Skip to main content

Signal Transduction by G Protein-Coupled Receptors

  • Chapter

Abstract

The primary structure of most of the components involved in G protein-mediated signal transduction are now well known. They include a large family of transmembrane receptors, a large family of heterotrimeric (αβγ) G proteins activated by GTP under the influence of receptors, and a series of molecularly unrelated effectors that are regulated by G protein α, G protein βγ dimer, or both G protein α and βγ dimers (Table 17.1). The list of extracellular compounds depending on G proteins for their signaling includes hormones, neurotransmitters, auto- and paracrine factors. The abundance and diversity of the signaling molecules illustrate the central role of G protein-mediated signal transduzction in cell regulation and body homeostasis.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Birnbaumer, L. (1990). Transduction of receptor signal into modulation of effector activity by G proteins: The first 20 years or so… FASEB J. 4:3178–3188.

    PubMed  CAS  Google Scholar 

  2. Birnbaumer, L., Codina, J., Mattera, R., Yatani, A., Scherer, N. M., Toro, M.-J., and Brown, A. M. (1987). Signal transduction by G proteins. Kidney Int. 32(Suppl. 23):S14-S37.

    CAS  Google Scholar 

  3. Henderson, R., and Unwin, P. N. T. (1975). Three-dimensional model of purple membrane obtained by electron microscopy. Nature 257:28–32.

    Article  PubMed  CAS  Google Scholar 

  4. Henderson, R., Baldwin, J. M., Ceska, T. A., Zemlin, F., Beckmann, E., and Downing, K. H. (1990). Model for the structure of bacte-riorhodopsin based in high-resolution electron cryomicroscopy. J. Mol Biol. 213:899–929.

    Article  PubMed  CAS  Google Scholar 

  5. Schertler, G. F. X., Villa, C., and Henderson, R. (1993). Projection structure of rhodopsin. Nature 362:770–772.

    Article  PubMed  CAS  Google Scholar 

  6. Baldwin, M. J. (1993). The probable agreement of the helices in G-protein coupled receptors. EMBO J. 12:1693–1703.

    PubMed  CAS  Google Scholar 

  7. Dixon, R. A. F., Sigal, I. S., and Strader, G. D. (1988). Structure function analysis of the β-adrenergic receptor. Cold Spring Harbor Symp. Quant. Biol. 53:487–497.

    PubMed  CAS  Google Scholar 

  8. Savarese, T. M., and Fraser, C. M. (1992). In vitro mutagenesis and the search for structure-function relationships among G protein-coupled receptors. Biochem. J. 283:1–19.

    PubMed  CAS  Google Scholar 

  9. Vu, T.-K. H., Hung, D. T., Wheaton, V. I., and Coughlin, S. R. (1991). Molecular cloning of a functional thrombin receptor reveals a novel proteolytic mechanism of receptor activation. Cell 64:1057–1068.

    Article  PubMed  CAS  Google Scholar 

  10. Ostrowski, J., Kjelsberg, M. A., Caron, M. G., and Lefkowitz, R. J. (1992). Mutagenesis of the β2-adrenergic receptor: How structure elucidates function. Annu. Rev. Pharmacol Toxicol. 32:167–183.

    Article  PubMed  CAS  Google Scholar 

  11. Surprenant, A., Horstman, D., Akbarali, H., and Limbird, L. E. (1992). A point mutation of cloned a-adrenoceptor 1 that blocks coupling to potassium but not calcium currents. Science 257:977–980.

    Article  PubMed  CAS  Google Scholar 

  12. Pasternak, G. W., and Snyder, S. H. (1975). Identification of novel high affinity opiate receptor binding in rat brain. Nature 253:563–565.

    Article  PubMed  CAS  Google Scholar 

  13. Kanaho, Y., Tsai, S.-C., Adamik, R., Hewlett, E. L., Moss, J., and Vaughan, M. (1984). Rhodopsin-enhanced GTPase activity of the inhibitory GTP-binding protein of adenylate cyclase. J. Biol. Chem. 259:7378–7381.

    PubMed  CAS  Google Scholar 

  14. Florio, V A., and Sternweis, P. C. (1985). Reconstitution of resolved muscarinic cholinergic receptors with purified GTP-binding proteins. J. Biol. Chem. 260:3477–3483.

    PubMed  CAS  Google Scholar 

  15. Florio, V. A., and Sternweis, P. C. (1989). Mechanism of muscarinic receptor action on Go in reconstituted phospholipid vesicles. J. Biol. Chem. 264:3909–3915.

    PubMed  CAS  Google Scholar 

  16. Phillips, W. J., and Cerione, R. A. (1992). Rhodopsin/transducin interactions. I. Characterization of the binding of the transducin-βγ subunit complex to rhodopsin using fluorescence spectroscopy. J. Biol. Chem. 267:17032–17039.

    PubMed  CAS  Google Scholar 

  17. Wess, J., Bonner, T.I., Drie, F., and Brann, M. R. (1990) Delineation of muscarinic receptor domains conferring selectivity if couppling to guanine nucleotiode-binding proteins and second messengers. Mol.Phanrmacol. 38: 517–523.

    CAS  Google Scholar 

  18. Schneider, E. G. (1985). Activation of Na+-dependent transport at fertilization in the sea urchin: Requirements of both an early event associated with exocytosis and a later event involving increased energy metabolism. Dev. Biol. 108:152–163

    Article  PubMed  CAS  Google Scholar 

  19. Cheung, A. H., Sigal, I. S., Dixon, R. A. F., and Strader, C. D. (1989). Agonist-promoted sequestration of the β2-adrenergic receptor requires regions involved in functional coupling with Gs. Mol Pharmacol 34:132–138.

    Google Scholar 

  20. Cheung, A. H., Huang, R.-R. C., Graziano, M. P., and Strader, C. D. (1991). Specific activation of Gs by synthetic peptides corresponding to an intracellular loop of the β-adrenergic receptor. FEBS Lett. 279:277–280.

    Article  PubMed  CAS  Google Scholar 

  21. Okamoto, T., Murayama, Y., Hayashi, Y., Inagaki, M., Ogata, E., and Nishimoto, I. (1991). Identification of a Gs activator region of the β2-adrenergic receptor that is autoregulated via protein kinase A-dependent phosphorylation. Cell 67:723–730.

    Article  PubMed  CAS  Google Scholar 

  22. Nishimoto, I. (1993). The IGF-II receptor system: A G protein-linked mechanism. Mol Reprod. Dev. 35:398–407.

    Article  CAS  Google Scholar 

  23. Cotecchia, S., Exum, S., Caron, M. G., and Lefkowitz, R. J. (1990). Regions of the α1-adrenergic receptor involved in coupling to phos-phatidylinositol hydrolysis and enhanced sensitivity of biological function. Proc. Natl Acad. Sci. USA 87:2896–2900.

    Article  PubMed  CAS  Google Scholar 

  24. Kjelsberg, M. A., Cotecchia, S., Ostrowski, J., Caron, M. G., and Lefkowitz, R. J. (1992). Constitutive activation of the α1B-adrener-gic receptor by all amino acid substitutions at a single site. J. Biol. Chem. 267:1430–1433.

    PubMed  CAS  Google Scholar 

  25. Samama, P., Cotecchia, S., Costa, T., and Lefkowitz, R. J. (1993). A mutation induced activated state of the β2-adrenergic receptor. Extending the ternary complex model. J. Biol. Chem. 268:4625–4636.

    PubMed  CAS  Google Scholar 

  26. Ren, Q., Kurose, H., Lefkowitz, R. J., and Cotecchia, S. (1993). Constitutively active mutants of the α2-adrenergic receptor. J. Biol. Chem. 268:16483–16487.

    PubMed  CAS  Google Scholar 

  27. Luttrell, L. M., Ostrowski, J., Cotecchia, S., Kendall, H., and Lefkowitz, R. J. (1993). Antagonism of catecholamine receptor signaling by expression of cytoplasmic domains of the receptor. Science 259:1453–1457.

    Article  PubMed  CAS  Google Scholar 

  28. Nash, M. I., Hollyfield, J. G., Al-Ubaidi, M. R„ and Baehr, W. (1993). Simulation of autosomal dominant retinitis pigmentosa in transgenic mice expressing a mutated murine opsin gene. Proc. Natl. Acad. Sci. USA 90:5499–5503.

    Article  Google Scholar 

  29. Robinson, P. R, Cohen, G. B., Zhukovsky, E. A., and Oprian, D. D. (1992). Constitutively active mutants of rhodopsin. Neuron 9:719–725.

    Article  PubMed  CAS  Google Scholar 

  30. Birnbaumer, M., Seibold, A., Gilbert, S., Ishido, M., Barberis, C., Antaramian, A., Brabet, P., and Rosenthal, W. (1992). Molecular cloning of the human antidiuretic hormone receptor. Nature 357:333–335.

    Article  PubMed  CAS  Google Scholar 

  31. Rosenthal, W., Antaramian, A., Gilbert, S., and Birnbaumer, M. (1993). Nephrogenic diabetes insipidus: A V2 vasopressin receptor unable to stimulate adenylyl cyclase. J. Biol. Chem. 268:13030–13033.

    PubMed  CAS  Google Scholar 

  32. Birnbaumer, M., Gilbert, S., and Rosenthal, W. (1994). An extracellular NDI mutation of the vasopressin receptor reduces cell surface expression, affinity for ligand and coupling to the Gs/adenylyl cyclase system. Mol Endocrinol. 8:886–894.

    Article  PubMed  CAS  Google Scholar 

  33. Robbins, L. S., Nadeau, J. H., Johnson, K. R., Kelly, M. A., Roselli-Rehfuss, L., Baack, E., Mountjoy, K. G., and Cone, R. D. (1993). Pigmentation phenotypes of variant extension locus alleles result from point mutations that alter MSH receptor function. Cell 72:827–834.

    Article  PubMed  CAS  Google Scholar 

  34. Jackson, I. J. (1993). More colour than meets the eye. Curr. Biol. 3:510–521.

    Article  Google Scholar 

  35. Shenker, A., Laue, L., Kosugi, S., Merendino, J. J., Minegishi, T., and Cutler, G. B., Jr. (1993). A constitutively activating mutation of the luteinizing hormone receptor in familial male precocious puberty. Nature 365:652–654.

    Article  PubMed  CAS  Google Scholar 

  36. Ji, I., and Ji, T. H. (1991). Asp383 in the second transmembrane domain of the lutropin receptor is important for high affinity hormone binding and cAMP production. J. Biol. Chem. 266:14953–14957.

    PubMed  CAS  Google Scholar 

  37. Nishimoto, I., Murayama, Y., Katada, T., Ui, M., and Ogata, E. (1989). Possible direct linkage of insulin-like growth factor-II receptor with guanine nucleotide-binding proteins. J. Biol. Chem. 264:14029–14038.

    PubMed  CAS  Google Scholar 

  38. Okamoto, T., Katada, T., Murayama, Y., Ui, M., Ogata, E., and Nishimoto, I. (1990). A simple structure encodes G protein-activating function of the IGF-II/mannose 6-phosphate receptor. Cell 62:709–717.

    Article  PubMed  CAS  Google Scholar 

  39. Okamoto, T., and Nishimoto, I. (1992). Detection of G protein activator regions in the M4 subtype muscarinic cholinergic and α2-adrenergic receptors based upon characteristics of primary structure. J. Biol. Chem. 267:8342–8346.

    PubMed  CAS  Google Scholar 

  40. Ikezu, T., Okamoto, T., Ogata, E., and Nishimoto, I. (1992). Amino acids 356–372 constitute a Gi-activator sequence of the α2-adrenergic receptor and have a phe substitute in the G protein-activator sequence motif. FEBS Lett. 311:29–32.

    Article  PubMed  CAS  Google Scholar 

  41. Kataoka, R., Sherlock, J., and Lanier, S. M. (1993). Signaling events initiated by transforming growth factor-β1 that require Giα1. J. Biol. Chem. 263:19851–19857.

    Google Scholar 

  42. Nishimoto, I., Okamoto, T., Matsuura, Y., Takahashi, S., Okamoto, T., Murayama, Y., and Ogata, E. (1993). Alzheimer amyloid protein precursor complexes with brain GTP-binding protein Go. Nature 362:75–79.

    Article  PubMed  CAS  Google Scholar 

  43. Ross, E. M., Wong, S. K. F., Rubenstein, R. C., and Higashijima, T. (1988). Functional domains in the β-adrenergic receptor. Cold Spring Harbor Symp. Quant. Biol. 53:499–506.

    PubMed  CAS  Google Scholar 

  44. Antonelli, M., Olate, J., Graf, R., Allende, C. C., and Allende, J. E. (1992). Differential stimulation of the GTPase activity of G-proteins by polylysine. Biochem. Pharmcol. 44:547–551.

    Article  CAS  Google Scholar 

  45. Higashijima, T., Ferguson, K. M., Sternweis, P. C., Smigel, M. D., and Gilman, A. G. (1987). Effects of Mg2+ and the beta-gamma sub-unit complex on the interactions of guanine nucleotides with G proteins. J. Biol. Chem. 262:762–766.

    PubMed  CAS  Google Scholar 

  46. Casey, P. J., and Gilman, A. G. (1988). G protein involvement in receptor-effector coupling. J. Biol. Chem. 263:2577–2580.

    PubMed  CAS  Google Scholar 

  47. Graziano, M. P., Freissmuch, M., and Gilman, A. G. (1989). Expression of G in Escherichia coli. Purification and properties of two forms of the protein. J. Biol. Chem. 264:409–418.

    PubMed  CAS  Google Scholar 

  48. Lee, E., Taussig, R., and Gilman, A. G. (1992). The G226AA mutant of G highlights the requirement for dissociation of G protein sub-units. J. Biol. Chem. 267:1212–1218.

    PubMed  CAS  Google Scholar 

  49. Rodbell, M., Krans, H. M. J., Pohl, S. L., and Birnbaumer, L. (1971). The glucagon-sensitive adenyl cyclase system in plasma membranes of rat liver. IV. Binding of glucagon: Effect of guanyl nucleotides. J. Biol. Chem. 246:1872–1876.

    PubMed  CAS  Google Scholar 

  50. Maguire, M. E., Van Arsdale, P. M., and Gilman, A. G. (1976). An agonist-specific effect of guanine nucleotides on binding to the beta adrenergic receptor. Mol. Pharmacol. 12:335–339.

    PubMed  CAS  Google Scholar 

  51. Lefkowitz, R. J., Mullikan, D., and Caron, M. G. (1976). Regulation of β-adrenergic receptors by guanyl–5′-yl imidodiphosphate and other purine nucleotides. J. Biol. Chem. 251:4686–4692.

    PubMed  CAS  Google Scholar 

  52. Berrie, C. P., Birdsall, N. J. M., Burgen, A. S. V., and Hulme, E. C. (1979). Guanine nucleotides modulate muscarinic receptor binding in the heart. Biochem. Biophys. Res. Commun. 87:1000–1005.

    Article  PubMed  CAS  Google Scholar 

  53. Rosenberger, L. B., Roeske, W. R., and Yamamura, H. I. (1979). The regulation of muscarinic cholinergic receptors by guanine nucleotides in cardiac tissue. Eur. J. Pharmacol. 56:179–180.

    Article  PubMed  CAS  Google Scholar 

  54. Wieland, T., Hunzan, M., and Jakobs, K. H. (1992). Stimulation and inhibition of human platelet adenylcyclase by thiophosphorylated transducin βγ-subunits. J. Biol. Chem. 267:20791–20797.

    PubMed  CAS  Google Scholar 

  55. Wieland, T., Nurnbarg, B., Ulibarr, I., Kaldenberg-Stasch, S., Schultz, G., and Jakobs, K. H. (1993). Guanine nucleotide-specific phosphate transfer by guanine nucleotide-binding regulatory protein β subunits. Characterization of the phosphorylated amino acid. J. Biol. Chem. 268:18111–18118.

    PubMed  CAS  Google Scholar 

  56. van der Voorn, L., and Ploegh, H. L. (1992). The WD–40 repeat. FEBS Lett. 307:131–134.

    Article  PubMed  Google Scholar 

  57. Reiner, O., Carrozo, R., Shen, Y., Wehnert, M., Faustinella, F., Dobyns, W. B., Caskey, C. T., and Ledbetter, D. H. (1993). Isolation of a Miller-Dieker lissencephaly gene containing G protein β-subunit-like repeats. Nature 346:717–721.

    Article  Google Scholar 

  58. Garritsen, A., van Galen, P. J. M., and Simonds, W. F. (1993). The N-terminal coiled-coil domain of β is essential for γ association. A model for G-protein βγ subunit interaction. Proc. Natl. Acad. Sci. USA 90:7706–7710.

    Article  PubMed  CAS  Google Scholar 

  59. Iñiguez-Lluhi, J. A., Simon, M. I., Robishaw, J. D., and Gilman, A. G. (1992). G protein βγ subunits synthesized in Sf9 cells. Functional characterization and the significance of prenylation of γ. J. Biol. Chem. 267:23409–23417.

    PubMed  Google Scholar 

  60. Pronin, A. N., and Gautham, N. (1992). Interaction between G protein β and γ subunit types is selective. Proc. Natl. Acad. Sci. USA 89:6220–6224.

    Article  PubMed  CAS  Google Scholar 

  61. Schmidt, C. J., Thomas, T. C., Levine, M. A., and Neer, E. J. (1992). Specificity of G protein β and γ subunit interactions. J. Biol. Chem. 267:13807–13810.

    PubMed  CAS  Google Scholar 

  62. Kleuss, C., Scherübl, H., Hescheler, J., Schultz, G., and Wittig, B. (1992). Different β-subunits determine G protein interaction with transmembrane receptors. Nature 358:424–426.

    Article  PubMed  CAS  Google Scholar 

  63. Kleuss, C., Scherübl, H., Hescheler, J., Schultz, G., and Wittig, B. (1993). Selectivity in signal transduction determined by γ subunits of heterotrimeric G proteins. Science 259:832–834.

    Article  PubMed  CAS  Google Scholar 

  64. Mumby, S. M., Heukeroth, R. O., Gordon, J. E., and Gilman, A. G. (1990). G-protein a-subunit expression, myristoylation, and membrane association in COS cells. Proc. Natl. Acad. Sci. USA 87:728–732.

    Article  PubMed  CAS  Google Scholar 

  65. Jones, R. L. Z., Simonds, W. F., Merendino, J. J., Jr., Brann, M. R., and Spiegel, A. M. (1990). Myristoylation of an inhibitory GTP-binding protein a subunit is essential for its membrane attachment. Proc. Natl. Acad. Sci. USA 87:568–572.

    Article  PubMed  CAS  Google Scholar 

  66. Taussig, R., Iniguez-Lluhi, J. A., and Gilman, A. G. (1993). Inhibition of adenylyl cyclase by G. Science 261:218–221.

    Article  PubMed  CAS  Google Scholar 

  67. Linder, M. E., Pang, I. H., Duronio, R. J., Gordon, J. I., Sternweis, P. C., and Gilman, A. G. (1991). Lipid modification of G protein subunits. Myristoylation of G increases its affinity for βγ. J. Biol. Chem. 266:4654–4659.

    PubMed  CAS  Google Scholar 

  68. Linder, M. E., Middleton, P., Hepler, J. R., Taussig, R., Gilman, A. G., and Mumby, S. M. (1993). Lipid modifications of G proteins: α subunits are palmitoylated. Proc. Natl Acad. Sci. USA 90:3675–3679.

    Article  PubMed  CAS  Google Scholar 

  69. Parenti, M., Vigano, M. A., Newman, C. M. H., Milligan, G., and Magee, A. I. (1993). A novel N-terminal motif for palmitoylation of G-protein a subunits. Biochem. J. 291:349–353.

    PubMed  CAS  Google Scholar 

  70. Wedegaertner, P. B., Chu, D. H, Wilson, P. T., Levis, M. J., and Bourne, H. R. (1993). Palmitoylation is required for signaling function and membrane attachment of G and G. J. Biol. Chem. 268:25001–25008.

    PubMed  CAS  Google Scholar 

  71. Degtyarev, M. Y., Spiegel, A. M., and Jones, T. L. Z. (1993). Increased palmitoylation of the Gs protein α subunit after activation by the β-adrenergic receptor or cholera toxin. J. Biol. Chem. 268:23769–23772.

    PubMed  CAS  Google Scholar 

  72. Mumby, S. M., Casey, P. J., Gilman, A. G., Gutowski, S., and Stern-weis, P. C. (1990). G protein γ subunits contain a 20-carbon isoprenoid. Proc. Natl. Acad. Sci. USA 87:5873–5877.

    Article  PubMed  CAS  Google Scholar 

  73. Simonds, W. F., Butrynski, J. E., Gautman, N., Unison, C. G., and Spiegel, A. M. (1991). G-protein βγ dimers. Membrane targetting requires subunit co-expression and intact γ CAAX domain. J. Biol. Chem. 266:5363–5366.

    PubMed  CAS  Google Scholar 

  74. Sanford, J., Codina, J., and Birnbaumer, L. (1991). γ-subunits of G proteins, but not their α- or β-subunits, are polyisoprenylated. Studies on post-translational modifications using in vitro translation with rabbit reticulocyte lysates. J. Biol. Chem. 266:9570–9579.

    PubMed  CAS  Google Scholar 

  75. Conklin, B. R., and Bourne, H. R. (1993). Structural elements of Gα subunits that interact with Gβγ, receptors, and effectors. Cell 73:631–641.

    Article  PubMed  CAS  Google Scholar 

  76. Noel, J. P., Hamm, H. E., and Sigler, P. B. (1993). The 2.2 Åcrystal structure of transducin a-GTPγS. Nature 366:654–663.

    Article  PubMed  CAS  Google Scholar 

  77. Ui, M. (1984). Islet-activating protein, pertussis toxin: A probe for functions of the inhibitory guanine nucleotide regulatory component of adenylate cyclase. Trends Pharmacol. Sci. 5:277–279.

    Article  CAS  Google Scholar 

  78. West, R. E., Jr., Moss, J., Vaughan, M., Liu, T., and Liu, T.-Y. (1985). Pertussis toxin-catalyzed ADP-ribosylation of transducin. Cysteine 347 is the ADP-ribose acceptor site. J. Biol. Chem. 260:14428–14430.

    PubMed  CAS  Google Scholar 

  79. Masters, S. B., Sullivan, K. A., Beiderman, B., Lopez, N. G., Ra-machandran, J., and Bourne, H. R. (1988). Carboxy terminal domain of G s -alpha specifies coupling of receptors to stimulation of adenylyl cyclase. Science 241:448–451.

    Article  PubMed  CAS  Google Scholar 

  80. Conklin, B. R., Farfel, Z., Lustig, K. D., Julius, D., and Bourne, H. R. (1993). Substitution of three amino acids switches receptor specificity. Nature 363:274–276.

    Article  PubMed  CAS  Google Scholar 

  81. Dratz, E. A., Furstenau, J. E., Lanbert, C. G., Thireault, D. L., Rar-ick, H., Schepers, T., Pakhlevaniants, S., and Hamm, H. E. (1993). NMR structure of a receptor-bound G protein peptide. Nature 363:276–281.

    Article  PubMed  CAS  Google Scholar 

  82. Navon, S. E., and Fung, B. K.-K. (1987). Characterization of transducin from bovine retinal rod outer segments. Participation of the amino-terminal region of Tα in subunit interaction. J. Biol. Chem. 262:15746–15751.

    PubMed  CAS  Google Scholar 

  83. Graf, R., Mattera, R., Codina, J., Estes, M. K., and Birnbaumer, L. (1992). A truncated recombinant α subunit of Gi3 with a reduced affinity for βγ dimers and altered GTPγS binding. J. Biol. Chem. 267:24307–24314.

    PubMed  CAS  Google Scholar 

  84. Slepak, V. Z., Wilkie, T. M., and Simon, M. I. (1993). Mutational analysis of G protein a subunit Goα expressed in Escherichia coli. J. Biol. Chem. 268:1414–1423.

    CAS  Google Scholar 

  85. Berlot, C. H., and Bourne, H. R. (1992). Identification of effector-activating residues of G. Cell 68:911–922.

    Article  PubMed  CAS  Google Scholar 

  86. Rarick, H. M., Artemyev, N. O., and Hamm, H. E. (1992). A site on rod G protein α subunit that mediates effector activation. Science 256:1031–1033.

    Article  PubMed  CAS  Google Scholar 

  87. Lyons, J., Landis, C. A., Harsh, G., Vallar, L., Grünewald, K., Feichtinger, H., Duh, Q.-Y., Clark, O. H., Kawasaki, E., Bourne, H. R., and McCormick, F. (1990). Two G protein oncogenes in human endocrine tumors. Science 249:655–659.

    Article  PubMed  CAS  Google Scholar 

  88. Cassel, D., and Selinger, Z. (1977). Mechanism of adenylate cyclase activation by cholera toxin: Inhibition of GTP hydrolysis at the regulatory site. Proc. Natl. Acad. Sci. USA 74:3307–3311.

    Article  PubMed  CAS  Google Scholar 

  89. Abood, M. E., Hurley, J. B., Pappone, M.-C., Bourne, H. R., and Stryer, L. (1982). Functional homology between signal-coupling proteins. Cholera toxin inactivates the GTPase activity of transducin. J. Biol. Chem. 257:10540–10543.

    PubMed  CAS  Google Scholar 

  90. Van Dop, C., Tsubokawa, M., Bourne, H. R., and Ramachandran, J. (1984). Amino acid sequence of retinal transducin at the site ADP-ribosylated by cholera toxin. J. Biol. Chem. 259:696–699.

    PubMed  Google Scholar 

  91. Graziano, M. P., and Gilman, A. G. (1990). Synthesis in Escherichia coli of GTPase-deficient mutants of Gsα. J. Biol. Chem. 264:15475–15482.

    Google Scholar 

  92. Gupta, S. K., Gallego, C., Johnson, G., and Heasley, L. E. (1992). MAP kinase is constitutively activated in gip2 and src transformed Rat-la fibroblasts. J. Biol. Chem. 267:7987–7990.

    PubMed  CAS  Google Scholar 

  93. Gupta, S. K., Gallego, C., and Johnson, G. L. (1992). Mitogenic pathways regulated by G protein oncogenes. Mol. Biol. Cell 3:123–128.

    PubMed  CAS  Google Scholar 

  94. De Vivo, M., Chen, J., Codina, J., and Iyengar, R. (1992). Enhanced phospholipase C stimulation and transformation in NIH–3T3 cells expressing Q209LGq-α subunits. J. Biol. Chem. 267:18263–18266.

    PubMed  Google Scholar 

  95. Kroll, S. D., Chen, J., De Vivo, M., Carthy, D. J., Buku, A., Premont, R. T., and Iyengar, R. (1992). The Q205L Go-α subunit expressed in NIH–3T3 cells induces transformation. J. Biol. Chem. 267:23182–23188.

    Google Scholar 

  96. Jiang, H., Wu, D., and Simon, M. I. (1993). The transforming activity of activated Gal2. FEBS Lett. 330:319–322.

    Article  PubMed  CAS  Google Scholar 

  97. Chen, J. C., and Iyengar, R. (1994). Suppression of ras-induced transformation of NIH–3T3 cells by activated αs. Science 263:1278–1281.

    Article  PubMed  CAS  Google Scholar 

  98. Rudolph, U., Finegold, M. J., Rich, S. S., Harriman, G. R., Srinivasan, Y., Brabet, P., Bradley, A., and Birnbaumer, L. (1995). Gi2-deficient mice develop inflammatory bowel disease and adenocarcinomas of the colon. Nature Genetics 10:143–150.

    Article  PubMed  CAS  Google Scholar 

  99. Iiri, T., Herzmark, P., Nakamoto, J. M., van Dop, C., and Bourne, H. R. (1994). Rapid GDP release from Gs alpha in patients with gain and loss of endocrine function. Nature 371:164–168.

    Article  PubMed  CAS  Google Scholar 

  100. Gill, D. M. (1974). The enzymatic nature of cholera toxin. In Proceedings of the 10th Joint Conference, US-Japan Cooperative Medical Science Program, Cholera Panel (H. Fukumi and M. Chashi, eds.), National Institute of Health, Tokyo, pp. 119–128.

    Google Scholar 

  101. Cassel, D., and Pfeuffer, T. (1978). Mechanism of cholera toxin action: Covalent modification of the guanyl nucleotide-binding protein of the adenylate cyclase system. Proc. Natl. Acad. Sci. USA 75:2669–2673.

    Article  PubMed  CAS  Google Scholar 

  102. Mattera, R., Codina, J., Sekura, R. D., and Birnbaumer, L. (1986). The interaction of nucleotides with pertussis toxin. Direct evidence for a nucleotide binding site on the toxin regulating the rate of ADP-ribosylation of Ni, the inhibitory regulatory component of adenylyl cyclase. J. Biol. Chem. 261:11173–11179.

    PubMed  CAS  Google Scholar 

  103. Balch, W. E. (1990). Small GTP-binding proteins in vesicular transport. Trends Biochem. Sci. 15:473–477.

    Article  PubMed  Google Scholar 

  104. Birnbaumer, L. (1992). Receptor-to-effector signaling through G proteins: Roles for βγ dimers as well as for α subunits. Cell 71:1069–1072.

    Article  PubMed  CAS  Google Scholar 

  105. Tang, W. J., and Gilman, A. G. (1991). Type specific regulation of adenylyl cyclase by G protein βγ subunits. Science 254:1500–1503.

    Article  PubMed  CAS  Google Scholar 

  106. Harwood, J. P., Löw, H., and Rodbell, M. (1973). Stimulatory and inhibitory effects of guanyl nucleotides on fat cell adenylate cyclase. J. Biol. Chem. 248:6239–6245.

    PubMed  CAS  Google Scholar 

  107. Birnbaumer, L. (1973). Hormone-sensitive adenylyl cyclases: Useful models for studying hormone receptor functions in cell-free systems. Biochim. Biophys. Acta (Reviews on Biomembranes) 300:129–158.

    CAS  Google Scholar 

  108. Bokoch, G. M., Katada, T., Northup, J. K., Hewlett, E. L., and Gilman, A. G. (1983). Identification of the predominant substrate for ADP-ribosylation by islet activating protein. J. Biol. Chem. 258:2071–2075.

    Google Scholar 

  109. Codina, J., Hildebrandt, J. D., Iyengar, R., Birnbaumer, L., Sekura, R. D., and Manclark, C. R. (1983). Pertussis toxin substrate, the putative Ni of adenylyl cyclases, is an alpha-beta heterodimer regulated by guanine nucleotide and magnesium. Proc. Natl. Acad. Sci. USA 80:4276–4280.

    Article  PubMed  CAS  Google Scholar 

  110. Hildebrandt, J. D., Hanoune, J., and Birnbaumer, L. (1982). Guanine nucleotide inhibition of eye -s49 mouse lymphoma cell membrane adenylyl cyclase. J. Biol. Chem. 257:14723–14725.

    PubMed  CAS  Google Scholar 

  111. Hildebrandt, J. D., Codina, J., and Birnbaumer, L. (1984). Interaction of the stimulatory and inhibitory regulatory proteins of the adenylyl cyclase system with the catalytic component of cyc - s49 cell membranes. J. Biol. Chem. 259:13178–13185.

    PubMed  CAS  Google Scholar 

  112. Toro, M.-J., Montoya, E., and Birnbaumer, L. (1987). Inhibitory regulation of adenylyl cyclases. Evidence against a role for βγ complexes of G proteins as mediators of G-dependent hormonal effects. Mol. Endocrinol. 1:669–676.

    Article  PubMed  CAS  Google Scholar 

  113. Jacobowitz, O., Chen, J., Premont, R. T., and Iyengar, R. (1993). Stimulation of specific types of Gs-stimulated adenylyl cyclases by phorbol ether treatment. J. Biol. Chem. 268:3829–3832.

    PubMed  CAS  Google Scholar 

  114. Chen, J. C., and Iyengar, R. (1993). Inhibition of cloned adenylyl cyclases by mutant-activated G i and specific suppression of type 2 adenylyl cyclase inhibition by phorbol ester treatment. J. Biol. Chem. 268:12253–12256.

    PubMed  CAS  Google Scholar 

  115. Litosch, I., Wallis, C., and Fain, J. N. (1985). 5-Hydroxytryptamine stimulates inositol phosphate production in a cell-free system from blowfly salivary glands. Evidence for a role of GTP in coupling receptor activation to phosphoinositide breakdown. J. Biol. Chem. 260:5464–5471.

    PubMed  CAS  Google Scholar 

  116. Cockroft, S., and Gomperts, B. D. (1985). Role of guanine nucleotide binding protein in the activation of polyphosphoinositide phosphodiesterase. Nature 314:534–536.

    Article  Google Scholar 

  117. Suh, P.-G., Ryu, S. H., Moon, K. H., Suh, H. W., and Rhee, S. G. (1988). Cloning and sequence of multiple forms of phospholipase C. Cell 54:161–169.

    Article  PubMed  CAS  Google Scholar 

  118. Katan, M., Kriz, R. W., Totty, N., Philp, R., Meldrum, E., Aldape, R. A., Knopf, J. L., and Parker, P. J. (1988). Determination of the primary structure of PLC–154 demonstrates diversity of phospho-inositide-specific phospholipase C activities. Cell 54:171–177.

    Article  PubMed  CAS  Google Scholar 

  119. Cooper, C. L., Morris, A. J., and Harden, T. K. (1989). Guanine nu-cleotide-sensitive interaction of a radiolabeled agonist with a phospholipase C-linked P2y -purinergic receptor. J. Biol. Chem. 264:6202–6206.

    PubMed  CAS  Google Scholar 

  120. Boyer, J. L., Downes, C. P., and Harden, T. K. (1989). Kinetics of activation of phospholipase C by P2y purinergic receptor agonists and guanine nucleotides. J. Biol. Chem. 264:884–890.

    PubMed  CAS  Google Scholar 

  121. Bloomquist, B. T., Shortridge, R. D., Schneuwly, S., Perdew, M., Montell, C., Steiler, H., Rubin, G., and Pak, W. L. (1988). Isolation of a putative phospholipase C gene of Drosophila, norpA, and its role in phototransduction. Cell 54:723–733.

    Article  PubMed  CAS  Google Scholar 

  122. Rhee, S. G., and Choi, K. D. (1992). Regulation of inositol phospho-lipid-specific phospholipase C isozymes. J. Biol. Chem. 267:12393–12398.

    PubMed  CAS  Google Scholar 

  123. Selinger, Z., and Minke, B. (1988). Inositol lipid cascade of vision studied in mutant flies. Cold Spring Harbor Symp. Quant. Biol. 53:333–341.

    CAS  Google Scholar 

  124. Selinger, Z., Dora, Y. N., and Minke, B. (1993). Mechanisms and genetics of photoreceptor desensitization in Drosophila flies. Biochim. Biophys. Acta 1179:283–299.

    Article  PubMed  CAS  Google Scholar 

  125. Waldo, G. L., Boyer, J. L., Morris, A. J., and Harden, T. K. (1991). Purification of an A1F 4 and G-protein βγ-subunit-regulated phospholipase C-activating protein. J. Biol. Chem. 266:14217–14255.

    PubMed  CAS  Google Scholar 

  126. Park, D., Jhon, D. Y., Kritz, R., Knopf, J., and Rhee, S. G. (1992). Cloning, expression and Gq-independent activation of phospholipase C-β2. J. Biol. Chem. 267:16048–16055.

    PubMed  CAS  Google Scholar 

  127. Lee, C. H., Park, D., Wu, D., Rhee, S. G., and Simon, M. I. (1992). Members of the Gq alpha subunit gene family activate phospholipase C-beta isozymes. J. Biol. Chem. 267:16044–16047.

    PubMed  CAS  Google Scholar 

  128. Camps, M., Hou, C., Sidiropoulos, D., Stock, J. B., Jakobs, K. H., and Gierschik, P. (1992). Stimulation of phospholipase C by guanine-nucleotide-binding protein βγ subunits. Eur. J. Biochem. 206:821–831.

    Article  PubMed  CAS  Google Scholar 

  129. Camps, M., Carozzi, A., Schnabel, P., Scheer, A., Parker, P. J., and Gierschik, P. (1992). Isozyme-selective stimulation of phospholipase C-β2 by G protein βγ-subunits. Nature 360:684–686.

    Article  PubMed  CAS  Google Scholar 

  130. Katz, A., Wu, D., and Simon, M. I. (1992). βγ subunits of the het-erotrimeric G protein activate the β2 isoform of phospholipase C. Nature 360:686–689.

    Article  PubMed  CAS  Google Scholar 

  131. Wu, D., Lee, C. H., Rhee, S. G., and Simon, M. I. (1992). Activation of phospholipase C by the a subunit of the Gq and G11 protein in transfected COS–7 cells. J. Biol. Chem. 267:18 16–1817.

    Google Scholar 

  132. Wu, D., Katz, A., and Simon, M. I. (1993). Activation of phospholipase C β2 by the α and βγ subunits of trimeric GTP-binding protein. Proc. Natl. Acad. Sci. USA 90:5297–5301.

    Article  PubMed  CAS  Google Scholar 

  133. Wu, D., Jiang, H., Katz, A., and Simon, M. I. (1993). Identification of critical regions on phospholipase C-β1 required for activation by G-proteins. J. Biol. Chem. 268:3704–3709.

    PubMed  CAS  Google Scholar 

  134. Blank, J. L., Brattain, K. A., and Exton, J. H. (1992). Activation of cytosolic phosphoinositide phospholipase C by G-protein βγ sub-units. J. Biol. Chem. 267:23069–23075.

    PubMed  CAS  Google Scholar 

  135. Hepler, J. R., Kozasa, T., Smrcka, A. V., Simon, M. I., Rhee, S. G., Sternweis, P. C., and Gilman, A. G. (1993). Purification from Sf9 cells and characterization of recombinant G and G11α. Activation of purified phospholipase C isozymes by Get subunits. J. Biol. Chem. 268:14367–14375.

    PubMed  CAS  Google Scholar 

  136. Carozzi, A., Camps, M., Gierschik, P., and Parker, P. J. (1993). Activation of phosphatidylinositol lipid-specific phospholipase C-β3 by G-protein βγ subunits. FEBS Lett. 315:340–342.

    Article  PubMed  CAS  Google Scholar 

  137. Schnabel, P., Schreck, R., Schiller, D. L., Camps, M., and Gierschik, P. (1993). Stimulation of phospholipase C by a mutationally activated G protein α16 subunit. Biochem. Biophys. Res. Commun., 188: 1018–1023.

    Article  Google Scholar 

  138. Park, D., Jhon, D. Y., Lee, C. W., Ryu, S., and Rhee, S. G. (1993). Removal of the carboxy-terminal region of phospholipase C-β1 by calpain abolishes activation by Gqα. J. Biol. Chem. 268:3710–3714.

    PubMed  CAS  Google Scholar 

  139. Berstein, G., Blank, J. L., Smrcka, A. V., Higashijima, T., Sternweis, P. C., Exton, J. H., and Ross, E. M. (1992). Reconstitution of agonist-stimulated phosphatidylinositol 4,5-tris-phosphate hydrolysis using purified Ml muscarinic receptor. Gq/11 and phospholipase C-β1. J. Biol. Chem. 267:8081–8088.

    PubMed  CAS  Google Scholar 

  140. Berstein, G., Blank, J. L., Jhon, D. Y., Exton, J. H., Rhee, S. G., and Ross, E. M. (1992). Phospholipase C-β1 is a GTPase-activating protein for Gq/11, its physiologic regulator. Cell 70:411–418.

    Article  PubMed  CAS  Google Scholar 

  141. Okajima, F., and Ui, M. (1984). ADP-ribosylation of the specific membrane protein by islet-activating protein, pertussis toxin, associated with inhibition of a chemotactic peptide-induced arachido-nate release in neutrophils. A possible role of the toxin substrate in Ca2+-mobilizing biosignaling. J. Biol. Chem. 259:13863–13871.

    PubMed  CAS  Google Scholar 

  142. Ohta, H., Okajima, F., and Ui, M. (1985). Inhibition by islet-activating protein of a chemotactic peptide-induced early breakdown of inositol phospholipids and Ca2+ mobilization in guinea pig neutrophils. J. Biol. Chem. 260:15771–15780.

    PubMed  CAS  Google Scholar 

  143. Kikuchi, A., Kozawa, O., Kaibuchi, K., Katada, T., Ui, M., and Takai, Y (1986). Direct evidence for involvement of a guanine nu-cleotide-binding protein in chemotactic peptide-stimulated formation of inositol bisphosphate and trisphosphate in differential human leukemic (HL–60) cells. Reconstitution with Gi or Go of the plasma membranes ADP-ribosylated by pertussis toxin. J. Biol. Chem. 261:11558–11562.

    PubMed  CAS  Google Scholar 

  144. Taylor, S. J., Chae, H. Z., Rhee, S. G., and Exton, J. H. (1991). Activation of the βl isozyme of phospholipase C by α subunits of the Gq class of G proteins. Nature 350:516–518.

    Article  PubMed  CAS  Google Scholar 

  145. Smrcka, A. V., Helper, J. R., Brown, K. O., and Sternweis, P. C. (1991). Regulation of polyphosphoinositide-specific phospholipase C activity by purified Gq. Science 251:804–807.

    Article  PubMed  CAS  Google Scholar 

  146. Gierschik, P., and Jakobs, K. H. (1987). Receptor mediated ADP-ribosylation of a phospholipase C-stimulating g protein. FEBS Lett. 224:219–223.

    Article  PubMed  CAS  Google Scholar 

  147. Gierschik, P., Sidiropoulos, D., and Jakobs, K. H. (1989). Two distinct Gi-proteins mediate formyl peptide receptor signal transduction in human leukemia (HL-60) cells. J. Biol. Chem. 264:21470–21473.

    PubMed  CAS  Google Scholar 

  148. Birnbaumer, L., Bearer, C. F., and Iyengar, R. (1980). A two-state model of an enzyme with an allosteric regulatory site capable of metabolizing the regulatory ligand: Simplified mathematical treatments of transient and steady state kinetics of an activator and its competitive inhibition as applied to adenylyl cyclases. J. Biol. Chem. 255:3552–3557.

    PubMed  CAS  Google Scholar 

  149. Iyengar, R., Abramowitz, J., Bordelon-Riser, M. E., and Birnbaumer, L. (1980). Hormone receptor-mediated stimulation of adenylyl cyclase systems. Nucleotide effects and analysis in terms of a two-state model for the basic receptor-affected enzyme. J. Biol. Chem. 255:3558–3564.

    PubMed  CAS  Google Scholar 

  150. Pieroni, J. P., Jakobowitz, O., Chen, J., and Iyengar, R. (1993). Signal recognition and integration by Gs-stimulated adenylyl cyclases. Curr. Opin. Neurobiol. 3:345–351.

    Article  PubMed  CAS  Google Scholar 

  151. Kleuss, C., Hescheler, J., Ewel, C., Rosenthal, W., Schultz, G., and Wittig, B. (1991). Assignment of G-protein subtypes to specific receptors inducing inhibition of calcium currents. Nature 353:43–48.

    Article  PubMed  CAS  Google Scholar 

  152. Yatani, A., Codina, J., Sekura, R. D., Birnbaumer, L., and Brown, A. M. (1987). Reconstitution of somatostatin and muscarinic receptor mediated stimulation of K+ channels by isolated Gk protein in clonal rat anterior pituitary cell membranes. Mol. Endocrinol. 1:283–289.

    Article  PubMed  CAS  Google Scholar 

  153. Amatruda, T. T., III, Gerard, N. P., Gerard, C., and Simon, M. I. (1993). Specific interactions of chemoattractant factor receptors with G-proteins. J. Biol. Chem. 268:10139–10144.

    PubMed  CAS  Google Scholar 

  154. Wu, D., LaRosa, G. J., and Simon, M. I. (1993). G protein-coupled signal transduction pathways for interleukin-8. Science 261:101–103.

    Article  PubMed  CAS  Google Scholar 

  155. Ashkenazi, A., Winslow, J. W., Peralta, E. G., Peterson, G. L., Schimerlik, M. I., Capon, D. J., and Ramachandran, J. (1987). An M2 muscarinic receptor subtype coupled to both adenylyl cyclase and phosphoinositide turnover. Science 238:672–675.

    Article  PubMed  CAS  Google Scholar 

  156. Fargin, A., Raymond, J. R., Regen, J. W., Cotecchia, S., Lefkowitz, R. J., and Caron, M. G. (1989). Effector coupling mechanisms of the cloned 5-HT1A receptor. J. Biol. Chem. 264:14848–14852.

    PubMed  CAS  Google Scholar 

  157. Raymond, J. R., Albers, F. J., Middleton, J. P., Lefkowtiz, R. J., Caron, M. G., Obeid, L. M., and Denis, V. W. (1991). 5-HT1A and histamine H1 receptors in HeLa cells stimulate phosphoinositide hydrolysis and phosphate uptake via distinct G protein pools. J. Biol. Chem. 266:372–379.

    PubMed  CAS  Google Scholar 

  158. Vallar, L., Muca, C., Magni, M., Albert, P., Bunzow, J., Meldolesi, J., and Civelli, O. (1990). Differential coupling of dopaminergic D2 receptors expressed in different cell types. Stimulation of phos-phatidylinositol 4,5-bisphosphate hydrolysis in Ltk-fibroblasts, hy-perpolarization, and cytosolic free Ca2+ concentration decrease in GH4C1 cells. J. Biol. Chem. 265:10320–10326.

    PubMed  CAS  Google Scholar 

  159. VanSande, J., Raspe, E., Perret, J., Lejeune, C., Manhaut, C., Vas-sart, G., and Dumont, J. E. (1990). Thyrotropin activates both the cAMP and the PIP2 cascade in CHO cells expressing the human cDNAof the TSH receptor. Mol. Cell. Endocrinol. 74:R1-R6.

    Article  PubMed  Google Scholar 

  160. Gudermann, T., Birnbaumer, M., and Birnbaumer, L. (1992). Evidence for dual coupling of the murine LH receptor to adenylyl cyclase and phosphoinositide breakdown/Ca2+ mobilization. Studies with the cloned murine LH receptor expressed in L cells. J. Biol. Chem. 267:4479–4488.

    PubMed  CAS  Google Scholar 

  161. Chabre, O., Conklin, B. R., Lin, H. Y., Lodish, H. F., Wilson, E., Ives, H. E., Catanzariti, L., Hemmings, B. A., and Bourne, H. R. (1992). A recombinant calcitonin receptor independently stimulates 3′,5-cyclic adenosine monophosphate and Ca2+/inositol phosphate signaling pathways. Mol. Endocrinol. 6:551–556.

    Article  PubMed  CAS  Google Scholar 

  162. Abou-Sambra, A. B., Jiipmer, H., Force, T., Freeman, M. W., Kong, X. F., Schipani, E., Urena, P., Richards, J., Bonventre, J. V., Potts, J. T., Jr., Kronenberg, H. M., and Segre, G. V. (1992). Expression cloning of a common receptor for parathyroid hormone and parathyroid hormone-related peptide from rat osteoblast-like cells: A single receptor stimulates intracellular accumulation of both cAMP and inositol trisphosphates and increases intracellular free calcium. Proc. Natl. Acad. Sci. USA 89:2732–2736.

    Article  Google Scholar 

  163. Northup, J. K., Smigel, M. D., Sternweis, P. C., and Gilman, A. G. (1983). The subunits of the stimulatory regulatory component of adenylate cyclase. Resolution of the activated 45,000-dalton (alpha) subunit. J. Biol. Chem. 258:11369–11376.

    PubMed  CAS  Google Scholar 

  164. Codina, J., Hildebrandt, J. D., Sekura, R. D., Birnbaumer, M., Bryan, J., Manclark, C. R., Iyengar, R., and Birnbaumer, L. (1984). Ns and R., the stimulatory and inhibitory regulatory components of adenylyl cyclases. Purification of the human erythrocyte proteins without the use of activating regulatory ligands. J. Biol. Chem. 259:5871–5886.

    PubMed  CAS  Google Scholar 

  165. Eason, M. G., Kurose, H., Holt, B. D., Raymond, J. R., and Liggett, S. B. (1992). Simultaneous coupling of α2-adrenergic receptors to two G-proteins with opposing effects. Subtype selective coupling of α2C10, α2C4 and α2C2 adrenergic receptors to Gi and Gs. J. Biol. Chem. 267:15795–15801.

    PubMed  CAS  Google Scholar 

  166. Kisselev, O., and Gautam, N. (1993). Specific interaction with rhodopsin is dependent on the γ subunit type in a G protein. J. Biol. Chem. 268:24519–24522.

    PubMed  CAS  Google Scholar 

  167. Tsigos, C., Arai, K., Hung, W., and Chrousos, G. P. (1993). Hereditary isolated glucocorticoid deficiency is associated with abnormalities of the adrenocorticotropin receptor. J. Clin. Invest. 92:2458–2461.

    Article  PubMed  CAS  Google Scholar 

  168. Clark, A. J. L., McCloughlin, L., and Grossman, A. (1993). Familial glucocorticoid deficiency associated with a point mutation in the adrenocorticotropin receptor. Lancet 341:461–462.

    Article  PubMed  CAS  Google Scholar 

  169. Pollak, M. R., Brown, E. M., Chou, Y.-H. W., Marx, S. J., Steinman, B., Levi, T., Seidman, C. E., and Seidman, J. D. (1993). Mutations in the human Ca2+ sensing receptor gene cause familial hypocalciuric hypercalcemia and neonatal severe hyperparathyroidism. Cell 75:1297–1303.

    Article  PubMed  CAS  Google Scholar 

  170. Lin, S.-L., C. R. Gukovsky, I. Lusis, A. J. Sawchenko, P. E. and Rosenfeld, M. G. (1993). Molecular basis of the little mouse pheno-type and implications for cell type-specific growth. Nature 364:208–213.

    Article  PubMed  CAS  Google Scholar 

  171. Kremer, H., Mariman, E., Otten, B. J., Moll, G. W., Jr., Stoelinga, G. B. A., Wit, J. M., Jansen, M., Drop, S. L., Faas, B., Ropers, H.-H., and Brunner, H. G. (1993). Cosegregation of missense mutations of the luteinizing hormone receptor gene with familial male-limited precocious puberty. Hum. Mol. Genet. 2:1779–1783.

    Article  PubMed  CAS  Google Scholar 

  172. Dryja, T. P., Berson, E. L., Rao, V. R., and Oprian, D. D. (1993). Heterozygous missense mutation in the rhodopsin gene as a cause of congenital stationary night blindness. Nature Genet. 4:280–283.

    Article  PubMed  CAS  Google Scholar 

  173. Rao, V. R., Cohen, G. B., and Oprian, D. D. (1994). Rhodopsin mutation G90D and a molecular mechanism for congenital night blindness. Nature 367:639–642.

    Article  PubMed  CAS  Google Scholar 

  174. Parma, J., Duprez, L., Van Sande, J., Cochaux, P., Gervy, C., Mockel, J., Dumont, J., and Vassart, G. (1993). Somatic mutations in the thyrotropin receptor gene cause hyperfunctioning thyroid adenomas. Nature 365:649–651.

    Article  PubMed  CAS  Google Scholar 

  175. Stein, S. A., Oats, E. L., Hall, C. R., Grumbles, R. M., Fernandez, L. M., Taylor, N. A., Puett, D., and Gin, S. (1994). Identification of a pointmutation in the thyrotropin receptor of the hyt/hyt hypothyroid mouse. Mol. Endocrinol. 8:129–138.

    Article  PubMed  CAS  Google Scholar 

  176. Rosenthal, W., Seibold, A., Antaramian, A., Lonergan, M., Arthus, M.-F., Hendy, G. N., Birnbaumer, M., and Bichet, D. G. (1992). Molecular identification of the gene responsible for congenital nephrogenic diabetes insipidus. Nature 359:233–235.

    Article  PubMed  CAS  Google Scholar 

  177. Kosugi, S., Okajima, F., Ban, T., Hidaka, A., Shenker, A., and Kohn, L. D. (1992). Mutation of alanine 623 in the third cytoplasmic loop of the rat thyrotropin receptor results in a loss in the phosphoinositide but not cAMP signal induced by TSH and receptor autoantibodies. J. Biol. Chem. 267:24153–24156.

    PubMed  CAS  Google Scholar 

  178. Horstman, D., Brandon, S., Wilson, A. L., Guyer, C. A., Cragoe, E. J., Jr., and Limbird, L. E. (1990). An aspartate conserved among G-protein receptors confers allosteric regulation of α2-adrenergic receptors by sodium. J. Biol. Chem. 265:21590–21595.

    PubMed  CAS  Google Scholar 

  179. Strader, C. D., Sigal, I. S., Candelone, M. R., Rands, E., Gill, W. S., and Dixon, R. A. F. (1988). Conserved aspartic acid residues 79 and 113 of the β-adrenergic receptor have different roles in receptor function. J. Biol. Chem. 263:10267–10271.

    PubMed  CAS  Google Scholar 

  180. Chung, P. Z., Wang, C. D., Potter, P. C., Venter, J. C., and Fraser, C. M. (1988). Site-directed mutagenesis and continuous expression of human β-adrenergic receptor. Identification of a conserved aspartate residue involved in agonist binding and receptor activation. J. Biol. Chem. 163:4052–4055.

    Google Scholar 

  181. Neve, K. A., Cox, B. A., Henningsen, R. A., Spanoyannis, A., and Neve, R. L. (1991). Pivotal role for asparate-80 in the regulation of dopamine D2 receptor affinity for drugs and inhibition of adenylyl cyclase. Mol. Pharmacol. 39:733–739.

    PubMed  CAS  Google Scholar 

  182. Quintana, J., Wang, H., and Ascoli, M. (1993). The regulation of the binding affinity of the luteinizing hormone/choriogonadotropin receptor by sodium ions is mediated by a highly conserved aspartate located in the second transmembrane domain of G-protein coupled receptors. Mol. Endocrinol. 7:767–775.

    Article  PubMed  CAS  Google Scholar 

  183. Franke, R. R., Koenig, B., Sakmar, T. P., Khorana, H. G., and Hof-mann, K. P. (1990). Rhodopsin mutants that bind but fail to activate transducin. Science 250:123–125.

    Article  PubMed  CAS  Google Scholar 

  184. Franke, R. R., Sakmar, T. P., Graham, R. M., and Khorana, H. G. (1992). Structure and function in rhodopsin. Studies of the interaction between the rhodopsin cytoplasmic domain and transducin. J. Biol. Chem. 267:14767–14774.

    PubMed  CAS  Google Scholar 

  185. Fraser, C. M., Chung, F. Z., Wang, C. D., and Venter, J. C. (1988). Site directed mutagenesis of human β-adrenergic receptors: Substitution of aspartic acid-130 by asparagine produces a receptor with high affinity agonist binding that is uncoupled from adenylate cyclase. Proc. Natl. Acad. Sci. USA 85:5478–5482.

    Article  PubMed  CAS  Google Scholar 

  186. Winslow, J. W., Van Amsterdam, J. R., and Neer, E. J. (1986). Conformations of the α39, α41 and βγ components of brain guanine nucleotide-binding proteins: Analysis by limited proteolysis. J. Biol. Chem. 261:14428–14430.

    Google Scholar 

  187. Yi, F., Denker, B. M., and Neer, E. J. (1991). Structural and functional studies of cross-linked Go protein subunits. J. Biol. Chem. 266:3900–3906.

    PubMed  CAS  Google Scholar 

  188. Bubis, J., and Khorana, H. G. (1990). Sites of interaction in the complex between β- and γ-subunits of transducin. J. Biol. Chem. 265:12995–12999.

    PubMed  CAS  Google Scholar 

  189. Kobilka, B. K., Kobilka, T. S., Daniel, K., Regan, J. W., Caron, M. G., and Lefkowitz, R. J. (1988). Chimeric α22-adrenergic receptors: Delineation of domains involved in effector coupling and ligand binding specificity. Science 240:1310–1316.

    Article  PubMed  CAS  Google Scholar 

  190. Rubenstein, R. C., Wong, S. K. P., and Ross E. M. (1987). The hydrophobic tryptic core of the β-adrenergic receptor retains Gs regulatory activity in response to agonists and thiols. J. Biol. Chem. 262:16655–16662.

    PubMed  CAS  Google Scholar 

  191. Suryanarayana, S., von Zastrow, M., and Kobilka, B. K. (1992). Identification of intramolecular interactions in adrenergic receptors. J. Biol. Chem. 267:21991–21994.

    PubMed  CAS  Google Scholar 

  192. Tsai-Morris, C. H., Buczko, E., Wang, W., and Dufau, M. L. (1990). Intronic nature of the rat luteinizing hormone receptor gene defines a soluble receptor subspecies with hormone binding activity. J. Biol. Chem. 265:19385–19388.

    PubMed  CAS  Google Scholar 

  193. Osenberg, D., Marsters, S. A., O’Dowd, B. F., Jin, H., Havlik, S., Peroutka, S. J., and Ashkenazi, A. (1992). A single amino acid difference confers major pharmacological variation between human and rodent 5HT-1B receptors. Nature 360:161–163.

    Article  Google Scholar 

  194. Gether, U., Johansen, T. E., Snider, M. R., Lowe, J. A., Nakanishi, S., and Schwartz, T. W. (1993). Different binding epitopes in the NK1 receptor for substance P and a non-peptide antagonist. Nature 362:345–348.

    Article  PubMed  CAS  Google Scholar 

  195. Blüml, K., Mutschler, E., and Wess, J. (1994). Identification of an intracellular tyrosine residue critical for muscarinic receptor-mediated stimulation of phosphatidylinositol hydrolysis. J. Biol. Chem. 269:402–405.

    PubMed  Google Scholar 

  196. Benovic, J. L., Kühn, H., Weyand, I., Codina, J., Caron, M. G., and Lefkowitz, R. J. (1987). Functional desensitization of the isolated β-adrenergic receptor by the β-adrenergic receptor kinase: Potential role of an analog of the retinal protein arrestin (48k protein). Proc. Natl. Acad. Sci. USA 84:8879–8882.

    Article  PubMed  CAS  Google Scholar 

  197. Benovic, J. L., De Blasi, A., Stone, W. C., Caron, M. G., and Lefkowitz, R. J. (1989). β-Adrenergic receptor kinase: Primary structure delineates a multigene family. Science 246:235–240.

    Article  PubMed  CAS  Google Scholar 

  198. Lohse, M. J., Andexinger, S., Pitcher, J., Trukawinski, S., Codina, J., Faure, J.-P, Caron, M. G., and Lefkowitz, R. J. (1992). Receptor-specific desensitization with purified proteins. Kinase dependence and receptor specificity of β-arrestin and arrestin in the β2-adrenergic receptor and rhodopsin systems. J. Biol. Chem. 267:8558–8564.

    PubMed  CAS  Google Scholar 

  199. Haga, K., and Haga, T. (1992). Activation by G protein β7subunits of agonist- or light-dependent phosphorylation of muscarinic acetylcholine receptors and rhodopsin. J. Biol. Chem. 267:2222–2227.

    PubMed  CAS  Google Scholar 

  200. Kameyama, K., Haga, K., Haga, T., Kontani, K., Katada, T., and Fukada, Y. (1993). Activation by G protein βγ subunits of β-adrenergic and muscarinic receptor kinase. J. Biol. Chem. 268:7753–7758.

    PubMed  CAS  Google Scholar 

  201. Pitcher, J. A., Inglese, J., Higgins, J. B., Arriza, J. L., Casey, P. J., Kim, C., Benovic, J. L., Kwatra, M. M., Caron, M. G., and Lefkowitz, R. J. (1992). Role of βγ subunits of G proteins in targeting of the β-adrenergic receptor kinase to membrane-bound receptors. Science 257:1264–1267.

    Article  PubMed  CAS  Google Scholar 

  202. Inglese, J., Freedman, N. J., Koch, W. J., and Lefkowitz, R. J. (1993). Structure and mechanism of the G protein coupled receptor kinases. J. Biol. Chem. 268:23735–23738.

    PubMed  CAS  Google Scholar 

  203. Dalman, H. M., and Neubig, R. R. (1991). Two peptides from the a2A-adrenergic receptor alter G protein coupling by distinct mechanisms. J. Biol. Chem. 266:11025–11029.

    PubMed  CAS  Google Scholar 

  204. Grandt, R., Aktories, K., and Jakobs, K. H. (1982). Guanine nucleotides and monovalent cations increase agonist affinity of prostaglandin E2 receptors in hamster platelets. Mol. Pharmacol. 22:320–326.

    PubMed  CAS  Google Scholar 

  205. Sugimoto, Y., Negishi, M., Hayashi, Y., Namba, T., Honda, A., Watabe, A., Hirata, M., Narumiya, S., and Ichikawa, A. (1993). Two isoforms of EP3 receptor with different carboxyl terminal domains. Identical ligand binding properties and different coupling properties with Gi proteins. J. Biol. Chem. 268:2712–2718.

    PubMed  CAS  Google Scholar 

  206. Karnik, S. S., Sakmar, T. P., Chen, H. B., and Khorana, H. G. (1988). Cysteine residues 110 and 187 are essential for the formation of correct structure of bovine rhodopsin. Proc. Natl. Acad. Sci. USA 85:8459–8463.

    Article  PubMed  CAS  Google Scholar 

  207. O’Dowd, B. F., Hnatowitch, M., Caron, M. G., Lefkowitz, R. J., and Bouvier, M. (1989). Palmitoylation of the human beta 2-adrenergic receptor: Mutation of Cys-341 in the carboxyl tail leads to an uncoupled non-palmitoylated form of the receptor. J. Biol. Chem. 264:7564–7569.

    PubMed  Google Scholar 

  208. Moffett, S. W., Mouillac, B., Bonin, H., and Bouvier, M. (1993). Altered phosphorylation and desensitization patterns of a human β2-adrenergic receptor lacking the palmitoylated Cys341. EMBO J. 12:349–356.

    PubMed  CAS  Google Scholar 

  209. Kennedy, M. E., and Limbird, L. E. (1993). Mutations of the α 2A-adrenergic receptor that eliminate detectable palmitoylation do not perturb receptor-G protein coupling. J. Biol. Chem. 268:8003–8011.

    PubMed  CAS  Google Scholar 

  210. Chabre, M. (1985). Trigger and amplification mechanisms in visual phototransduction. Annu. Rev. Biophys. Biophys. Chem. 14:331–347.

    Article  PubMed  CAS  Google Scholar 

  211. Stryer, I. (1988). Molecular basis for visual excitation. Cold Spring Harbor Symp. Quant. Biol. 53:283–294.

    PubMed  CAS  Google Scholar 

  212. Braiman, M., Bubis, J., Doi, T., Chen, H.-B., Flitsch, S. L., Franke, R. R., Giles-Gonzalez, M. A., Graham, R. M., Karnik, S. S., Kho-rana, G. G., Knox, B. E., Kebs, M. P., Marti, T., Mogi, T., Nakayama, T., Oprian, D. D., Puckett, K. L., Sakmar, T. P., Stern, L. J., Subramanian, S., and Thompson, D. A. (1988). Studies on light transduction by bacteriorhodopsin and rhodopsin. Cold Spring Harbor Symp. Quant. Biol. 53:355–364.

    PubMed  CAS  Google Scholar 

  213. Zhukovsky, E. A., Robinson, P. R., and Oprian, D. D. (1991). Trans-ducin activation by rhodopsin without a covalent bond to the 11-cis-retinal chromophore. Science 251:558–559.

    Article  PubMed  CAS  Google Scholar 

  214. Link, R., Daunt, D., Barsh, G., Chruscinski, A., and Kobilka, B. (1993). Cloning of two genes encoding α2-adrenergic receptor subtypes and identification of a single amino acid in the mouse α2-C10 homolog responsible for an interspecies variation in antagonist binding. Mol. Pharm. 42:16–27.

    Google Scholar 

  215. Bichet, D. G., Arthus, M.-R, Lonergan, M., Hendy, G. N., Paradis, A. J., Fujiwara, T. M., Morgan, K., Gregory, M. C., Rosenthal, W., Antaramian, A., and Birnbaumer, M. (1993). X-linked nephrogenic diabetes insipidus mutations in North America and the Hopewell hypothesis. J. Clin. Invest. 92:1262–1268.

    Article  PubMed  CAS  Google Scholar 

  216. Holzman, E. J., Harris, H. W. H., Kolakowski, L. F., Guay-Wood-ford, L. M., Botelho, B., and Aussiello, D. A. (1993). A molecular defect in vasopressin V2-receptor gene causing nephrogenic diabetes insipidus. N. Engl. J. Med. 328:1534–1537.

    Article  Google Scholar 

  217. Knoers, N. V. A. M., Verdijk, M., Monnens, L. A. H., van den Ouweland, A. M. W., and van Oost, B. A. (1993). Inheritance of mutations in the vasopressin V2 receptor gene in 15 Dutch families with congenital nephrogenic diabetes insipidus. In Vasopressin (P. Gross, D. Richter, and G. L. Robertson, eds.), J. Libbey, Eurotext, Proceedings of the IV International Vasopressin Conference, May, 1993, Berlin, pp.571–572.

    Google Scholar 

  218. Merendino, J. J., Spiegel, A. M., Crawford, J. D., O’Carroll, A.-M., Brownstein, M. J., and Lolait, S. J. (1993). A mutation in the vasopressin V2 receptor gene in a kindred with X-linked nephrogenic diabetes insipidus. N. Engl. J. Med. 328:1538–1541.

    Article  PubMed  CAS  Google Scholar 

  219. Pan, Y., Metzenberg, A., Das, S., and Gitschier, J. (1992). Mutations in the V2 vasopressin receptor gene are associated with X-linked nephrogenic diabetes insipidus. Nature Genet. 2:103–106.

    Article  PubMed  CAS  Google Scholar 

  220. van den Ouweland, A. M. W., Dreesen, J. C. F. M., Verdijk, M., Knoers, N. V A. M., Monnens, L. A. H., Rocchi, M., and van Oost, B. A. (1992). Mutations in the vasopressin type 2 receptor gene AVPR2 associated with nephrogenic diabetes insipidus. Nature Genet. 2:99–102.

    Article  PubMed  Google Scholar 

  221. Iyengar, R., and Birnbaumer, L. (1982). Hormone receptor modulates the regulatory component of adenylyl cyclases by reducing its requirement for Mg ion and enhancing its extent of activation by guanine nucleotides. Proc. Natl. Acad. Sci. USA 79:5179–5183.

    Article  PubMed  CAS  Google Scholar 

  222. Birnbaumer, L., Abramowitz, J., and Brown, A. M. (1990). Signal transduction by G proteins. Biochim. Biophys. Acta (Reviews in Bio-membranes) 1031:163–224.

    CAS  Google Scholar 

  223. Levine, M. A., Ahn, T. G., Klupp, S. F., Kaufman, K. D., Small-wood, P. M., Bourne, H. R., Sullivan, K. A., and Van Dop, C. (1988). Genetic deficiency of the a subunit of the guanine nucleotide-binding protein Gs as the molecular basis for Albright’s hereditary osteodystrophy. Proc. Natl. Acad. Sci. USA 85:617–621.

    Article  PubMed  CAS  Google Scholar 

  224. Patten, J. I., Johns, D. R., Valle, D., Eil, C., Gruppuso, P. A., Steele, G., Smallwood, P. M., and Levine, M. A. (1990). Mutation in the gene encoding the stimulatory G protein of adenylate cyclase in Albright’s hereditary osteodystrophy. N. Engl. J. Med. 322:1412–1419.

    Article  PubMed  CAS  Google Scholar 

  225. Weinstein, L. S., Gejman, P. V., Friedman, E., Kadowaki, T., Collins, R. M., Gershon, E. S., and Spiegel, A. M. (1990). Mutations of the Gs α-subunit gene in Albright hereditary osteodystrophy detected by denaturing gradient gel electrophoresis. Proc. Natl. Acad. Sci. USA 87:8287–8290.

    Article  PubMed  CAS  Google Scholar 

  226. Weinstein, L. S., Shenker, A., Gejman, P. V., Merino, M. J., Friedman, E., and Spiegel, A. M. (1990). Activating mutations of the stimulatory G protein in the McCune-Albright syndrome. N. Engl. J. Med. 325:1688–1695.

    Article  Google Scholar 

  227. Schwindinger, W. F., Francomano, C. A., and Levine, M. A. (1992). Identification of a mutation in the gene encoding the a subunit of the stimulatory G proteins of adenylyl cyclase in McCune-Albright syndrome. Proc. Natl. Acad. Sci. USA 89:5151–5156.

    Article  Google Scholar 

  228. Artemyev, N. O., Mills, J. S., Thornburg, K. R., Knapp, D. R., Schey, K. L., and Hamm, H. (1993). A site on transducin a-subunit of interaction with the polycationic region of cGMP phosphodiesterase inhibitory subunit. J. Biol. Chem. 268:23611–23615.

    PubMed  CAS  Google Scholar 

  229. Higashijima, T., Ferguson, K. M., Sternweis, P. C., Ross, E. M., Smigel, M. D., and Gilman, A. G. (1987). The effect of activating ligands on the intrinsic fluorescence of guanine nucleotide-binding regulatory proteins. J. Biol. Chem. 262:752–756.

    PubMed  CAS  Google Scholar 

  230. Higashijima, T., Ferguson, K. M., Smigel, M. D., and Gilman, A. G. (1987). The effect of GTP and MG2+ on the GTPase activity and the fluorescent properties of Go. J. Biol. Chem. 262:757–761.

    PubMed  CAS  Google Scholar 

  231. Krupinski, J., Coussen, F., Bakalyar, H. A., Tang, W.-J., Feinstein, P. G., Orth, K., Slaughter, C., Reed, R. R., and Gilman, A. G. (1991). Adenylyl cyclase amino acid sequence: Possible channel- or transporter-like structure. Science 244:1558–1564.

    Article  Google Scholar 

  232. Iyengar, R. (1993). Molecular and functional diversity of mammalian Gs-stimulated adenylyl cyclases. FASEB J. 7:768–775.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Plenum Press, New York

About this chapter

Cite this chapter

Birnbaumer, M., Birnbaumer, L. (1996). Signal Transduction by G Protein-Coupled Receptors. In: Schultz, S.G., Andreoli, T.E., Brown, A.M., Fambrough, D.M., Hoffman, J.F., Welsh, M.J. (eds) Molecular Biology of Membrane Transport Disorders. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1143-0_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1143-0_17

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8446-8

  • Online ISBN: 978-1-4613-1143-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics