Advertisement

Molecular Studies of Members of the Mammalian Na+/H+ Exchanger Gene Family

  • Mark Donowitz
  • Susan A. Levine
  • C. H. Chris Yun
  • Steven R. Brant
  • Samir Nath
  • Jeannie Yip
  • Sandra Hoogerwerf
  • Jacques Pouysségur
  • Chung-Ming Tse
Chapter

Abstract

The brief history of the contribution of molecular biologic studies to the understanding of the Na+/H+ exchanger gene family is not unlike the history of studies of other transport proteins. Many years of results from physiologic and biochemical studies provided the background to allow strategies for the molecular recognition of an initial member of the Na+/H+ exchanger gene family. This was followed by recognition of the existence of a gene family, which even now is only partially defined. Rapid advances followed concerning location, regulation, and structure/function relationships, all of which have served to extend the previous physiologic studies. Current studies involve “torturing” the specific transport proteins by deletion and point mutation and creation of chimeric constructs to further explore structure/function studies. These are descriptive studies that are attempting to gain clues as to how the proteins carry out transport and are regulated. However, they fall short of defining how the proteins work, which presumably will follow from crystallagraphic techniques, although no mammalian transport protein has yet yielded the required information using any approach or combination of approaches.

Keywords

Brush Border Basolateral Membrane Phorbol Myristate Acetate Okadaic Acid Phorbol Myristate Acetate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Pitts, R. F., Ayer, J. L., and Schiess, W. A. (1949). The renal regulation of acid-base balance in man. III. The regulation and excretion of bicarbonate. J. Clin. Invest. 28:35–44.CrossRefGoogle Scholar
  2. 2.
    Murer, H., Hopfer, U., and Kinne, R. (1989). Sodium, proton antiport in brush border membranes isolated from rat small intestine and kidney. Biochem. J. 154:597–602.Google Scholar
  3. 3.
    Sardet, C., Franchi, A., and Pouysségur, J. (1989). Molecular cloning, primary structure and expression of the human growth factor-activatable Na+/H+ antiporter. Cell 56:271–280.PubMedCrossRefGoogle Scholar
  4. 4.
    Tse, C. M., Ma, A. I., Yang, V. W., Watson, A. J. M., Potter, J., Sardet, C., Pouysségur, J., and Donowitz, M. (1991). Molecular cloning of cDNA encoding the rabbit ileal villus cell basolateral membrane Na+/H+ exchanger. Embo J. 10:1957–1967.PubMedGoogle Scholar
  5. 5.
    Watson, A. J. M., Tse, C. M., Ma, A. I., Pouysségur, J., and Donowitz, M. (1991). Cloning and functional expression of a second novel rabbit ileal villus epithelial cell Na+/H+ exchanger (NHE2). Gastroenterology 100:258.Google Scholar
  6. 6.
    Tse, C. M, Levine, S. A., Yun, C. H. C., Montrose, M. H., Little, P. J., Pouysségur, J., and Donowitz, M. (1993). Cloning and expression of a rabbit cDNA encoding a serum-activated ethylisopropyl amiloride resistant epithelial Na+/H+ exchanger isoform (NHE-2). J. Biol Chem. 268:11917–11924.PubMedGoogle Scholar
  7. 7.
    Tse, C. M., Brant, S. R., Walker, S., Pouysségur, J., and Donowitz, M. (1992). Cloning and sequencing a rabbit cDNA encoding an intestinal and kidney-specific Na+/H+ exchanger isoform (NHE-3). J. Biol Chem. 267:9340–9346.PubMedGoogle Scholar
  8. 8.
    Orlowski, J., Kandasamy, R. A., and Shull, G. E. (1992). Molecular cloning of putative members of the Na+/H+ exchanger gene family. J. Biol Chem. 267:9332–9339.Google Scholar
  9. 9.
    Wang, Z., Orlowski, J., and Shull, G. E. (1993). Primary structure and functional expression of a novel gastrointestinal isoform of the rat Na+/H+ exchanger. J. Biol. Chem. 268:11925–11928.PubMedGoogle Scholar
  10. 10.
    Counillon, L., and Pouysségur, J. (1993). Structure, function and regulation of vertebrate Na+/H+ exchangers (NHE). Curr. Opin. Nephrol. Hypertension 2:708–714.CrossRefGoogle Scholar
  11. 11.
    Tse, C., Levine, S., Yun, C., Bryant, S., Counillon, L., Pouysségur, J., and Donowitz, M. (1993). Structure/function studies of the epithelial isoforms of the mammalian Na+/H+ exchanger gene family. J. Membr. Biol. 135:93–108.PubMedGoogle Scholar
  12. 12.
    Yun, C. H. C., Tse, C.-M., Nath, S. K., Levine, S. A., Brant, S. A., and Donowitz, M. (1995). Mammalian Na+/H+ exchanger gene family. Am. J. Physiol. 269:G1-G11.PubMedGoogle Scholar
  13. 13.
    Grinstein, S., Rotin, D., and Marson, M. J. (1989). Na+/H+ exchanger and growth factor-induced cytosolic pH change. Role in cellular proliferation. Biochim. Biophys. Acta 988:73–91.PubMedGoogle Scholar
  14. 14.
    Krapf, R., and Alpern, R. J. (1993). Cell pH and transepithelial H/HCO3 transport in renal proximal tubule. J. Membr. Biol 131:1–10.PubMedCrossRefGoogle Scholar
  15. 15.
    Clark, J. D., and Limbird, L. L. (1991). Na+/H+ exchanger subtypes: A predictive review. Am. J. Physiol. 261:G945-G953.Google Scholar
  16. 16.
    Helme-Kolb, C., Montrose, M. H., and Murer, H. (1990). Parathyroid hormone regulation of Na+/H+ exchange in opossum kidney cells. Polarity and mechanisms. Pfluegers Arch. 416:615–623.CrossRefGoogle Scholar
  17. 17.
    Vigne, P., Frelin, C., and Lazdunski, M. (1985). The Na+/H+ an-tiporter is activated by serum and phorbol ester in proliferating myoblasts but not in differentiated myotubes. Properties of the activation process. J. Biol Chem. 260:8008–8013.PubMedGoogle Scholar
  18. 18.
    Miller, R. T., and Pollock, A. S. (1987). Modification of the internal pH sensitivity of the Na+/H+ antiporter by parathyroid hormone in a cultured renal cell line. J. Biol. Chem. 262:9115–9120.PubMedGoogle Scholar
  19. 19.
    Sardet, C., Counillon, L., Franchi, A., and Pouysségur, J. (1990). Growth factors induce phosphorylation of the Na+/H+ antiporter, a glycoprotein of 110 kD. Science 247:723–726.PubMedCrossRefGoogle Scholar
  20. 20.
    Pouysségur, C., Sardet, C., Franchi, A., L’Allemain, G., and Paris, S. (1984). A specific mutation abolishing Na+/H+ antiport activity in hamster fibroblasts precludes growth at neutral and acidic pH. Proc. Natl. Acad. Sci. USA 81:4833–4837.PubMedCrossRefGoogle Scholar
  21. 21.
    Franchi, A., Perucca-Lostanten, D., and Pouysségur, J. (1986). Functional expression of a human Na+/H+ antiporter gene transfected into antiporter-deficient mouse L cells. Proc. Natl. Acad. Sci. USA 83:9388–9392.PubMedCrossRefGoogle Scholar
  22. 22.
    Reilly, R. F., Hildebrandt, F., Biemesderfer, D., Sardet, C., Pouysségur, J., Aronson, P. S., Slayman, C. N., and Igarashi, P. (1991). cDNA cloning and immunolocalization of a Na+/H+ exchange in LLC-PK1, renal epithelial cells. Am. J. Physiol. 261:F1088-F1094.PubMedGoogle Scholar
  23. 23.
    Takaichi, K., Wang, D., Blakovets, D. F., and Warnock, D. G. (1992). Cloning, sequencing, and expression of Na+/H+ antiporter cDNAs from human tissues. Am. J. Physiol. 262:C1069-C1076.PubMedGoogle Scholar
  24. 24.
    Counillon, L., and Pouysségur, J. (1993). Nucleotide sequence of the Chinese hamster Na+/H+ exchanger NHE1. Biochim. Biophys. Acta 1172:343–345.PubMedGoogle Scholar
  25. 25.
    Borgese, F., Sardet, C., Cappadoro, M., Pouysségur, J., and Motais, R. (1992). Cloning and expressing a cAMP-activated Na+/H+ exchanger: Evidence that the cytoplasmic domain mediates hormonal regulation. Proc. Natl. Acad. Sci. USA 89:6768–6769.CrossRefGoogle Scholar
  26. 26.
    Mattei, M. G., Sardet, C., Franchi, A., and Pouysségur, J. (1988). The human amiloride-sensitive Na+/H+ antiporters: Localization to chromosome 1 by in situ hybridization. Cytogenet. Cell Genet. 48: 6–8.PubMedCrossRefGoogle Scholar
  27. 27.
    Brant, S. R., Bernstein, M., Wasmuth, J. J., Taylor, E. W., McPherson, M. D., Li, X., Walker, S. A., Pouysségur, J., Donowitz, M., Tse, C. M., and Jabs, E. W. (1993). Physical and genetic mapping of a human apical epithelial Na+/H+ exchanger (NHE3) isoform to chromosome 5pl5.3. Genomics 15:668–672.PubMedCrossRefGoogle Scholar
  28. 28.
    Collins, J. F., Honda, T., Knobel, S., Bulus, N. M., Conary, J., Dubois, R., and Ghishan, F. K. (1993). Molecular cloning, sequencing, tissue distribution, and functional expression of a Na+/H+ exchanger (NHE2). Proc. Natl. Acad. Sci. USA 90:3938–3942.PubMedCrossRefGoogle Scholar
  29. 29.
    Honda, T., Knobel, S. M., Bulus, N. M., and Ghishan, F. K. (1993). Kinetic characterization of a stable expressed novel Na+/H+ exchanger (NHE2). Biochim. Biophys. Acta 1150:199–202.PubMedCrossRefGoogle Scholar
  30. 30.
    Krapf, G., and Solioz, M. (1991). Na+/H+ antiporter in RNA expression in single nephron segments of rat kidney cortex. J. Clin. Invest. 88:783–788.PubMedCrossRefGoogle Scholar
  31. 31.
    Donowitz, M., and Welsh, M. J. (1987). Regulation of mammalian small intestinal electrolytic secretion. In Physiology of the Gastrointestinal Tract (L. R. Johnson, ed.), Raven Press, New York, pp. 1351–1388.Google Scholar
  32. 32.
    Syed, I., Rao, D. D., Bavishi, D., Dahdal, R. Y, Harig, J. M., Ramaswamy, K., and Dudeja, P. K. (1994). Regional distribution of Na/H exchanger isoforms, NHE1and NHE3. Gastroenterology, in press.Google Scholar
  33. 33.
    Depauli, A. M., Chang, E. B., Bookstein, C., Rao, M. C., Musch, M., Bizal, G. L., Evan, A., and Soleimani, M. (1993). J. Am. Soc. Nephrol. 4:836 (abstract).Google Scholar
  34. 34.
    Watson, A. J. M., Levine, S., Donowitz, M., and Montrose, M. H. (1991). Kinetics and regulation of polarized Na+/H+ exchanger from Caco-2 cells, a human intestinal cell line. Am. J. Physiol 261: G229-G238.PubMedGoogle Scholar
  35. 35.
    Biemesderfer, D., Reilly, R., Exner, M., and Igarasgu, P. (1992). Im-munocytochemical characterization of Na+/H+ exchanger isoform NHE1 in rabbit kidney. Am. J. Physiol 263:F833-F840.PubMedGoogle Scholar
  36. 36.
    Biemesderfer, D., Pizzonia, J., Abu-Alfa, A., Exner, M., Reilly, R., Isarashi, R., and Aronson, D. S. (1993). NHE3: A Na/H exchange isoform of renal brush border. Am. J. Physiol 965:F736-F742.Google Scholar
  37. 37.
    Tse, C. M., Levine, S., Yun, C. H., Khurana, S., and Donowitz, M. (1994). Na+/H+ exchanger-2 is an O-inked but not an N-linked sialoglycoprotein. Biochemistry 33:1954–12961.CrossRefGoogle Scholar
  38. 38.
    Wakabayashi, S., Fafournoux, P., Sardet, C., and Pouysségur, J. (1992). The Na+/H+ antiporter cytoplasmic domain mediates growth factor signals and controls H+-sensing. Proc. Natl. Acad. Sci. USA 88:2424–2428.CrossRefGoogle Scholar
  39. 39.
    Tse, C. M., Levine, S., Yun, C., Montrose, M., and Donowitz, M. (1992). The cytoplasmic domain of the epithelial specific Na+/H+ exchanger isoform (NHE3) mediates inhibition by phorbol myristate acetate (PMA) but not stimulation by serum. Gastroenterology 104:A285.Google Scholar
  40. 40.
    Haworth, R. S., Frohloch, O., and Fliegel, L. (1993). Multiple carbohydrate moieties on the Na+/H+ exchanger. Biochem. J. 289:637–640.PubMedGoogle Scholar
  41. 41.
    Yusufi, A. N. K., Szczeparska-Konkel, M., and Dousa, T. P. (1988). Role of N-linked oligosaccharides in the transport activity of the Na+/H+ antiporter in rat renal brush border membrane. J. Biol. Chem. 263:13683–13691.PubMedGoogle Scholar
  42. 42.
    Levine, S., Montrose, M., Tse, C. M., and Donowitz, M. (1993). Kinetic and regulation of three cloned mammalian Na+/H+ exchangers stably expressed in a fibroblast cell line. J. Biol. Chem. 268:25527–25535.PubMedGoogle Scholar
  43. 43.
    Orlowski, J. (1993). Heterologous expression and functional properties of amiloride high affinity (NHE1) and low affinity (NHE3) isoforms of the rat Na+/H+ exchanger. J. Biol. Chem. 268:16369–16377.PubMedGoogle Scholar
  44. 44.
    Kinsella, J., Heller, P., and Froehlich, J. P. (1993). Sodium dependence of the Na+/H+ exchanger in the pre-steady state: Implications for the exchanger mechanism. J. Biol. Chem. 268:3184–3193.PubMedGoogle Scholar
  45. 45.
    Beliveau, R., Demeule, M., and Potier, M. (1988). Molecular size of the Na+/H+ antiport in renal brush border membranes, as estimated by radiation inactivation. Biochem. Biophys. Res. Commun. 152: 484–489.PubMedCrossRefGoogle Scholar
  46. 46.
    Wakabayashi, S., Sardet, C., Fafournoux, P., Counillon, L., Meloche, S., Pages, G., and Pouysségur, J. (1992). Structure function of the growth factor-activatable Na+/H+ exchanger (NHE1). Rev. Physiol. Biochem. Pharmacol. 119:157–186.PubMedGoogle Scholar
  47. 47.
    Fliegel, L., Haworth, R. S., and Dyck, J. R. B. (1993). Characterization of the placental brush border membrane Na+/H+ exchanger: Identification of thio-dependent transitions in apparent molecular size. Biochem. J. 289:101–107.PubMedGoogle Scholar
  48. 48.
    Haggerty, J. G., Agarwal, N., Reilly, R. F., Adelberg, E. A., and Slayman, C. W. (1988). Pharmacologically different Na/H antiporters on the apical and basolateral surfaces of cultured porcine kidney cells (LLC-PK1). Proc. Natl. Acad. Sci. USA 85:6797–6801.PubMedCrossRefGoogle Scholar
  49. 49.
    Yun, C. H. C., Little, P. J., Nath, S. K., Levine, S. A., Pouysségur, J., Tse, C. M., and Donowitz, M. (1993). Leu143 in the putative fourth membrane spanning domain is critical for amiloride inhibition of an epithelial Na+/H+ exchanger isoform (NHE2). Biochem. Biophys. Res. Commun. 193:532–539.PubMedCrossRefGoogle Scholar
  50. 50.
    Benos, D. J. (1988). Amiloride: Chemistry, kinetics, and structure-activity relationships. In Na + /H + Exchange (S. Grinstein, ed.), CRC Press, Boca Raton, FL, pp. 121–136.Google Scholar
  51. 51.
    Franchi, A., Cragoe, J., and Pouysségur, J. (1986). Isolation and properties of fibroblast mutants overexpressing an altered Na+/H+ antiporter. J. Biol. Chem. 261:14614–14620.Google Scholar
  52. 52.
    Counillon, L., Franchi, A., and Pouysségur, J. (1993). A point mutation of the Na+/H+ exchanger gene (NHE1) confers amiloride resistance upon chronic acidosis. Proc. Natl. Acad. Sci. USA 90:4508–4512.PubMedCrossRefGoogle Scholar
  53. 53.
    Counillon, L., Franchi, A., and Pouysségur, J. (1993). A point mutation of the Na+/H+ exchanger gene (NHE1) and amplification of the mutated allele confer amiloride-resistance upon chronic acidosis. Proc. Natl. Acad. Sci. USA 90:4508–4512.PubMedCrossRefGoogle Scholar
  54. 54.
    Tse, C. M., Levine, S. A., Yun, C. H., Brant, S. R., Pouysségur, J., and Donowitz, M. (1993). Functional characteristics of a cloned epithelial Na+/H+ exchanger (NHE3): Resistant to amiloride and inhibition of protein kinase C. Proc. Natl. Acad. Sci. USA 90:9110–9114.PubMedCrossRefGoogle Scholar
  55. 55.
    Yu, F. H., Shull, G. E., and Orlowski, J. (1993). Functional properties of the rat Na/H exchanger NHE2 isoform expressed in Na/H exchanger-deficient Chinese hamster ovary cells. J. Biol. Chem. 268: 25536–25541.PubMedGoogle Scholar
  56. 56.
    Aronson, P. S., Nee, J., and Suhm, N. A. (1982). Modifier role of internal H+ inactivating the Na+/H+ exchange in renal microvillus membrane vesicles. Nature 299:161–163.PubMedCrossRefGoogle Scholar
  57. 57.
    Pollock, A. S., Warnock, D. G., and Strewler, G. J. (1986). Parathyroid hormone inhibition of Na+/H+ antiporter activity in a cultured renal cell line. Am. J. Physiol. 250:F217-F225.PubMedGoogle Scholar
  58. 58.
    Motais, R., and Garcia-Romeu, F (1988). Effects of catecholamines and cyclic nucleotides on Na+/H+ exchange. In Na + /H + Exchange (S. Grinstein, ed.), CRC Press, Boca Raton, FL, pp. 255–270.Google Scholar
  59. 59.
    Sardet, C., Fafournoux, P., and Pouysségur, J. (1991). Thrombin, epidermal growth factor, and okadaic acid activate the Na+/H+ exchanger, NHE1, by phosphorylating a set of common sites. J. Biol. Chem. 266:19166–19171.PubMedGoogle Scholar
  60. 60.
    Grinstein, S., Cohen, S., Goetz, J. D., Rothstein, A., Mellors, A., and Gelfand, E. W. (1986). Activation of the Na+/H+ antiport by changes in cell volume and by phorbol ester; possible role of protein kinase. Curr. Top. Membr. Transp. 26:115–136.CrossRefGoogle Scholar
  61. 61.
    Cala, P. M. (1986). Volume sensitive alkali metal-H transport in Am-phiuma red blood cells. Curr. Top. Membr. Transp. 26:79–100.CrossRefGoogle Scholar
  62. 62.
    Grinstein, S., Woodside, M., Sardet, C., Pouysségur, J., and Rotin, D. (1992). Activation of the Na+/H+ antiporter during cell volume regulation. Evidence for a phosphorylation-independent mechanism. J. Biol. Chem. 267:23823–23828.PubMedGoogle Scholar
  63. 63.
    Bookstein, C., Musch, M. W., Depauli, D., Xie, Y, Hornung, S., Rao, M. C., Villereal, M., and Chang, E. B. (1994). Characterization of an unusual Na/H exchange isoform in NHE1 of inner renal medullary collecting tubules which is activated under hyperosmolar stress in transfected NHE-deficient Chinese hamster lung fibroblasts. Gastroenterology, in press.Google Scholar
  64. 64.
    Schwartz, M. A., Cragoe, E. J., and Lechene, C. P. (1990). pH regulation in spread cells and round cells. J. Biol. Chem. 265:1327–1332.PubMedGoogle Scholar
  65. 65.
    Schwartz, M. A., Both, G., and Lechene, C. (1989). Effect of cell spreading on cytoplasmic pH in normal and transformed fibroblasts. Proc. Natl. Acad. Sci. USA 86:4525–4529.PubMedCrossRefGoogle Scholar
  66. 66.
    Schwartz, M. A., Lechene, C., and Ingber, D. E. (1991). Insoluble fi-bronectin activates the Na+/H+ antiporter by clustering and immobilizing integrin α5β1, independent of cell shape. Proc. Natl. Acad. Sci. USA 88:7849–7853.PubMedCrossRefGoogle Scholar
  67. 67.
    Schwartz, M. A., and Lechene, C. (1992). Adhesion is required for protein kinase C-dependent activation of the Na+/H+ antiporter by platelet-derived growth factor. Proc. Natl. Acad. Sci. USA 89:6138–6141.PubMedCrossRefGoogle Scholar
  68. 68.
    Takaichi, K., Balkovetz, D. F., Meier, E. V., and Warnock, D. G. (1993). Cytosolic pH sensitivity of an expressed human NHE1 Na+/H+ exchanger. Am. J. Physiol. 264:C944-C950.PubMedGoogle Scholar
  69. 69.
    Rao, G. N., Sardet, C., Pouysségur, J., and Berk, B. C. (1993). Phosphorylation of Na+/H+ antiporter is not stimulated by phorbol ester and acidification in granulocytic HL-60 cells. Am. J. Physiol. 264:C1278-C1284.PubMedGoogle Scholar
  70. 70.
    Helmle-Kolb, C., Counillon, L., Roux, D., Pouysségur, J., Mrkic, B., and Murer, H. (1993). Na+/H+ exchange activates in NHE1-transfected OK-cells: Cell polarity and regulation. Pfluegers Arch. 424: 377–384.CrossRefGoogle Scholar
  71. 71.
    Charney, A. N., Kinsey, M. D., Meyers, L., Giannella, R. A., and Gots, R. (1978). Na-K activated adenosine triphosphatase and intestinal electrolyte transport—effect of adrenal steroids. J. Clin. Invest. 56:653–660.CrossRefGoogle Scholar
  72. 72.
    Sellin, J. H., and Field, M. (1981). Physiologic and pharmacologic effects of glucocorticoids on ion transport across rabbit ileal mucosa in vitro. J. Clin. Invest. 67:770–778.PubMedCrossRefGoogle Scholar
  73. 73.
    Yun, C. H., Gurubhagavatula, S., Levine, S. A., Montgomery, J. M., Brant, S. R., Cohen, M. E., Pouysségur, J., Tse, C. M., and Donowitz, M. (1993). Glucocorticoid stimulation of ileal Na+ absorptive cell brush border Na+/H+ exchange and association with an increase in message for NHE-3, an epithelial isoform Na+/H+ exchanger. J. Biol. Chem. 268:206–211.PubMedGoogle Scholar
  74. 74.
    Counillon, L., Pouysségur, J., and Reithmeier, R. A. (1994). The Na+/H+ exchanger NHE-1 possesses N- and O-linked glycosylation restricted to the first N-terminal extracellular domain. Biochemistry 33:10463–10469.PubMedCrossRefGoogle Scholar
  75. 74a.
    Freiberg, J. M., Kinsella, J., and Sacktor, B. (1982). Glucocorticoids increase the Na+/H+ exchange and decrease the Na+ gradient-dependent phosphate-uptake systems in renal brush border membrane vesicles. Proc. Natl. Acad. Sci. USA 79:4932–4936.PubMedCrossRefGoogle Scholar
  76. 75.
    Moe, O. W., Miller, R. T., Horie, S., Cano, A., Preisig, P. A., and Alpern, R. J. (1991). Differential regulation of Na+/H+ antiporter by acid in renal epithelial cells and fibroblasts. J. Clin. Invest. 88: 1703–1708.PubMedCrossRefGoogle Scholar
  77. 76.
    Krapf, R., Pearce, D., Lynch, C., Xi, X. P., Reudelhuber, T. L., Pouysségur, J., and Rector, F. C. (1991). Expression of rat renal Na+/H+ antiporter mRNA levels in response to respiratory and metabolic acidosis. J. Clin. Invest. 87:747–751.PubMedCrossRefGoogle Scholar
  78. 77.
    Alpern, R. J., Yamaji, Y., Cano, A., Horie, S., Miller, R. T., Moe, O., and Preisig, P. A. (1993). Chronic regulation of the Na+/H+ antiporter. J. Lab. Clin. Med. 122:137–140.PubMedGoogle Scholar
  79. 78.
    Raley-Susman, K. M., Cragoe, E. J., Jr., Sapolsky, R. M., and Kopito, R. R. (1991). Regulation of intracellular pH in cultured hip-pocampal neurons by an amiloride-insensitive Na+/H+ exchanger. J. Biol. Chem. 266:2739–2745.PubMedGoogle Scholar
  80. 79.
    Brant, S. R., Yun, C. H. C., Donowitz, M., and Tse, C.-M. (1995). Cloning, tissue distribution and functional analysis of the human Na+/H+ exchanger isoform, NHE3. Am. J. Physiol. 269:C198-C206.PubMedGoogle Scholar
  81. 80.
    Klanke, C., Su, Y. R., Callen, D. F., Wang, Z., Meneton, P., Baird, N., Kandasamy, R. A., Orlowki, J., Otterud, B. E., Leppert, M., Shull, G. E., and Menon, A. (1995). Molecular cloning and physical and genetic mapping of a novel Na+/H+ exchanger (NHE5/SCL 9A5) to chromosome 16q22.1. Genomics 25:615–622.PubMedCrossRefGoogle Scholar
  82. 81.
    Kokke, F. T. M., Elsawy, T., Bengtsson, I., Wasmuth, J. J., Jabs, E. W., Tse, C.-M., Donowitz, M., and Brant, S. R. (1996). A NHE3-related pseudogene is on human chromosome 10; the functional gene maps to 5p15.3. Mammalian Genome 7: in press.Google Scholar
  83. 82.
    Hoogerwerf, W. A., Tsao, S. C., Devuyst, O., Levine, S. A., Yung, C. H. C., Yip, J. W., Cohen, M. E., Wilson, P. T., Lazenby, A., Montgomery, J., Tse, C.-M., and Donowitz, M. (1996). NHE2 and NHE3 are human and rabbit brush border proteins. Am. J. Physiol., 270: 629–641.Google Scholar
  84. 83.
    Counillon, L., Pouysségur, J., and Reithmeier, R. A. F. (1994). The Na+/H+ exchanger NHE1 possesses N- dand O-linked glycosylation restricted to the first N-terminal extracellular domain. Biochemistry 33:10463–10469.PubMedCrossRefGoogle Scholar
  85. 84.
    Tse, C. M., Levine, S. A., Yun, C. H. C., Khurana, S., and Donowitz, M. (1994). The Na+/H+ exchanger-2 (NHE2) is an O-linked but not a N-linked sialoglycoprotein. Biochemistry 33:12954–12961.PubMedCrossRefGoogle Scholar
  86. 85.
    Counillon, L., Scholz, W., Lang, H. J., and Pouysségur, J. (1993). Pharmacological characterization of stably tranfected Na+/H+ antiporter isoforms using amiloride analogs and a new inhibitor exhibiting anti-ischemic properties. Am. Soc. Pharmacol. Exp. Ther. 44:1041–1045.Google Scholar
  87. 86.
    Yu, F. H., Shull, G., and Orlowski, J. (1993). Functional properties of the rat Na+/H+ exchanger NHE2 isoform expressed in Na+/H+ exchanger deficient Chinese hamster ovary cells. J. Biol. Chem. 268:25536–25541.PubMedGoogle Scholar
  88. 87.
    Kandasamy, R. A., Yu, F. H., Harris, R., Boucher, A., Hanrahan, J. W., and Orlowski, J. (1995). Plasma membrane Na+/H+ exchanger isoforms (NHE -1,-2, and -3) are differentially responsive to second messenger agonists of the protein kinase A and C pathways. J. Biol. Chem. 270:29209–29216.PubMedCrossRefGoogle Scholar
  89. 88.
    Borgese, F., Sardet, C., Cappadoro, M., Pouysségur, J., and Motais, R. (1992). Cloning and expression of a cAMP-activatable Na+/H+ exchanger. Evidence that the cytoplasmic domain mediates hormonal regulation. Proc. Natl. Acad. Sci. USA 89:6765–6769.PubMedCrossRefGoogle Scholar
  90. 89.
    Nath, S. K., Hang, C. Y. H., Levine, S. A., Yun, C. H. C., Montrose, M. H., Donowitz, M., and Tse, C.-M. (1996). Hyperosmolarity inhibits the cloned epithelial specific Na/H exchanger isoforms, NHE2 and NHE3: An effect opposite to that of the housekeeping isoform NHE1. Am. J. Physiol., in press.Google Scholar
  91. 90.
    Kapus, A., Grinstein, S., Wasan, S., Kandasamy, R., and Orlowski, J. (1995). Functional characterization of three isoforms of the Na+/H+ exchanger stably expressed in Chinese hamster ovary cells. ATP dependence, osmotic sensitivity, and role in cell proliferation. J. Biol. Chem. 269:23544–23552.Google Scholar
  92. 91.
    Moe, O. W., Amemiya, M., and Yamaji, Y (1995). Activation of protein kinase A acutely inhibits and phosphorylates Na/H exchanger NHE3. J. Clin. Invest. 96:2187–2194.PubMedCrossRefGoogle Scholar
  93. 92.
    Yun, C. H. C., Tse, C.-M., and Donowitz, M. (1995). Chimeric Na+/H+ exchangers: An epithelial N-terminal domain requires an epithelial cytoplastic C-terminal domain for regulation by protein kinases. Proc. Natl. Acad. Sci. USA 92:10723–10727.PubMedCrossRefGoogle Scholar
  94. 93.
    Levine, S. A., Nath, S. K., Yun, C. H. C., Yip, J. W., Montrose, M., Donowitz, M., and Tse, C.-M. (1995). Separate C-terminal domains of the epithelial specific brush border Na+/H+ exchanger isoform NHE3 are involved in stimulation and inhibition by protein ki-nases/growth factors. J. Biol. Chem. 270:13716–13725.PubMedCrossRefGoogle Scholar
  95. 94.
    Wakabayashi, S., Bertrand, B., Ikeda, T., Pouysségur, J., and Shigekawa, J. (1994). Mutation of calmodulin-binding site renders the Na+/H+ exchanger (NHE1) highly H+-sensitive and Ca2+ regulation defective. J. Biol. Chem. 269:13710–13715.PubMedGoogle Scholar
  96. 95.
    Bertrand, B., Wakabayashi, S., Ikeda, T., Pouysségur, J., and Shigekawa, M. (1994). The Na+/H+ exchanger isoform 1 (NHE1) is a novel member of the calmodulin-binding proteins. Identification and characterization of the calmodulin-binding sites. J. Biol. Chem. 269:13703–13709.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1996

Authors and Affiliations

  • Mark Donowitz
    • 1
  • Susan A. Levine
    • 1
  • C. H. Chris Yun
    • 1
  • Steven R. Brant
    • 1
  • Samir Nath
    • 1
  • Jeannie Yip
    • 1
  • Sandra Hoogerwerf
    • 1
  • Jacques Pouysségur
    • 2
  • Chung-Ming Tse
    • 1
  1. 1.Departments of Medicine and Physiology, GI UnitThe Johns Hopkins University School of MedicineBaltimoreUSA
  2. 2.Department of BiochemistryUniversity of NiceNiceFrance

Personalised recommendations