Advertisement

On the Logic of Common Belief and Common Knowledge

  • Luc Lismont
  • Philippe Mongin
Part of the Theory and Decision Library book series (TDLC, volume 20)

Abstract

An event is said to be common belief (CB) if every individual in the group believes it, believes that every individual in the group believes it, and so on ad infinitum. Following an equally well-received (albeit questionable) view, a known event must be true. Hence the standard definition of common knowledge (CK), as perhaps first introduced by Lewis (1969) and as formalized in Aumann’s (1976) classic paper: an event is said to be CK if it is true, every individual in the group knows it, etc.

Keywords

Common Knowledge Common Belief Axiom System Epistemic Logic Kripke Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderlini, L.: 1990, “Some Notes on Church’s Thesis and the Theory of the Games”, Theory and Decision 29, 19–52.CrossRefGoogle Scholar
  2. Aumann, R.J.: 1976, ‘Agreeing to Disagree’, The Annals of Statistics 4, 1236–1239.CrossRefGoogle Scholar
  3. Aumann, R.J.: 1987, ‘Correlated Equilibrium as an Expression of Bayesian Rationality’, Econometrica 55, 1–18.CrossRefGoogle Scholar
  4. Bacharach, M.: 1985, ‘Some Extensions of a Claim of Aumann in an Axiomatic Model of Knowledge’, Journal of Economic Theory 37, 167–190.CrossRefGoogle Scholar
  5. Bacharach, M.: 1992, ‘The Acquisition of Common Knowledge’, in C. Bicchieri and M.L. Dalla Chiara (editors), Knowledge, Belief and Strategic Interaction, 285–316, Cambridge University Press, Cambridge.Google Scholar
  6. Bacharach, M.: 1994, ‘The Epistemic Structure of a Theory of a Game’, Theory and Decision 37, 7–48 (this issue).CrossRefGoogle Scholar
  7. Bacharach, M.: forthcoming, ‘When Do We Have Information Partitions?’, in M. Dempster et al. (editors), Mathematical Models in Economics, Oxford University Press, Oxford.Google Scholar
  8. Barwise, J.: 1981, ‘Scenes and Other Situations’, Journal of Philosophy 78, 369–397.CrossRefGoogle Scholar
  9. Barwise, J.: 1989, The Situation in Logic, Center for the Study of Language and Information, Stanford.Google Scholar
  10. Binmore, K. and A. Brandenburger: 1990, ‘Common Knowledge and Game Theory’, in K. Binmore, Essays on the Foundations of Game Theory, Blackwell, Oxford.Google Scholar
  11. Binmore, K. and H.S. Shin: 1992, ‘Algorithmic Knowledge and Game Theory’, in C. Bicchieri and M.L. Dalla Chiara (editors), Knowledge, Belief and Strategic Interaction, 141–154, Cambridge University Press, Cambridge.Google Scholar
  12. Böge, W. and T. Eisele: 1979, ‘On Solutions of Bayesian Games’, International Journal of Game Theory 8, 193–215.CrossRefGoogle Scholar
  13. Boolos, G. and R.C. Jeffrey: 1974, Computability and Logic, Cambridge University Press, Cambridge.Google Scholar
  14. Brandenburger, A.: 1992, ‘Knowledge and Equilibria in Games’, Journal of Economic Perspectives 6, 83–101.Google Scholar
  15. Brandenburger, A. and E. Dekel: 1987, ‘Common Knowledge with Probability 1’, Journal of Mathematical Economics 16, 237–245.CrossRefGoogle Scholar
  16. Brandenburger, A. and E. Dekel: 1993, ‘Hierarchies of Beliefs and Common Knowledge’, Journal of Economic Theory 59, 189–198.CrossRefGoogle Scholar
  17. Canning, D.: 1992, ‘Rationality, Computability, and Nash Equilibrium’, Econometrica 60, 877–888.CrossRefGoogle Scholar
  18. Chellas, B.F.: 1980, Modal Logic, an Introduction, Cambridge University Press, Cambridge.Google Scholar
  19. Dubucs, J.: 1992, ‘Omniscience logique et frictions cognitives’, in D. Andler et al. (editors), Epistémologie et cognition, 115–131, Mardaga, Liège.Google Scholar
  20. Dupuy, J.P.: 1989, ‘Convention et Common Knowledge’, Revue économique 40, 361–400.Google Scholar
  21. Fagin, R., J.Y. Halpern, and M.Y. Vardi: 1984, ‘A Model-Theoretic Analysis of Knowledge’, in Proceedings of the 25th IEEE Symposium on Foundations of Computer Science, 268–278.Google Scholar
  22. Fagin, R., J.Y. Halpern, and M.Y. Vardi: 1984, ‘A Model-Theoretic Analysis of Knowledge’ Journal of the Association for Computing Machinery 38, 382–428, 1991.Google Scholar
  23. Fagin, R. and M.Y. Vardi: 1985, ‘An Internal Semantics for Modal Logic’, in Proceedings of the 17th ACM Symposium on Theory of Computing, 305–315, Providence.Google Scholar
  24. Geanakoplos, J.D.: 1992, ‘Common Knowledge’, Journal of Economic Perspectives 6, 53–82.Google Scholar
  25. Geanakoplos, J.D. and H.M. Polemarchakis: 1982, ‘We Can’t Disagree Forever’, Journal of Economic Theory 26, 363–390.Google Scholar
  26. Gettier, E.: 1963, ‘Is Justified True Belief Knowledge?’, Analysis 23, 121–123.CrossRefGoogle Scholar
  27. Gillet, E. and P. Gochet: 1993, ‘La logique de la connaissance: le problème de l’omniscience logique’, Dialectica 47, 143–171.CrossRefGoogle Scholar
  28. Halpern, J.Y. and Y.O. Moses: 1984, ‘Knowledge and Common Knowledge in a Distributed Environment’, in Proceedings of the 3rd ACM Conference on Principles of Distributed Computing, 50–61, New York.Google Scholar
  29. Halpern, J.Y. and Y.O. Moses: 1984, ‘Knowledge and Common Knowledge in a Distributed Environment’, Journal of the Association for Computing Machinery 37, 549–587, 1990.Google Scholar
  30. Halpern, J.Y. and Y.O. Moses: 1985, ‘A Guide to the Modal Logic of Knowledge’, in Proceedings of the 9th International Joint Conference on Artificial Intelligence (IJCAI-85), 480–490, New York.Google Scholar
  31. Halpern, J.Y. and Y.O. Moses: 1992, ‘A Guide to Completeness and Complexity for Modal Logics of Knowledge and Belief’, Artificial Intelligence 54, 319–379.CrossRefGoogle Scholar
  32. Heifetz, A.: 1993, ‘The Bayesian Formulation of Incomplete Information — The Non-Compact Case’, International Journal of Game Theory 21, 329–338.CrossRefGoogle Scholar
  33. Hintikka, J.: 1962, Knowledge and Belief, Cornell University Press, Ithaca.Google Scholar
  34. Hughes, G.E. and M.J. Cresswell: 1984, A Companion to Modal Logic, Methuen, London.Google Scholar
  35. Lehmann, D.: 1984, ‘Knowledge, Common Knowledge and Related Puzzles’, in Proceedings of the 3rd ACM Conference on Principles of Distributed Computing, 62–67, New York.Google Scholar
  36. Lewis, D.K.: 1969, Convention. A Philosophical Study, Harvard University Press, Harvard.Google Scholar
  37. Lismont, L.: 1993a, ‘La connaissance commune en logique modale’, Mathematical Logic Quarterly 39, 115–130.CrossRefGoogle Scholar
  38. Lismont, L.: 1993b, ‘Common Knowledge. Relating Anti-Founded Situation Semantics to Neighbourhood Semantics’, Prépublications du Département de Mathématiques, Université Catholique de Louvain.Google Scholar
  39. Lismont, L. and P. Mongin: 1993, ‘Belief Closure: A Semantics of Common Knowledge for Modal Propositional Logic’, CORE Discussion Paper 9339, Université Catholique de Louvain.Google Scholar
  40. Mertens, J-F. and S. Zamir: 1985, ‘Formulation of Bayesian Analysis for Games with Incomplete Information’, International Journal of Game Theory 14, 1–29.CrossRefGoogle Scholar
  41. Milgrom, P.: 1981, ‘An Axiomatic Characterization of Common Knowledge’, Econometrica 49, 219–222.CrossRefGoogle Scholar
  42. Milgrom, P. and N. Stokey: 1982, information, ‘Trade and Common Knowledge’, Journal of Economic Theory 26, 17–27.CrossRefGoogle Scholar
  43. Modica, S. and A. Rustichini: 1994, ‘Awareness and Partitional Information Structures’, Theory and Decision 37, 107–124 (this issue).CrossRefGoogle Scholar
  44. Monderer, D. and D. Samet: 1989, ‘Approximating Common Knowledge with Common Beliefs’, Games and Economic Behavior 1, 170–190.CrossRefGoogle Scholar
  45. Mongin, P.: 1994, ‘Some Connections between Epistemic Logic and the Theory of Nonadditive Probability’, in P. Humphreys (editor), Patrick Suppes, Scientific Philosopher, Kluwer, Dordrecht.Google Scholar
  46. Mongin, P.: forthcoming, ‘Une interprétation logique du théorème de Mertens et Zamir’, in J. Dubucs and F. Lepage (editors), Intelligence artificielle et logiques non-classiques: le point de vue philosophique, Hermès, Paris.Google Scholar
  47. Parikh, R. and P. Krasucki: 1990, ‘Communication, Consensus and Knowledge’, Journal of Economic Theory 52, 178–189.CrossRefGoogle Scholar
  48. Reny, P.J.: 1992, ‘Rationality in Extensive-Form Games’, Journal of Economic Perspectives 6, 103–118.Google Scholar
  49. Samet, D.: 1990, ‘Ignoring Ignorance and Agreeing to Disagree’, Journal of Economic Theory 52, 190–207.CrossRefGoogle Scholar
  50. Samet, D.: 1992, ‘Agreeing to Disagree in Infinite Information Structures’, International Journal of Game Theory 21, 213–218.CrossRefGoogle Scholar
  51. Shin, H.S.: 1993, ‘Logical Structure of Common Knowledge’, Journal of Economic Theory 60, 1–13.CrossRefGoogle Scholar
  52. Shin, H.S. and T. Williamson: 1994, ‘Representing the Knowledge of Turing Machines’, Theory and Decision 37, 125–146 (this issue).CrossRefGoogle Scholar
  53. Sperber, D. and D. Wilson: 1986, Relevance, Blackwell, Oxford.Google Scholar
  54. Stalnaker, R.: 1991, ‘The Problem of Logical Omniscience, I’, Synthese 89, 425–440.CrossRefGoogle Scholar
  55. Stalnaker, R.: 1994, ‘On the Evaluation of Solution Concepts’, Theory and Decision 37, 49–73 (this issue).CrossRefGoogle Scholar
  56. Stigum, B.: 1990, Towards a Formal Science of Economics, The MIT Press, Cambridge, Mass.Google Scholar
  57. Usberti, G.: 1992, ‘Connaissance et croyance: pour une épistémologie dualiste’, in D. Andler et al. (editors), Epistémologie et cognition, Mardaga, Liège.Google Scholar
  58. Walliser, B.: 1991, ‘Logique épistémique et théorie des jeux’, Revue économique 42, 801–831.Google Scholar

Copyright information

© Kluwer Academic Publishers 1997

Authors and Affiliations

  • Luc Lismont
    • 1
  • Philippe Mongin
    • 2
    • 3
  1. 1.G.R.E.Q.E.Ecoles des Hautes Études en Sciences SocialesMarseilleFrance
  2. 2.Centre National de la Recherche ScientifiqueFrance
  3. 3.C.O.R.E.Université Catholique de LouvainLouvain-la-NeuveBelgium

Personalised recommendations