science 255:1125–1127.

    PubMed  CAS  Google Scholar 

  247. Kameoka, H., Ishibashi, M., Tamatani, T., Takano, Y, Moutabarrik, A., Jiang, H., Kokado, Y, Takahara, S., Okuyama, A., Kinoshita, T., and Miyasaka, M. (1993). The immunosuppressive action of anti-CD 18 monoclonal antibody in rat heterotopic heart allotransplantation. Transplantation 55:665–667.

    PubMed  CAS  Google Scholar 

  248. Qin, S. X., Cobbold, S., Benjamin, R., and Waldmann, H. (1989). Induction of classical transplantation tolerance in the adult. J. Exp. Med. 169:779–794.

    PubMed  CAS  Google Scholar 

  249. Hutchings, P., O’Reilly, L., Parish, N. M., Waldmann, H., and Cooke, A. (1992). The use of a non-depleting anti-CD4 monoclonal antibody to re-establish tolerance to βcells in NOD mice. Eur. J. Immunol. 22:1913–1918.

    PubMed  CAS  Google Scholar 

  250. Williams, J. A. (1992). Disintegrins: RGD-containing proteins which inhibit cell/matrix interactions (adhesion) and cell/cell interactions (aggregation) via the integrin receptors. Pathol. Biol. 40:813–821.

    PubMed  CAS  Google Scholar 

  251. Shebuski, R. J., Ramjit, D. R., Bencen, G. H., and Polokoff, M. A. (1989). Characterisation and platelet inhibitory activity of Bitistain, a potent arginine-glycine-aspartic acid-containing peptide from the venom of the viper Bitis arietans. J. Biol. Chem. 264:21550–21556.

    PubMed  CAS  Google Scholar 

  252. Yasuda, T., Gold, H. K., Leinbach, R. C., Yaoita, H., Fallon, J. T., Guerrero, L., Napier, M. A., Bunting, S., and Collen, D. (1991). Kistrin, a polypeptide platelet GPIIb-IIIa receptor antagonist, enhances and sustains coronary arterial thrombolysis with recombinant tissue-type plasminogen activator in a canine preparation. Circulation 83:1038–1047.

    PubMed  CAS  Google Scholar 

  253. Musical, J., Niewiarowski, S., Rucinski, B., Stewart, G., Cook, J., Williams, J. A., and Edmunds, L. H. (1990). Inhibition of platelet adhesion to surfaces of extracorporeal circuits by distintegrins. RGD-containing peptides from viper venoms. Circulation 82:261–273.

    Google Scholar 

  254. Marlin, S. D., Staunton, D. E., Springer, T. A., Stratowa, C., Sommergruber, W., and Merluzzi, V. J. (1990). A soluble form of intercellular adhesion molecule-1 inhibits rhinovirus infection. Nature 344:70–72.

    PubMed  CAS  Google Scholar 

  255. Smith, D. H., Byrn, R. A., Masters, S. A., Gregory, T., Groopman, J. E., and Capon, D. J. (1987). Blocking of HIV-1 infectivity by a soluble, secreted form of the CD4 antigen. Science 238:1704–1707.

    PubMed  CAS  Google Scholar 

  256. Fisher, R. A., Bertonis, J. M., Meier, W., Johnson, V. A., Costopoulos, D. S., Liu, T., Tizard, R., Walker, B. D., Hirsh, M. S., Schooley, R. T., and Flavell, R. A. (1988). HIV infection is blocked in vitro by recombinant soluble CD4. Nature 331:76–78.

    PubMed  CAS  Google Scholar 

  257. Hussey, R. E., Richardson, N. E., Kowalski, M., Brown, N. R., Chang, H.-C., Siliciano, R. F., Dorfman, T., Walker, B., Sodroski, J., and Reinherz, E. L. (1988). A soluble CD4 protein selectively inhibits HIV replication and syncytium formation. Nature 331:78–81.

    PubMed  CAS  Google Scholar 

  258. Deen, K. C., McDougal, J. S., Inacker, R., Folena-Wasserman, G., Arthos, J., Rosenberg, J., Maddon, R J., Axel, R., and Sweet, R. W. (1988). A soluble form of CD4 (T4) protein inhibits AIDS virus infection. Nature 331:82–84.

    PubMed  CAS  Google Scholar 

  259. Schooley, R. T., Merigan, T. C., Gaut, P., Hirsh, M. S., Holodniy, M., Flynn, T., Liu, S., Byington, R. E., Henochowicz, S., Gubish, E., Spriggs, D., Kufe, D., Schindler, J., Dawson, A., Thomas, D., Hanson, D. G., Letwin, B., Liu, T., Gulinello, J., Kennedy, S., and Fisher, R. (1990). Recombinant soluble CD4 therapy in patients with the acquired immunodeficiency syndrome (AIDS) and AIDS-related complex. Ann. Intern. Med. 112:247–253.

    PubMed  CAS  Google Scholar 

  260. Martin, S., Casasnovas, J. M., Staunton, D. E., and Springer, T. A. (1993). Efficient neutralization and disruption of rhinovirus by chimeric ICAM-1/immunoglobulin molecules. J. Virol. 67:3561–3568.

    PubMed  CAS  Google Scholar 

  261. Lamarre, D., Ashkenazi, A., Fleury, S., Smith, D. H., Sekaly, R.-P., and Capon, D. J. (1989). The MHC-binding and gp120-binding functions of CD4 are separable. Science 245:743–746.

    PubMed  CAS  Google Scholar 

  262. Crossin, K. L., Chuong, C. M., and Edelman, G. M. (1985). Expression sequences of cell adhesion molecules. Proc. Natl. Acad. Sci. USA 82:6942–6946.

    PubMed  CAS  Google Scholar 

  263. Napolitano, E. W., Venstrom, K., Wheeler, E. F., and Reichardt, L. F (1991). Molecular cloning and characterization of B-cadherin, a novel chick Cadherin. J. Cell Biol. 113:893–905.

    PubMed  CAS  Google Scholar 

  264. Koch, P. J., Goldschmidt, M. D., Walsh, M. J., Zimbelmann, R., Schmelz, M., and Franke, W. W. (1991). Amino acid sequence of bovine muzzle epithelial desmocollin derived from cloned cDNA: A novel subtype of desmosomal Cadherins. Differentiation 47:29–36.

    PubMed  CAS  Google Scholar 

  265. Koch, P. J., Goldschmidt, M. D., Zimbelmann, R., Troyanovsky, R., and Franke, W. W. (1992). Complexity and expression patterns of the desmosomal Cadherins. Proc. Natl. Acad. Sci. USA 89:353–357.

    PubMed  CAS  Google Scholar 

  266. Mechanic, S., Raynor, K., Hill, J. E., and Cowin, P. (1991). Desmocollins form a distinct subset of the Cadherin family of cell adhesion molecules. Proc. Natl. Acad. Sci. USA 88:4476–4480.

    PubMed  CAS  Google Scholar 

  267. Troyanovsky, S. M., Eshkind, L. G., Troyanovsky, R. B., Leube, R. E., and Franke, W. W. (1993). Contributions of cytoplasmic domains of desmosomal Cadherins to desmosome assembly and intermediate filament anchorage. Cell 72:561–574.

    PubMed  CAS  Google Scholar 

  268. Koch, P. J., Walsh, M. J., Schmelz, M., Goldschmidt, M. D., Zimbelmann, R., and Franke, W. W. (1990). Identification of desmoglein, a constitutive desmosomal glycoprotein, as a member of the Cadherin family of cell adhesion molecules. Eur. J. Cell Biol. 53:1–12.

    PubMed  CAS  Google Scholar 

  269. Koch, P. J., Goldschmidt, M. D., Walsh, J. J., Zimbelmann, R., and Franke W. W. (1991). Complete amino acid sequence of the epidermal desmoglein precursos polypeptide and identification of a second type of desmoglein gene. Eur. J. Cell Biol. 55:200–208.

    PubMed  CAS  Google Scholar 

  270. Wheeler, G. N., Parker, A. E., Thomas, C. L., Ataliotis, P., Poynter, D., Arnemann, J., Rutman, A. J., Pidsley, S. C., Watt, F. M., Rees, D. A., Buxton, R. S., and Magee, A. I. (1991). Desmosomal glycoprotein DGI, a component of intercellular desmosome junctions, is related to the Cadherin family of cell adhesion molecules. Proc. Natl. Acad. Sci. USA 88:4796–4800.

    PubMed  CAS  Google Scholar 

  271. Gallin, W. J., Sorkin, B. C., Edelman, G. M., and Cunningham, B. A. (1987). Sequence analysis of a cDNA clone encoding the liver cell adhesion molecule, L-CAM. Proc. Natl. Acad. Sci. USA 84:2808–2812.

    PubMed  CAS  Google Scholar 

  272. Donalies, M., Cramer, M., Ringwald, M., and Starzinski-Powitz, A. (1991). Expression of M-cadherin, a member of the Cadherin multigene family, correlates with differentiation of skeletal muscle cells. Proc. Natl. Acad. Sci. USA 88:8024–8028.

    PubMed  CAS  Google Scholar 

  273. Hatta, K., Takagi, S., Fujisawa, H., and Takeichi, M. (1987). Spatial and temporal expression pattern of N-cadherin cell adhesion molecules correlated with morphogenetic processes of chicken embryos. Dev. Biol. 120:215–227.

    PubMed  CAS  Google Scholar 

  274. Hatta, K., Nose, A., Nagafuchi, A., and Takeichi, M. (1988). Cloning and expression of cDNA encoding a neural calcium-dependent cell adhesion molecule: Its identity in the Cadherin gene family. J. Cell Biol. 106:873–881.

    PubMed  CAS  Google Scholar 

  275. Hatta, K., and Takeichi, M. (1986). Expression of N-cadherin adhesion molecules associated with early morphogenetic events in chick development. Nature 320:447–449.

    PubMed  CAS  Google Scholar 

  276. Nose, A., and Takeichi, M. (1986). A novel Cadherin cell adhesion molecule: Its expression patterns associated with implantation and organogenesis of mouse embryos. J. Cell Biol. 103:2649–2658.

    PubMed  CAS  Google Scholar 

  277. Nose, A., Nagafuchi, A., and Takeichi, M. (1987). Isolation of placental Cadherin cDNA: Identification of a novel gene family of cell-cell adhesion molecules. EMBO J. 6:3655–3661.

    PubMed  CAS  Google Scholar 

  278. Inuzuka, H., Miyatani, S., and Takeichi, M. (1991). R-Cadherin: A novel calcium-dependent cell-cell adhesion molecule expressed in the retina. Neuron 7:69–79.

    PubMed  CAS  Google Scholar 

  279. Ranscht, B., and Dours-Zimmermann, M. T. (1991). T-cadherin, a novel Cadherin cell adhesion molecule in the nervous system lacks the conserved cytoplasmic region. Neuron 7:391–402.

    PubMed  CAS  Google Scholar 

  280. Ranscht, B., and Bronner-Fraser, M. (1991). T-cadherin expression alternates with migrating neural crest cells in the trunk of the avian embryo. Development 111:15–22.

    PubMed  CAS  Google Scholar 

  281. Hasler, T. H., Rader, C., Stoeckli, E. T., Zuellig, R. A., and Sonderegger, P. (1993). cDNA cloning, structural features, and eucaryotic expression of human TAG-1/axonin-1. Eur. J. Biochem. 211:329–339.

    PubMed  CAS  Google Scholar 

  282. Furley, A. J., Morton, S. B., Manalo, D., Karagogeos, D., Dodd, J., and Jessell, T. M. (1990). The axonal glycoprotein TAG-1 is an immunoglobulin superfamily member with neurite outgrowth-promoting activity. Cell 61:157–170.

    PubMed  CAS  Google Scholar 

  283. Zuellig, R. A., Rader, C., Schroeder, A., Kalousek, M. B., von Bohlenlund Haiback, F., Osterwalder, T., Inan, C., Stoeckli, E. T., Affolter, H. U., Fritz, A., Hafen, E., and Sonderegger, P. (1992). The axonally secreted cell adhesion molecule, axonin-1: Primary structure, immunoglobulin- and fibronectin-type III-like domains, and glycosyl-phosphatidylinositol anchorage. Eur. J. Biochem. 204:453–463.

    PubMed  CAS  Google Scholar 

  284. Hinoda, Y., Neumaier, M., Hefta, S. A., Drzeniek, Z., Wagener, C., Shively, L., Hefta, L. J. F., Shively, J. E., and Paxton, R. J. (1988). Molecular cloning of a cDNA coding biliary glycoprotein I: Primary structure of a glycoprotein immunologically crossreactive with carcinoembryonic antigen. Proc. Natl. Acad. Sci. USA 85:6959–6963.

    PubMed  CAS  Google Scholar 

  285. Barnett, T. R., Kretschmer, A., Austen, D. A., Goebel, S. J., Hart, J. T., Elting, J. J., and Kamarck, M. E. (1989). Carcinoembryonic antigens: Alternative splicing accounts for the multiple mRNAs that code for novel members of the carcinoembryonic antigen family. J. Cell Biol. 108:267–276.

    PubMed  CAS  Google Scholar 

  286. Rojas, M., Fuks, A., and Stanners, C. (1990). Biliary glycoprotein, a member of the immunoglobulin supergene family, functions in vitro as a Ca-dependent intercellular adhesion molecule. Cell Growth Differ. 1:527–533.

    PubMed  CAS  Google Scholar 

  287. Selvaraj, P., Plunkett, M. L., Dustin, M., Sanders, M. E., Shaw, S., and Springer, T. A. (1987). The T lymphocyte glycoprotein CD2 binds the cell surface ligand LFA-3. Nature 326:400–403.

    PubMed  CAS  Google Scholar 

  288. Driscoll, P. C., Cyster, J. G., Campbell, I. D., and Williams A. F. (1991). Structure of domain 1 of rat T lymphocyte CD2 antigen. Nature 353:762–765.

    PubMed  CAS  Google Scholar 

  289. Robey, E., and Axel, R. (1990). CD4: Collaborator in immune recognition and HIV infection. Cell 60:697–700.

    PubMed  CAS  Google Scholar 

  290. Doyle, C., and Strominger, J. L. (1987). Interaction between CD4 and class II MHC molecules mediates cell adhesion. Nature 330:256–259.

    PubMed  CAS  Google Scholar 

  291. Norment, A. M., Salter, R. D., Parham, P., Engelhard, V. H., and Littman D. R. (1988). Cell-cell adhesion mediated by CD8 and MHC class I molecules. Nature 336:79–81.

    PubMed  CAS  Google Scholar 

  292. Beauchemin, N., Benchimol, S., Cournoyer, D., Fuks, A., and Stanners, C. P. (1987). Isolation and characterization of full-length functional cDNA clones for human carcinoembryonic antigen. Mol. Cell. Biol. 7:3221–3230.

    PubMed  CAS  Google Scholar 

  293. Oikawa, S., Imajo, S., Noguchi, T., Kosaki, G., and Nakazato, H. (1987). The carcinoembryonic antigen (CEA) contains multiple immunoglobulin-like domains. Biochem. Biophys. Res. Commun. 144:634–642.

    PubMed  CAS  Google Scholar 

  294. Brummendorf, T., Wolff, J. M., Frank, R., and Rathjen, F. G. (1989). Neural cell recognition molecule F11: Homology with fibronectin type III and immunoglobulin type C domains. Neuron 2:1351–1361.

    PubMed  CAS  Google Scholar 

  295. Gennarini, G., Cibelli, G., Rougon, G., Mattei, M.-G., and Goridis, C. (1989). The mouse neuronal cell surface protein F3: A phosphatidylinositol-anchored member of the immunoglobulin super-family related to chicken contactin. J. Cell Biol. 109:775–788.

    PubMed  CAS  Google Scholar 

  296. Ranscht, B. (1988). Sequence of contactin, a 130-kD glycoprotein concentrated in areas of interneuronal contact, defines a new member of the immunoglobulin supergene family in the nervous system. J. Cell Biol. 107:1561–1573.

    PubMed  CAS  Google Scholar 

  297. Rathjen, F. G., Wolff, J. M., and Chiquet-Ehrismann, R. (1991). Restrictin: A chick neural extracellular matrix protein involved in cell attachment co-purifies with the cell recognition molecule F11. Development 113:151–164.

    PubMed  CAS  Google Scholar 

  298. Stauton, D. E., Marlin, S. D., Stratowa, C., Dustin, M. L., and Springer, T. A. (1988). Primary structure of intracellular adhesion molecule 1 (ICAM-1) demonstrates interaction between members of the immunoglobulin and integrin supergene families. Cell 52:925–933.

    Google Scholar 

  299. Dustin, M. L., Rothlein, R., Bhan, A. K., Dinarello, C. A., and Springer, T. A. (1986). Induction by IL-1 and interferon, tissue distribution, biochemistry and function of a natural adherence molecule (ICAM-1). J. Immunol. 137:245–254.

    PubMed  CAS  Google Scholar 

  300. Staunton, D. E., Dustin, M. L., and Springer, T. A. (1989). Functional cloning of ICAM-2, a cell adhesion ligand for LFA-1 homologous to ICAM-1. Nature 339:61–64.

    PubMed  CAS  Google Scholar 

  301. de Fougerolles, A. R., Stacker, S. A., Schwarting, R., and Springer, T. A. (1991). Characterization of ICAM-2 and evidence for a third counter-receptor. J. Exp. Med. 174:253.

    PubMed  Google Scholar 

  302. de Fougerolles, A. R., and Springer, T. A. (1992). Intercellular adhesion molecule 3, a third adhesion counter-receptor for lymphocyte function-associated molecule 1 on resting lymphocytes. J. Exp. Med. 175:185–190.

    PubMed  Google Scholar 

  303. de Fougerolles, A. R., Klickstein, L. B., and Springer, T. A. (1993). Cloning and expression of intercellular adhesion molecule 3 reveals strong homology to other immunoglobulin family counter-receptors for lymphocyte function-associated antigen 1. J. Exp. Med. 177:1187–1192.

    PubMed  Google Scholar 

  304. Fawcett, J., Holness, C. L. L., Needham, L. A., Turley, H., Gatter, K. C., Mason, D. Y., and Simmons, D. L. (1992). Molecular cloning of ICAM-3, a third ligand for LFA-1, constitutively expressed on resting leukocytes. Nature 360:481–484.

    PubMed  CAS  Google Scholar 

  305. Vazeux, R., Hoffman, P. A., Tomita, J. K., Dickinson, E. S., Jasman, R. L., St. John, T., and Gallatin, W. M. (1992). Cloning and characterization of a new intercellular adhesion molecule ICAM-R. Nature 360:485.

    PubMed  CAS  Google Scholar 

  306. Linder, J., Rathjen, F. F., and Schachner, M. (1983). L1 mono- and poly-clonal antibodies modify cell migration in early postnatal mouse cerebellum. Nature 305:427–430.

    Google Scholar 

  307. Rathjen, F. G., and Schachner, M. (1984). Immunocytological and biochemical characterization of a new neuronal cell surface component (L1 antigen) which is involved in cell adhesion. EMBO J. 3:1–10.

    PubMed  CAS  Google Scholar 

  308. Moos, M., Tacke, R., Scherer, H., Teplow, D., Furth, K., and Schachner, M. (1988). Neural adhesion molecule L1 as a member of the immunoglobulin superfamily with binding domains similar to fibronectin. Nature 334:701–703.

    PubMed  CAS  Google Scholar 

  309. Stallcup, W. B., and Beasley, L. (1985). Involvement of the nerve growth factor-inducible large external glycoprotein (NILE) in neunte fasciculation in primary cultures of rat brain. Proc. Natl. Acad. Sci. USA 82:1276–1280.

    PubMed  CAS  Google Scholar 

  310. Seed, B. (1987). An LFA-3 cDNA encodes a phospholipid-linked membrane protein homologous to its receptor, CD2. Nature 329:840–842.

    PubMed  CAS  Google Scholar 

  311. Barbosa, J. A., Mentzer, S. J., Kamark, M. E., Hart, J., Strominger, J. L., Biro, P. A., and Burakoff, S. J. (1985). Somatic cell hybrid analysis of human lymphocyte function associated antigen (LFA-3): Gene mapping and role in CTL-target cell interactions. I. C S. U. Short Rep. 2:107–108.

    CAS  Google Scholar 

  312. Trapp, B. D., Quarles, R. H., and Suzuki, K. (1984). Immunocytochemical studies of quaking mice support a role for the myelin-associated glycoprotein in forming and maintaining the periaxonal space and periaxonal cytoplasmic collar of myelinating Schwann cells. J. Cell Biol. 99:594–606.

    PubMed  CAS  Google Scholar 

  313. Arquint, M., Roder, J., Chia, L., Down, J., Wilkinson, D., Bayley, H., Braun, P., and Dunn, R. (1987). Molecular cloning and primary structure of myelin-associated glycoprotein. Proc. Natl. Acad. Sci. USA 84:600–604.

    PubMed  CAS  Google Scholar 

  314. Salzer, J. L., Holmes, W. P., and Colman, D. R. (1987). The amino acid sequences of the myelin-associated glycoproteins: Homology to the immunoglobulin gene superfamily. J. Cell Biol. 104:957–965.

    PubMed  CAS  Google Scholar 

  315. Poltorak, M., Sadoul, R., Keilhauer, G., Landa, C., Fahrig, T., and Schachner, M. (1987). Myelin-associated glycoprotein, a member of the L2/HNK-1 family of neural cell adhesion molecules, is involved in neuron-oligodendrocyte and oligodendrocyte-oligodendrocyte interaction. J. Cell Biol. 105:1893–1899.

    PubMed  CAS  Google Scholar 

  316. Fahrig, T., Landa, C., Pesheva, P., Kuhn, K., and Schachner, M. (1987). Characterization of binding properties of the myelin-associated glycoprotein to extracellular matrix constituents. EMBO J. 6:2875–2883.

    PubMed  CAS  Google Scholar 

  317. Cunningham, B. A., Hemperly, J. J., Murray, B. A., Prediger, E. A., Brackenbury, R., and Edelman, G. M. (1987). Neural cell adhesion molecule: Structure, immunoglobulin-like domains, cell surface modulation, and alternative RNA splicing. Science 236:799–806.

    PubMed  CAS  Google Scholar 

  318. Volkmer, H., Hassel, B., Wolff, J. M., Frank, R., and Rathjen, F. G. (1992). Structure of the axonal surface recognition molecule neurofascin and its relationship to a neural subgroup of the immunoglobulin superfamily. J. Cell Biol. 118:149–161.

    PubMed  CAS  Google Scholar 

  319. Rathjen, F. G., Wolff, J. M., Chang, L., Bonhoeffer, F., and Raper, J. (1987). Neurofascin: A novel chick cell-surface glycoprotein involved in neurite-neurite interactions. Cell 51:841–849.

    PubMed  CAS  Google Scholar 

  320. Burgoon, M. P., Grumet, M., Mauro, V., Edelman, G. M., and Cunningham, B. A. (1991). Structure of the chicken neuron-glia cell adhesion molecule, Ng-CAM: Origin of the polypeptides and relation to the Ig superfamily. J. Cell Biol 112:1017–1029.

    PubMed  CAS  Google Scholar 

  321. Grumet, M., Hoffman, S., and Edelman, G. M. (1984). Two antigenetically related neuronal cell adhesion molecules of different specificities mediate neuron-neuron and neuron-glia adhesion. Proc. Natl. Acad. Sci. USA 81:267–271.

    PubMed  CAS  Google Scholar 

  322. Grumet, M., Hoffman, S., Chuong, C.-M., and Edelman, G. M. (1984). Polypeptide components and binding functions of neuron-glia cell adhesion molecules. Proc. Natl. Acad. Sci. USA 81:7989–7993.

    PubMed  CAS  Google Scholar 

  323. Kuhn, T. B., Stoeckli, E. T., Rathjen, F. G., and Sonderegger, P. (1991). Neunte outgrowth on immobilized axonin-1 is mediated by a heterophilic interaction with L1(G4). J. Cell Biol. 115:1113–1126.

    PubMed  CAS  Google Scholar 

  324. Lemmon, V., Farr, K. L., and Lagenaur, C. (1989). L1-mediated axon outgrowth occurs via a homophilic binding mechanism. Neuron 2:1597–1603.

    PubMed  CAS  Google Scholar 

  325. Grumet, M., Mauro, V., Burgoon, M. P., Edelman, G. M., and Cunningham, B. A. (1991). Structure of a new nervous system glycoprotein, Nr-CAM, and its relationship to subgroups of neural cell adhesion molecules. J. Cell Biol. 113:1399–1412.

    PubMed  CAS  Google Scholar 

  326. Kayyem, J. F., Roman, J. M., de la Rosa, E. J., Schwarz, U., and Dreyer, W. J. (1992). Bravo/Nr-CAM is closely related to the cell adhesion molecules L1 and Ng-CAM and has a similar heterodimer structure. J. Cell Biol. 118:1259–1270.

    PubMed  CAS  Google Scholar 

  327. Lemke, G., and Axel, R. (1985). Isolation and sequence of a cDNA encoding the major structural protein of peripheral myelin. Cell 40:501–508.

    PubMed  CAS  Google Scholar 

  328. Newman, P. J., Berndt, M. C., Gorski, J., While, G. C., II, Lyman, S., Paddock, C., and Muller, W. A. (1990). PECAM-1 (CD31) cloning and relation to adhesion molecules of the immunoglobulin gene superfamily. Science 247:1219–1222.

    PubMed  CAS  Google Scholar 

  329. Albelda, S. M., Muller, W. A., Buck, C. A., and Newman, P. J. (1991). Molecular and cellular properties of PECAM-1 (endo-CAM/CD31): A novel vascular cell-cell adhesion molecule. J. Cell Biol. 114:1059–1068.

    PubMed  CAS  Google Scholar 

  330. Stockinger, H., Gadd, S. J., Eher, R., Majdic, O., Schreiber, W., Kasinrerk, W., Strass, B., Schnabl, E., and Knapp, W. (1990). Molecular characterization and functional analysis of the leukocyte surface protein CD31. J. Immunol. 145:3889–3897.

    PubMed  CAS  Google Scholar 

  331. Burns, F. R., von Kannen, S., Guy, L., Raper, J. A., Kamholz, J., and Chang, S. (1991). DM-GRASP, a novel Ig superfamily axonal surface protein that supports neunte extension. Neuron 7:209–220.

    PubMed  CAS  Google Scholar 

  332. Pourquie, O., Corbel, C., Le Caer, J.-P, Rossier, J., and Le Douarin, N. M. (1992). BEN, a surface glycoprotein of the immunoglobulin superfamily, is expressed in a variety of developing systems. Proc. Natl. Acad. Sci. USA 89:5261–5265.

    PubMed  CAS  Google Scholar 

  333. Tanaka, H., Matsui, T., Agata, A., Tomura, M., Kubota, I., McFarland, K. C., Kohr, B., Lee, A., Phillips, H. S., and Shelton, D. L. (1991). Molecular cloning and expression of a novel adhesion molecule, SCI. Neuron 7:535–545.

    PubMed  CAS  Google Scholar 

  334. Rice, G. E., Munro, J. M., and Bevilacqua, M. P. (1990). Inducible cell adhesion molecule 110 (INCAM-110) is an endothelial receptor for lymphocytes. ACD11/CD18-independent adhesion mechanism. J. Exp. Med. 171:1369–1374.

    PubMed  CAS  Google Scholar 

  335. Davignon, D., Martz, E., Reynolds, T., Kurzinger, K., and Springer, T. A. (1981). Monoclonal antibody to a novel leukocyte function-associated antigen (LFA-1): Mechanism of blocking of T lymphocyte-mediated killing and effects on other T and B lymphocyte functions. J. Immunol. 127:590–595.

    PubMed  CAS  Google Scholar 

  336. Kishimoto, T. K., O’Connor, K., Lee, A., Roberts, T. M., and Springer, T. A. (1987). Cloning of the β subunit of the lymphocyte adhesion proteins: Homology to an extracellular matrix receptor defines a novel supergene family. Cell 48:681–690.

    PubMed  CAS  Google Scholar 

  337. Marlin, S. D., and Springer, T. A. (1987). Purified intercellular adhesion molecule-1 (ICAM-1) is a ligand for lymphocyte function-associated antigen 1(LFA-1). Cell 51:813–819.

    PubMed  CAS  Google Scholar 

  338. Smith, C. W., Marlin, S. D., Rothlein, R., Toman, C., and Anderson, D. C. (1989). Cooperative interactions of LFA-1 and Mac-1 with intercellular adhesion molecule-1 in facilitating adherence and transendothelial migration of human neutrophils in vitro. J. Clin. Invest. 83:2008–2017.

    PubMed  CAS  Google Scholar 

  339. Dustin, M. L., and Springer, T. A. (1989). T cell receptor cross-linking transiently stimulates adhesiveness through LFA-1. Nature 341:619–624.

    PubMed  CAS  Google Scholar 

  340. Anderson, D. C., Miller, L. J., Schmalstieg, F. C., Rothlein, R., and Springer, T. A. (1986). Contributions of the Mac-1 glycoprotein family to adherence-dependent granulocyte functions: Structure-function assessments employing subunit-specific monoclonal antibodies. J. Immunol. 137:15–27.

    PubMed  CAS  Google Scholar 

  341. Lo, S. K., van Seventer, G., Levin, S. M., and Wright, S. D. (1989). Two leukocyte receptors (CD11a/CD18 and CD11b/CD18) mediate transient adhesion to endothelium by binding to different ligands. J. Immunol. 143:3325–3329.

    PubMed  CAS  Google Scholar 

  342. Diamond, M. S., Staunton, D. E., deFougerolles, A. R., Stacker, S. A., Garcia-Aguilar, J., Hibbs, M. L., and Springer, T. A. (1990). ICAM-1 (CD54): A counter-receptor for Mac-1 (CD11b/CD18). J. Cell Biol. 111:3129–3139.

    PubMed  CAS  Google Scholar 

  343. Keizer, F. D., Borst, J., Visser, W., Schwarting, R., deVries, J. E., and Figdor, C. G. (1987). Membrane glycoprotein p150,95 of human cytotoxic T cell clones is involved in conjugate formation with target cells. J. Immunol. 138:3130–3136.

    PubMed  CAS  Google Scholar 

  344. Keizer, G. D., te Velde, A. A., Schwarting, R., Figdor, C. G., and deVries, J. E. (1987). Role of p150,95 in adhesion, migration, Chemotaxis and phagocytosis of human monocytes. Eur. J. Immunol. 17:1317–1322.

    PubMed  CAS  Google Scholar 

  345. Ignatius, M. J., and Reichardt, L. F. (1988). Identification of a neuronal laminin receptor: An Mr 200k/120k integrin heterodimer that binds laminin in a divalent cation-dependent manner. Neuron 1:713–725.

    PubMed  CAS  Google Scholar 

  346. Takada, Y., Wayner, E. A., Carter, W. G., and Hemler, M. E. (1988). Extracellular matrix receptors, ECMRii and ECMRI, for collagen and fibronectin correspond to VLA-2 and VLA-3 in the VLA family of heterodimers. J. Cell. Biochem. 37:385–393.

    PubMed  CAS  Google Scholar 

  347. Buck, C. A., Shea, E., Duggan, K., and Horwitz, A. F. (1986). Integrin (the CSAT antigen): Functionality requires oligomeric integrity. J. Cell Biol. 103:2421–2428.

    PubMed  CAS  Google Scholar 

  348. Takada, Y., Elices, M. J., Crouse, C., and Hemler, M. E. (1989). The primary structure of the alpha-4 subunit of VLA-4: Homology to other integrins and a possible cell-cell adhesion function. EMBO J. 8:1361.

    PubMed  CAS  Google Scholar 

  349. Guan, J.-L., and Hynes, R. O. (1990). Lymphoid cells recognize an alternatively spliced segment of fibronectin via the integrin receptor α4β1. Cell 60:53–61.

    PubMed  CAS  Google Scholar 

  350. Hemler, M. E., Elices, M. J., Parker, C., and Takada, Y. (1990). Structure of the integrin VLA-4 and its cell-cell and cell-matrix adhesion functions. Immunol. Rev. 114:45–65.

    PubMed  CAS  Google Scholar 

  351. Hemler, M. E., Christina, H., and Schwarz, L. (1987). The VLA protein family. J. Biol. Chem. 262:3300–3309.

    PubMed  CAS  Google Scholar 

  352. Gailit, J., Pierschbacher, M., and Clark, R. A. F. (1993). Expression of functional α4β1 integrin by human dermal fibroblasts. J. Invest. Dermatol 100:323–328.

    PubMed  CAS  Google Scholar 

  353. Argraves, W. S., Suzuki, S., Arai, H., Thompson, K., Pierschbacher, M. D., and Ruoslahti, E. (1987). Amino acid sequence of the human fibronectin receptor. J. Cell Biol 105:1183–1190.

    PubMed  CAS  Google Scholar 

  354. Werb, Z., Tremble, P. M., Behrendtsen, O., Crowley, E., and Damsky, C. H. (1989). Signal transduction through the fibronectin receptor induces collagenase and stromelysin gene expression. J. Cell Biol 109:877.

    PubMed  CAS  Google Scholar 

  355. Gehlsen, K. R., Dillner, L., Engvall, E., and Ruoslahti, E. (1988). The human laminin receptor is a member of the integrin family of cell adhesion receptors. Science 241:1228–1229.

    PubMed  CAS  Google Scholar 

  356. Sonnenberg, A., Modderman, P. W., and Hogervorst, F. (1988). Laminin receptor on platelets is the integrin VLA-6. Nature 336:487–489.

    PubMed  CAS  Google Scholar 

  357. Holzmann, B., and Weissman, I. L. (1989). Peyer’s patch-specific lymphocyte homing receptors consist of a VLA-4-like α chain associated with either of two integrin β chains, one of which is novel. EMBO J. 8:1735–1741.

    PubMed  CAS  Google Scholar 

  358. Kilshaw, P. J., and Murant, S. J. (1991). Expression and regulation of β7p) integrins on mouse lymphocytes: Relevance to the mucosal immune system. Eur. J. Immunol. 21:2591–2597.

    PubMed  CAS  Google Scholar 

  359. Erle, D. J., Reugg, C., Sheppard, D., and Pytela, R. (1991). Complete amino acid sequence of an integrin β subunit (β7) identified in leukocytes. J. Biol. Chem. 266:11009–11016.

    PubMed  CAS  Google Scholar 

  360. Ruegg, C., Postigo, A. A., Sikorski, E. E., Butcher, E. C., Pytela, R., and Erle, D. J. (1992). Role of α4β74βp integrin in lymphocyte adherence of fibronectin and VCAM-1 and in homotypic cell clustering. J. Cell Biol 117:179–190.

    PubMed  CAS  Google Scholar 

  361. Stepp, M. A., Spurr-Michaud, S., Tisdale, A., Elwell, J., and Gipson, I. K. (1990). α6β4 integrin heterodimer is a component of hemidesmosomes. Proc. Natl. Acad. Sci. USA 87:8970–8974.

    PubMed  CAS  Google Scholar 

  362. Sonnenberg, A., Calafat, J., Hanssen, H., Daams, H., van der Raaij-Helmer, L. M., Falcioni, R., Kennel, S. J., Aplin, J. D., Baker, J., Loizidou, M., and Garrod, D. (1991). Integrin β64 complex is located in hemidesmosomes, suggesting a major role in epidermal cell-basement membrane adhesion. J. Cell Biol. 113:907–917.

    PubMed  CAS  Google Scholar 

  363. Kurpakus, M. A., Quaranta, V., and Jones, J. C. R. (1991). Surface relocation of alpha6beta4 integrins and assembly of hemidesmosomes in an in vitro model of wound healing. J. Cell Biol. 115:1737–1750.

    PubMed  CAS  Google Scholar 

  364. Plow, E. F., McEver, R. P., Coller, B. S., Woods, V. L., and Marguerie, G. A. (1985). Related binding mechanisms for fibrinogen, fibronectin, von Willebrand factor, and thrombin-stimulated human platelets. Blood 66:724–727.

    PubMed  CAS  Google Scholar 

  365. Plow, E. F., Pierschbacher, M. D., Ruoslahti, E., Marguerie, G. A., and Ginsberg, M. H. (1985). The effect of Arg-Gly-Asp-containing peptides on fibrinogen and von Willebrand factor binding to platelets. Proc. Natl. Acad. Sci. USA 82:8057–8061.

    PubMed  CAS  Google Scholar 

  366. Pytela, R., Pierschbacher, M. D., Ginsberg, M. H., Plow, E. F., and Ruoslahti, E. (1986). Platelet membrane glycoprotein IIb/IIIa: Member of a family of Arg-Gly-Asp-specific adhesion receptors. Science 231:1559–1562.

    PubMed  CAS  Google Scholar 

  367. Suzuki, S., Argraves, W. S., Pytela, R., Arai, H., Krusius, T., Pierschbacher, M. D., and Ruoslahti E. (1986). cDNA and amino acid sequences of the cell adhesion protein receptor recognizing vitronectin reveal a transmembrane domain and homologies with other adhesion protein receptors. Proc. Natl. Acad. Sci. USA 83:8614–8618.

    PubMed  CAS  Google Scholar 

  368. Pytela, R., Pierschbacher, M. D., and Ruoslahti, E. (1985). A 125/115-kDa cell surface receptor specific for vitronectin interacts with the arginine-glycine-aspartic acid adhesion sequence derived from fibronectin. Proc. Natl. Acad. Sci. USA 82:5766–5770.

    PubMed  CAS  Google Scholar 

  369. Cheresh, D. A. (1987). Human endothelial cells synthesize and express an Arg-Gly-Asp-directed adhesion receptor involved in attachment ot fibrinogen and von Willebrand factor. Proc. Natl. Acad. Sci. USA 84:6471–6475.

    PubMed  CAS  Google Scholar 

  370. Charo, I. F, Bekeart, L. S., and Phillips, D. R. (1987). Platelet glycoprotein IIb-IIIa-like proteins mediate endothelial cell attachment to adhesive proteins and the extracellular matrix. J. Biol. Chem. 262:9935–9938.

    PubMed  CAS  Google Scholar 

  371. Johnston, G. I., Cook, R. G., and McEver, R. P. (1989). Cloning of GMP-140, a granule membrane protein of platelets and endothelium: Sequence similarity to proteins involved in cell adhesion and inflammation. Cell 56:1033–1044.

    PubMed  CAS  Google Scholar 

  372. Cheresh, D. A., Smith, J. W., Cooper, H. M., and Quaranta, V. (1989). A novel vitronectin receptor (αvβx) is responsible for distinct adhesive properties of carcinoma cells. Cell 57:59–69.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Plenum Press, New York

About this chapter

Cite this chapter

Covault, J. (1996). Cell Adhesion. In: Schultz, S.G., Andreoli, T.E., Brown, A.M., Fambrough, D.M., Hoffman, J.F., Welsh, M.J. (eds) Molecular Biology of Membrane Transport Disorders. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1143-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1143-0_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8446-8

  • Online ISBN: 978-1-4613-1143-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics