Skip to main content

Heterostructures and Strained Superlattices in the Ge-Si System: Growth, Structure Defects, and Electronic Properties

  • Chapter
Growth of Crystals

Abstract

Heterostructures and superlattices based on Si, Ge, and their solid solutions have recently generated much interest for application in electronic devices [1].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T. C. Chen, E. Ganin, H. Stork, et al., “Submicrometer Si and Si-Ge epitaxial-base double-poly self-aligned bipolar transistors,” IEEE Trans. Electron Devices, 38, No. 4, 941–943 (1991).

    Article  CAS  Google Scholar 

  2. K. J. Miller and M. J. Grieco, “Epitaxial Si-Ge alloy films on silicon substrates,” J. Electrochem. Soc., 109, No. 1, 70–71 (1962).

    Article  CAS  Google Scholar 

  3. A. G. Milnes and D. L. Feucht, Heterojunctions and Metal-Semiconductor Junctions, Academic Press, New York (1972).

    Google Scholar 

  4. J. P. Donnelly and A. G. Milnes, “The photovoltaic characteristics of p-n Ge-Si and Ge-GeAs heterojunctions,” Int. J. Electron., 20, No. 4, 295–299 (1966).

    Article  CAS  Google Scholar 

  5. E. Kasper and H. J. Herzog, “Elastic strain and misfit dislocation density in Si0.92Ge0.08 films on silicon substrates,” Thin Solid Films, 44, No. 3, 357–370 (1977).

    Article  CAS  Google Scholar 

  6. J. C. Bean, “The growth of novel silicon materials,” Phys. Today, 39, No. 10, 36–42 (1986).

    Article  CAS  Google Scholar 

  7. E. Kasper, “Growth and properties of Si/SiGe superlattices,” Surf. Sci., 174, 630–639 (1986).

    Article  CAS  Google Scholar 

  8. S. L. Jain and W. Hayes, “Structures, properties and applications of GexSi1-x; strained layers and superlattices,” Semicond. Sci. Technol., 6, No. 7, 547–576 (1991).

    Article  CAS  Google Scholar 

  9. K. Miki, K. Sakamoto, T. Sakamoto, et al., “Gen/Sim strained layer superlattices fabricated by phase-locked epitaxy,” J. Cryst. Growth, 95, No. 1–4, 444–446 (1989).

    Article  CAS  Google Scholar 

  10. H. Hirayama, T. Tatsumi, A. Oqura, and N. Aizaki, “Gas source silicon molecular beam epitaxy using silane,” Appl. Phys. Lett., 51, No. 26, 2213–2215 (1987).

    Article  CAS  Google Scholar 

  11. B. S. Meyerson, “Low-temperature silicon epitaxy by ultrahigh vacuum/chemical vapor deposition,” Appl. Phys. Lett., 48, No. 12, 797–799 (1986).

    Article  CAS  Google Scholar 

  12. B. Cunningham, J. O. Chu, and S. Akbar, “Heteroepitaxial growth of Ge on (100)Si by ultrahigh vacuum chemical vapor deposition,” Appl. Phys. Lett., 59, No. 27, 3574–3576 (1991).

    Article  CAS  Google Scholar 

  13. J. H. Comfort, L. M. Garverick, and R. Reif, “Silicon surface cleaning by low dose argon-ion bombardment for low-temperature (750°C) epitaxial silicon deposition. I. Process considerations,” J. Appl. Phys., 62, No. 8, 3388–3397 (1987).

    Article  CAS  Google Scholar 

  14. T. I. Kamins and D. J. Meyer, “Kinetics of silicon-germanium deposition by atmospheric-pressure chemical vapor deposition,” Appl. Phys. Lett., 59, No. 2, 178–180 (1991).

    Article  CAS  Google Scholar 

  15. P. D. Agnello, T. O. Sedgwick, M. S. Goorsky, et al., “Selective growth of silicon-germanium alloys by atmospheric-pressure chemical vapor deposition at low temperatures,” Appl. Phys. Lett., 59, No. 12, 1479–1481 (1991).

    Article  CAS  Google Scholar 

  16. D. W. Greve, “Growth of epitaxial Ge-Si heterostructures by chemical vapour deposition,” Mater. Sci. Eng. B, 18, No. 1, 22–51 (1993).

    Article  Google Scholar 

  17. G. G. Devyatykh, A. V. Gusev, and V. M. Vorotyntsev, “Preparation of high-purity Ge,” Vysokochist. Veshchestva, No. 1, 5–16 (1988).

    Google Scholar 

  18. K. Pujinaga, “Low-temperature heteroepitaxy of Ge on Si by GeH4 gas low-pressure chemical vapor deposition,” J. Vac. Sci. Technol. B, 9, No. 3, 1511–1516 (1991).

    Article  Google Scholar 

  19. V. O. Usakovskii, A. G. Etinger, E. E. Grinberg, and Yu. M. Fetisov, “Equilibrium of liquid-gas diluted solutions of tetramethylsilane,” Vysokochist. Veshchestva, No. 1, 209–212 (1987).

    Google Scholar 

  20. V. M. Vorotyntsev, V. V. Balabanov, V. M. Malyshev, and V. I. Zvereva, “Ultrapurification of volatile inorganic hydrides from suspended solids by distillation,” Vysokochist. Veshchestva, No. 3, 34–41 (1992).

    Google Scholar 

  21. V. M. Vorotyntsev, V. V. Balabanov, G. M. Mochalov, et al., “Physicochemical principles of ultrapurification of volatile inorganic hydrides by fractionation at elevated pressures. III. Ultrapurification of hydrides from moderately soluble impurities,” Vysokochist. Veshchestva, No. 6, 60–67 (1993).

    Google Scholar 

  22. V. M. Vorotyntsev, P. N. Drozdov, S. A. Nosyrev, et al., “Permeability of Group III-VI volatile inorganic hydrides through Silar polymeric membranes,” Vysokochist. Veshchestva, No. 3, 205–207 (1988).

    Google Scholar 

  23. V. M. Vorotyntsev, P. N. Drozdov, S. A. Nosyrev, and P. I. Medvedev, “Ultrapurification of gases in continuous-membrane column cascades,” Vysokochist. Veshchestva, No. 5, 29–36 (1993).

    Google Scholar 

  24. Y. Ye., Benjamin, Y. H. Liu, and D. Y. H. Pui, “Condensation-induced particle formation during vacuum pump down,” J. Electrochem. Soc., 140, No. 5, 1463–1468 (1993).

    Article  CAS  Google Scholar 

  25. M. Amari, I. Funahashi, and W. Plante, “Understanding gas system contamination through the evaluation of use filters,” Solid State Technol., 34, No. 6, 1–7 (1991).

    Google Scholar 

  26. J. R. Monkowski and D. W. Freeman, “In situ contamination monitoring for realtime control of process equipment,” Solid State Technol., 33, No. 7, 13–17 (1990).

    Google Scholar 

  27. D. L. Feucht, “Preparation and properties of Ge-GexSi1-x, Ge-GeAs, and Si-GaP heterojunctions,” in: Proc. Int. Conf. on Heterojunctions, Vol. 1, Budapest (1971), pp. 39–62.

    Google Scholar 

  28. G. M. Oleszek and R. L. Anderson, “Heteroepitaxial growth of SixGe1-x alloys by thermal decomposition of SiH4 and GeH4,” J. Electrochem. Soc., 120, No. 4, 554–559 (1973).

    Article  CAS  Google Scholar 

  29. O. A. Kuznetsov, T. A. Zeveke, V. A. Tolomasov, et al., “Growth of Ge-Si heteroepitaxial layers from hydrides,” in: Materials Science, Physics, and Chemistry of Condensed Solids [in Russian], Vol. 3, Voronezh (1975), pp. 95–99.

    Google Scholar 

  30. O. A. Kuznetsov, V. A. Tolomasov, N. V. Gudkova, and V. S. Krasil’nikov, “Multilayered Ge1-xSix-Ge heteroepitaxial structures,” in: Abstracts of the 6th Int. Conf. on Growth of Crystals [in Russian], Vol. 1, Moscow (1980), pp. 315–318.

    Google Scholar 

  31. O. A. Kuznetsov and V. I. Piskarev, “Ge1-xSix;-Ge periodic structures. Gas hydride growth method and electrophysical studies,” in: Multilayered semiconducting structures and superlattices [in Russian], Inst. Appl. Phys., USSR Acad. Sci., Gorkii (1984), pp. 20–37.

    Google Scholar 

  32. O. A. Kuznetsov, L. K. Orlov, N. G. Kalugin, et al., “Structures and Raman spectra of Ge-Si superlattices grown by the hydride method,” Fiz. Tverd. Tela, 36, No. 3, 726–735 (1994).

    CAS  Google Scholar 

  33. S. R. Gunn and L. G. Green, “The heats of formation of some unstable gaseous hydrides,” J. Phys. Chem., 65, No. 5, 779–783 (1961).

    Article  CAS  Google Scholar 

  34. L. Surnev and M. Tikhov, “Comparative study of hydrogen absorption on Ge(100) and Ge(111) surfaces,” Surf. Sci., 138, No. 1, 40–50 (1984).

    Article  CAS  Google Scholar 

  35. S. M. Gates and S. K. Kilkarni, “Hydrogen coverage during Si growth from SiH4 and Si2H6,” Appl. Phys. Lett., 60, No. 1, 53–55 (1992).

    Article  CAS  Google Scholar 

  36. R. Hull, J. C. Been, D. J. Eaglesham, et al., “Strain relaxation phenomena in GexSi1-x/Si strained structures,” Thin Solid Films, 183, No. 1–2, 117–132 (1989).

    Article  CAS  Google Scholar 

  37. J. C. Been, T. T. Cheng, L. C. Feldman, et al., “Pseudomorphic growth of GexSi1-x; on silicon by molecular beam epitaxy,” Appl. Phys. Lett., 44, No. 1, 102–105 (1984).

    Article  Google Scholar 

  38. Y. Kohama, Y. Fukuda, and M. Seki, “Determination of the critical layer thickness of Si1-xGex/Si heterostructures by direct observation of misfit dislocations,” Appl. Phys. Lett., 52, No. 5, 380–382 (1988).

    Article  CAS  Google Scholar 

  39. R. H. Miles, T. C. McGill, P. P. Chow, et al., “Dependence of critical thickness on growth temperature in Ge1-xSix/Si superlattice,” Appl. Phys. Lett., 52, No. 11, 916–918 (1988).

    Article  CAS  Google Scholar 

  40. C. G. Tuppen, C. J. Gibbings, and M. Hockly, “The effect of misfit dislocation nucleating and propagation on Si/Si1-xGex; critical thickness values,” J. Cryst Growth, 94, No. 2, 392–404 (1989).

    Article  CAS  Google Scholar 

  41. Y. Fukuda, “Accommodation of lattice misfit in Si1-xGex/Si heterostructures,” J. Cryst. Growth, 99, 269–273 (1990).

    Article  CAS  Google Scholar 

  42. R. Hull and J. C. Been, “Variation in misfit dislocation behavior as a function of strain in the GeSi/Si system,” Appl. Phys. Lett., 54, No. 10, 925–927 (1989).

    Article  CAS  Google Scholar 

  43. C. J. Gibbings, C. G. Tuppen, and M. Hockly, “Dislocation nucleation and propagation in Si0.95Ge0.05 layers on Si,” Appl. Phys. Lett., 54, No. 2, 148–150 (1989).

    Article  CAS  Google Scholar 

  44. C. G. Tuppen, C. J. Gibbings, M. Hockly, and S. G. Roberts, “Misfit dislocation multiplication in Si1-xGex alloys for x < 0.15,” Appl. Phys. Lett., 56, No. 1, 54–56 (1990).

    Article  CAS  Google Scholar 

  45. D. J. Eaglesham, D. M. Maher, E. P. Kvam, et al., “New source of dislocations in GexSi1-x;/Si(100) strained epitaxial layers,” Phys. Rev. Lett., 62, No. 2, 187–190 (1989).

    Article  CAS  Google Scholar 

  46. P. Y. Timbrell, J.-M. Baribeau, D. J. Lockwood, and J. W. McCaffrey, “An annealing study of strain relaxation and dislocation generation in GexSi1-x/Si heteroepitaxy,” J. Appl. Phys., 67, No. 10, 6296–6300 (1990).

    Article  Google Scholar 

  47. D. J. Eaglesham, E. P. Kvam, D. M. Maher, et al., “Dislocation nucleation near the critical thickness in GeSi/Si strained layers,” Phil. Mag. A, 59, No. 5, 1059–1073 (1989).

    Article  CAS  Google Scholar 

  48. D. D. Perovic, G. C. Weatherly, J.-M. Baribeau, and D. C. Houghton, “Heterogeneous nucleation sources in molecular beam epitaxy-grown GexSi1-x/Si strained layer superlattices,” Thin Solid Films, 183, No. 1–2, 141–156 (1989).

    Article  CAS  Google Scholar 

  49. V. I. Vdovin, K. L. Lyutovich, M. G. Mil’vidskii, et al., “Effect of solid-solution composition on defect formation in GexSi1-x/Si heterostructures prepared by MBE,” Kristallografiya, 37, No. 2, 487–496 (1992).

    CAS  Google Scholar 

  50. V. I. Vdovin, M. G. Mil’vidskii, T. G. Yugova, et al., “Effect of alloy composition on defect formation in GexSi1-x/Si heterostructures obtained by molecular beam epitaxy,” J. Cryst Growth, 141, 109–118 (1994).

    Article  CAS  Google Scholar 

  51. W. Hagen and H. Strunk, “A new type of source generating misfit dislocations,” Appl. Phys., 17, 85–87 (1978).

    Article  CAS  Google Scholar 

  52. F. K. LeGoues, B. S. Meyerson, and J. F. Morar, “Anomalous strain relaxation in SiGe thin films and superlattices,” Phys. Rev. Lett., 66, No. 22, 2903–2906 (1991).

    Article  CAS  Google Scholar 

  53. R. J. Hauenstein, R. H. Miles, E. T. Croke, and T. C. McGill, “Relaxation of coherent strain in Si1-xGex/Si superlattices and alloys,” Thin Solid Films, 183, No. 1–2, 79–86 (1989).

    Article  CAS  Google Scholar 

  54. C. G. Tuppen and C. J. Gibbings, “Misfit dislocations in annealed Si1-xGex/Si heterostructures,” Thin Solid Films, 153, No. 1–2, 133–139 (1989).

    Article  Google Scholar 

  55. C. G. Tuppen and C. J. Gibbings, “A quantitative analysis of strain relaxation by misfit dislocation glide in Si1-x;Gex/Si heterostructures,” J. Appl. Phys., 68, No. 4, 1526–1534 (1990).

    Article  CAS  Google Scholar 

  56. D. C. Houghton, “Nucleation rate and glide velocity of misfit dislocations in Si1-xGex/Si(100) heterostructures,” Appl. Phys. Lett., 57, No. 20, 2124–2126 (1990).

    Article  CAS  Google Scholar 

  57. V. I. Vdovin, E. N. Novikova, M. G. Mil’vidskii, et al., “Structure of GaAs/Si1-xGex; epitaxial layers grown on Si(001) substrates,” Kristallografiya, 57, No. 4, 974–979 (1990).

    Google Scholar 

  58. V. I. Vdovin, O. A. Kuznetsov, M. G. Mil’vidskii, et al., “Defect formation in SixGe1-x/Ge(11) heterostructures obtained by hydride epitaxy,” Kristallografiya, 38, No. 4, 269–271 (1993).

    CAS  Google Scholar 

  59. V. I. Vdovin, M. G. Mil’vidskii, and T. G. Yugova, “Peculiarities of defect formation in SiGe/Si and SiGe/Ge heterostructures,” Solid State Phenomena, 32–33, 345–352 (1993).

    Article  Google Scholar 

  60. O. A. Kuznetsov, L. K. Orlov, Yu. N. Drozdov, et al., “Ge-Ge1-xSix; Superlattices obtained by the hydride method,” Fiz. Tekh. Poluprovodn., 27, No. 10, 1591–1598 (1993).

    CAS  Google Scholar 

  61. L. S. Palatnik, A. A. Koz’ma, I. F. Mikhailov, and V. N. Maslov, “Determination of periodic structures using Bragg reflection satellites,” Kristallografiya, 23, No. 3, 570–577 (1978).

    CAS  Google Scholar 

  62. L. K. Orlov, O. A. Kuznetsov, Yu. N. Drozdov, et al., “Energy diagrams and electric properties of Ge-GeSi superlattices with strained layers,” Fiz. Tverd. Tela, 32, No. 7, 1933–1940 (1990).

    CAS  Google Scholar 

  63. T. P. Pearsall, F. H. Pollak, J. C. Bean, and R. Hull, “Electroreflectance spectroscopy of Si-GeSi quantum-well structures,” Phys. Rev. B, 33, No. 10, 6821–6830 (1986).

    Article  CAS  Google Scholar 

  64. V. A. Gaisler, O. A. Kuznetsov, N. G. Neizvestnyi, et al., “Raman scattering at local oscillations of Ge1-xSix alloys,” Fiz. Tverd. Tela, 31, No. 11, 292–297 (1989).

    CAS  Google Scholar 

  65. J. B. Renucci, M. A. Renucci, and M. Cardona, “Volume dependence of the Raman frequencies of Ge-Si alloys,” Solid State Commun., 9, No. 19, 1651–1654 (1971).

    Article  CAS  Google Scholar 

  66. W. J. Brya, “Raman scattering in Ge-Si alloys,” Solid State Commun., 12, 253–257 (1973).

    Article  CAS  Google Scholar 

  67. R. Carles, A. Mlayah, G. Landa, et al., “Raman scattering in Ge-GeSi superlattice,” Superlattices Microstruct., 13, No. 1, 109–114 (1993).

    Article  CAS  Google Scholar 

  68. G. Abstreiter, H. Brugger, T. Wolf, et al., “Strain-induced two-dimensional electron gas in selectively doped Si/SiGe superlattices,” Phys. Rev. Lett., 54, No. 22, 2441–2444 (1985).

    Article  CAS  Google Scholar 

  69. D. W. Feldman, M. Ashkin, and H. J. Parker, “Raman scattering by local modes in germanium-rich Si-Ge alloys,” Phys. Rev. Lett., 17, No. 24, 1209–1212 (1966).

    Article  CAS  Google Scholar 

  70. L. K. Orlov, “Light absorption in quantum-size semiconducting layers and superlattices in strong electric fields,” Fiz. Tekh. Poluprovodn., 21, No. 4, 710–717 (1987).

    Google Scholar 

  71. J. D. White, G. Fasol, R. A. Chanbari, et al., “Vibration properties of Si/Ge superlattices incorporating biatomic sheets of silicon and germanium,” Phys. Rev. B, 43, No. 2, 1685–1696 (1991).

    Article  CAS  Google Scholar 

  72. M. M. Nechaev, A. A. Kostenko, O. A. Kuznetsov, et al., “Use of semiconducting structures with a superlattice in the mm wavelength range,” Radiotekh. Elektron., 32, No. 2, 410–415 (1987).

    Google Scholar 

  73. A. A. Kostenko, O. A. Kuznetsov, L. K. Orlov, et al., “Transformation of electromagnetic signals in the submillimeter band in Ge-GeSi superlattice,” Pis’ma Zh. Tekh. Fiz., 13, No. 12, 734–736 (1987).

    CAS  Google Scholar 

  74. L. K. Orlov, O. N. Filatov, I. A. Elipashev, et al., “Detection of UHF signals by a bulk heterostructure containing the Ge-Ge1-xSix superlattice,” in: Solid-State Generators and Transformers for the Millimeter and Submillimeter Bands, Institute of Radioelectronics, Ukrainian SSR Academy of Sciences, Khar’kov (1989), pp. 99–107.

    Google Scholar 

  75. L. K. Orlov, O. A. Kuznetsov, and Yu. N. Drozdov, “Electroreflectance spectra from Ge-GeSi periodic structures with superthin layers,” Fiz. Tekh. Poluprovodn., 20, No. 1, 118–122 (1986).

    CAS  Google Scholar 

  76. L. K. Orlov, O. A. Kuznetsov, and Yu. N. Drozdov, “Electroreflectance surface spectra of the Ge-Ge1-xSix superlattice,” Fiz. Tekh. Poluprovodn., 21, No. 11, 1962–1967 (1987).

    CAS  Google Scholar 

  77. L. K. Orlov and O. A. Kuznetsov, “Photovoltaic effect in structures containing the Ge-GeSi superlattice,” Fiz. Tekh. Poluprovodn., 22, No. 11, 1994–2000 (1988).

    CAS  Google Scholar 

  78. N. L. Rowell, J. P. Noel, D. C. Houghton, et al., “Exciton luminescence in Si1-xGex/Si heterostructures grown by molecular beam epitaxy,” J. Appl. Phys., 74, No. 4, 2790–2805 (1993).

    Article  CAS  Google Scholar 

  79. V. Arbet-Engels, M. A. Kallel, and K. L. Wang, “Photoluminescence of hydrogenated SinGem superlattices,” Appl. Phys. Lett., 59, No. 14, 1705–1707 (1991).

    Article  CAS  Google Scholar 

  80. N. L. Rowell, J.-M. Baribeau, and D. C. Houghton, “Photoluminescence of MBE grown Si1-xGex films,” J. Electrochem. Soc.: Solid State Sci. Technol, 135, No. 11, 2841–2843 (1988).

    CAS  Google Scholar 

  81. N. G. Kalugin, L. K. Orlov, and O. A. Kuznetsov, “2D-Excitonic luminescence in Ge layers in periodic Ge-GeSi heterostructures,” Pis’ma Zh. Eksp. Teor. Fiz., 58, No. 3, 197–201 (1993).

    CAS  Google Scholar 

  82. G. Schuberth, F. Schaffler, M. Besson, et al., “High electron mobility in modulation-doped Si/SiGe quantum well structures,” Appl. Phys. Lett., 59, No. 25, 3318–3320 (1991).

    Article  CAS  Google Scholar 

  83. V. V. Nikonorov, V. I. Gavrilenko, I. N. Kozlov, et al., “Resonance in Ge layers in Ge1-xSix-Ge strained heterostructures,” in: Proc. Int. Conf. on Solid State Devices and Materials, Nippon Conv. Center, Makuhari Messe, Chiba, Japan (1993), pp. 389–390.

    Google Scholar 

  84. L. K. Orlov, “Technology and physical properties of Ge-GeSi heterostructures with a two-dimensional gas charge carrier,” Izv. Rossiisk. Akad. Nauk, Ser. Fiz., 58, No. 7, 118–124 (1994).

    CAS  Google Scholar 

  85. E. Misakami, H. Eto, K. Nanagawa, and M. Miyao, “High hole mobility in modulation doped and strain-controlled p-Si0.5Ge0.5/Ge/Si1-xGex heterostructures fabricated using molecular beam epitaxy,” Jpn. J. Appl. Phys., 29, No. 7, L1059-L1061 (1990).

    Google Scholar 

  86. G. R. Wagner and M. A. Janocko, “Observation of a two-dimensional hole gas in boron doped Si0.5Ge0.5/Ge heterostructures,” Appl. Phys. Lett., 54, No. 1, 66–68 (1989).

    Article  CAS  Google Scholar 

  87. D. K. Orlov, O. A. Kuznetsov, and R. A. Rubtsova, “Strained Ge-Ge1-xSix superlattices in selectively doped layers,” Pis’ma Zh. Tekh. Fiz., 15, No. 21, 77–81 (1989).

    CAS  Google Scholar 

  88. Y. H. Xie, D. Monroe, E. A. Fitzgerald, et al., “Very high mobility two-dimensional hole gas in Si/GeSi/Ge structures grown by molecular beam epitaxy,” Appl. Phys. Lett., 63, No. 16, 2263–2265 (1993).

    Article  CAS  Google Scholar 

  89. O. A. Mironov, O. A. Kuznetsov, L. K. Orlov, et al., “The Hall-effect in selectively doped strained-layer Ge-GeSi superlattices,” Superlattices Microstruct., 10, No. 4, 467–470 (1991).

    Article  CAS  Google Scholar 

  90. L. K. Orlov, O. A. Kuznetsov, R. A. Rubtsova, et al., “Hall-effect and band structure of selectively doped Ge-GeSi superlattices,” Zh. Eksp. Teor. Fiz., 98, No. 3, 1028–1034 (1990).

    CAS  Google Scholar 

  91. R. Apetz, R. Loo, L. Vescan, et al., “Photoluminescence and magnetotransport of 2D hole gases in Si/SiGe/Si heterostructures,” private communication.

    Google Scholar 

  92. C. G. van der Walle and R. M. Martin, “Theoretical calculations of heterojunction discontinuities in the Si/Ge system,” Phys. Rev., 34, No. 8, 5621–5634 (1986).

    Article  Google Scholar 

  93. I. Morrison and M. Jaros, “Electronic structure of Si/SiGe and Si/SiSn strained layer superlattices,” Superlattices Microstruct, 2, No. 3, 329–333 (1986).

    Article  CAS  Google Scholar 

  94. T. Mishima, C. W. Fredriksz, G. P. A. Van de Wall, et al., “Effect of interface quality on the electrical properties of p-Si/SiGe two-dimensional hole gas systems,” Appl. Phys. Lett., 57, No. 24, 2567–2569 (1990).

    Article  CAS  Google Scholar 

  95. L. K. Orlov, O. A. Kuznetsov, R. A. Rubtsova, et al., “Quantum Hall effect in holes in strained Ge-GeSi superlattices,” Pis’ma Zh. Eksp. Teor. Fiz., 54, No. 6, 351–353 (1991).

    Google Scholar 

  96. Yu. G. Arapov, N. A. Gorodilov, O. A. Kuznetsov, et al., “Magnetoresistance oscillations in strained Ge-GeSi superlattices in an angled magnetic field,” Fiz. Tekh. Poluprovodn., 27, No. 7, 1165–1174 (1993).

    CAS  Google Scholar 

  97. N. A. Gorodilov, O. A. Kuznetsov, L. K. Orlov, et al., “Spin-confinement in strained Ge-GeSi superlattices,” Pis’ma Zh. Eksp. Teor. Fiz., 56, No. 8, 409–413 (1992).

    Google Scholar 

  98. G. Abstreiter, K. Eberl, E. Priess, et al., “Silicon/germanium strained layer superlattices,” J. Cryst. Growth, 95, No. 1–4, 431–438 (1989).

    CAS  Google Scholar 

  99. Yu. G. Arapov, N. G. Gorodilov, O. A. Kuznetsov, et al., “Spin splitting of magnetic-resistance oscillations and Hall quantum effect in Ge/GeSi superlattices in a tilted magnetic field,” Pis’ma Zh. Eksp. Teor. Fiz., 59, No. 4, 227–230 (1994).

    CAS  Google Scholar 

  100. K. Ismail, B. S. Meyerson, and P. J. Wang, “High electron mobility in modulation-doped Si/SiGe,” Appl. Phys. Lett., 58, No. 19, 2117–2119 (1991).

    Article  CAS  Google Scholar 

  101. A. S. Tager, “Dimensional quantum effects in submicron semiconducting structures and their possible use in UHF electronics,” TsNII Elektronika, Moscow, No. 9 (403), 21–34 (1987).

    Google Scholar 

  102. S. C. Martin, L. M. Hitt, and J. J. Rosenberg, “p-Channel germanium MOSFET’s with high channel mobility,” IEEE Electron Device Lett., 10, No. 7, 325–326 (1989).

    Article  CAS  Google Scholar 

  103. D.J. Hymes and J.J. Rosenberg, “Growth and materials characterization of native germanium oxynitride thin films on germanium,” J. Electrochem. Soc, 135, No. 4, 961–965 (1988).

    Article  CAS  Google Scholar 

  104. H. Temkin, T. P. Pearsall, J. C. Bean, et al., “Ge1-x;Six strained layer superlattice waveguide photodetectors operating near 1.3 03bcm,” Appl. Phys. Lett., 48, No. 15, 963–965 (1986).

    Article  CAS  Google Scholar 

  105. Y. Shiraki, S. Fukatsu, K. Fujita, et al., “Formation of high quality SiGe/Si heterostructures,” Solid State Phenomena, 32–33, 373–384 (1993).

    Article  Google Scholar 

  106. F. Stern and W. E. Howard, “Properties of semiconductor surface inversion layers in the electric quantum limit,” Phys. Rev., 163, No. 3, 816–835 (1967).

    Article  CAS  Google Scholar 

  107. M. O. Manasreh, Semiconductor Quantum Wells and Superlattices for Long-Wavelength Infrared Detectors, Artech House, Boston (1993).

    Google Scholar 

  108. L. Chango and K. L. Wang, “Electron intersubband subsorption in Ge/SiGe quantum-well structures grown on Si(001) substrate,” Appl. Phys. Lett., 64, No. 10, 1256–1258 (1994).

    Article  Google Scholar 

  109. E. V. Bakhanova, “Impurity levels in semiconductors with degenerate bands during uniaxial deformation,” in: Abstracts of Papers of the 14th All-Union Conf. on Semiconductor Theory [in Russian], Donetsk (1989), p. 44.

    Google Scholar 

  110. A. A. Andronov and Yu. K. Pozhela (eds.), “Hot electrons in semiconductors,” A Collection of Scientific Works, Inst. Appl. Phys., USSR Academy of Sciences, Gor’kii (1983).

    Google Scholar 

  111. J. F. Luy, H. Jorke, H. Kibbel, et al., “Si/SiGe heterostructure mitatt diode,” Electron. Lett., 24, No. 22, 1386–1387 (1988).

    Article  Google Scholar 

  112. S. S. Phee, R. P. G. Karunasiri, C. H. Chern, et al., “Si/GeSi/Si resonant tunneling diode doped by thermal boron source,” J. Vac. Sci. Technol. B, 7, No. 2, 327–331 (1989).

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Consultants Bureau, New York

About this chapter

Cite this chapter

Mil’vidskii, M.G., Vdovin, V.I., Orlov, L.K., Kuznetsov, O.A., Vorotyntsev, V.M. (1996). Heterostructures and Strained Superlattices in the Ge-Si System: Growth, Structure Defects, and Electronic Properties. In: Givargizov, E.I., Melnikova, A.M. (eds) Growth of Crystals. Poct Kpиctaллob / Rost Kristallov / Growth of Crystals, vol 20. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1141-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1141-6_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8445-1

  • Online ISBN: 978-1-4613-1141-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics