Skip to main content

Use and Application of Cytokines and Growth Factors in Laboratory Diagnostic Procedures

  • Chapter
Cytokines and Growth Factors in Blood Transfusion

Part of the book series: Developments in Hematology and Immunology ((DIHI,volume 32))

  • 63 Accesses

Abstract

Cytokines are potent regulating polypeptides or glycoproteins which mediate a variety of biological and physiological processes involved in cellular and humoral immunity, inflammatory reaction as well as hematopoiesis, and also play important roles in host-defense against infection and tumor growth. Abnormal levels of cytokines and growth factors have been shown to be associated with a variety of diseases. For instance, enhanced IL-1ß levels have been reported to be related with sepsis, burn, and rheumatoid arthritis [1–4]. Enhanced erythropoietin (EPO) levels have been found in a series of diseases like certain forms of anemia, and tumors of the kidney or liver [5–7]. Therefore, the information of plasma levels of cytokines as well as growth factors may improve diagnosis, patient follow-up and selection of therapeutic treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cannon JG, Tompkins RG, Gelfand JA. et al. Circulating interleukin-1 and tumor necrosis factor in septic shock and experimental endotoxin fever. J Infect Dis 1990:161: 79–84.

    Article  PubMed  CAS  Google Scholar 

  2. Cannon JG, Friedberg JS, Gelfand JA, et al. Circulating interleukin-1ß and tumor necrosis factor-α after burn injury in humans. Crit Care Med 1992;20:1414–19.

    Article  PubMed  CAS  Google Scholar 

  3. Eastgate JA, Symons JA, Wood NC, et al. Correlation of plasma interleukin-1 levels with disease activity in rheumatoid arthritis. Lancet 1988:2:706–9.

    Article  PubMed  CAS  Google Scholar 

  4. Dinarello CA. Biologic basis for interleukin-1 in disease. Blood 1996:87:2095–147.

    PubMed  CAS  Google Scholar 

  5. Jelkmann W. Erythropoietin: structure, control of production, and function. Physiol Review 1992;72:449–89.

    CAS  Google Scholar 

  6. Hammond D, Winnick S. Paraneoplastic erythrocytosis and ectopic erythropoietins. Ann NY Acad Sci 1974;230:219–27.

    Article  PubMed  CAS  Google Scholar 

  7. Kew MC, Fisher JW. Serum erythropoietin concentrations in patients with hepatocellular carcinoma. Cancer 1986;58:2485–88.

    Article  PubMed  CAS  Google Scholar 

  8. Gillis S, Ferm MM, Ou W, Smith KA. T cell growth factor: Parameters of production and a quantitative microassay for activity. J Immunol 1978;120:2027–32.

    PubMed  CAS  Google Scholar 

  9. Kitamura T, Tange T, Terasawa T, et al. Establishment and characterization of a unique human cell line that proliferates dependently on GM-CSF,IL-3, or erythropoietin. J Cell Physiol 1989;140:323–34.

    Article  PubMed  CAS  Google Scholar 

  10. Nordan RP, Pumphrey JG, Rudikoff S. Purification and NH2-terminal sequence of a plasmacytoma growth factor derived from the murine macrophage cell line P388D1. J Immunol 1987;139:813–17.

    PubMed  CAS  Google Scholar 

  11. Aarden LA, de Groot ER, Schaap OL, Lansdorf PM. Production of hybridoma growth factor by human monocytes. Eur J Immunol 1987;17:1411–16.

    Article  PubMed  CAS  Google Scholar 

  12. Avanzi GC, Listra P, Giovinazzo B, et at. Selective growth response to IL-3 of a human leukaemic cell line with megakaryoblastic features. Br J Haematol 1988;69:359–66.

    Article  PubMed  CAS  Google Scholar 

  13. Schroder J-M, Mrowietz U, Morita E, Christophers E. Purification and partial biochemical characterization of ahuman monocyte-derived, neutrophil-activating peptide that lacks interleukin 1 activity. J Immunol 1987;139:3474–83.

    PubMed  CAS  Google Scholar 

  14. Matsushima K, Larsen CG, duBois GC, Oppenheim JJ. Purification and characterization of a novel monocyte chemotactic and activating factor produced by a human myelomonocytic cell line. J Exp Med 1989; 169:1485–90.

    Article  PubMed  CAS  Google Scholar 

  15. Schall TJ, Bacon K, Toy KJ, Goeddel DV. Selective attraction of monocytes and T lymphocytes of the memory phenotype by cytokine RANTES. Nature 1990;347:669–71.

    Article  PubMed  CAS  Google Scholar 

  16. Aggarwal BB, Kohr WJ, Hass PE, et al. Human tumor necrosis factor. Production, purification, and characterization. J Biol Chem 1985;260:2345–54.

    PubMed  CAS  Google Scholar 

  17. Rubinstein S, Familletti PC, Pestka S. Convenient assay for interferons. J Virol 1981; 37:755–58.

    PubMed  CAS  Google Scholar 

  18. Thorpe R, Wadhwa M, Bird CR, Mire-Sluis AR. Detection and measurement of cytokines. Blood Review 1992;6:133–48.

    Article  CAS  Google Scholar 

  19. Boscaro LM, Stuart MC. Incidence and specificity of interference in two-site immunoassays. Clin Chem 1986;32:1491–95.

    Google Scholar 

  20. Boscaro LM, Stuart MC. Heterophilic antibodies: a problem for all immunoassays. Clin Chem 1988;34:27–33.

    Google Scholar 

  21. Matsuda T, Hirano T, Nagasawa S, Kishimoto T. Identification of ß2-macroglobulin as a carrier protein for IL-6. J Immunol 1989;142:148–52.

    PubMed  CAS  Google Scholar 

  22. Borth W, Urbanski A, Prohaska R, Susanj M, Luger TA. Binding of recombinant inter-leukin-1 beta to the third complement and alpha 2-macroglobulin after activation of serum by immune complexes. Blood 1990;75:2388–94.

    PubMed  CAS  Google Scholar 

  23. Crookston KP, Webb DJ, Wolf BB, Gonias SL. Classification of α2-macroglobulin-cytokine interactions based on affinity of noncovalent association in solution under apparent equilibrium conditions. J Biol Chem 1994;269:1533–40.

    PubMed  CAS  Google Scholar 

  24. Heaney M, Golde DW. Soluble cytokine receptors. Blood 1996;87:847–57.

    PubMed  CAS  Google Scholar 

  25. Muylle L, Joos M, Wouters E, et al. Increased tumor necrosis factor α (TNF α), interleukin-1, and interleukin-6 (IL-6) levels in the plasma of stored platelet concentrates: relationship between TNFα and IL-6 levels and febrile transfusion reactions. Transfusion 1993;33:195–99.

    Article  PubMed  CAS  Google Scholar 

  26. Stack G, Snyder EL. Cytokine generation in stored platelet concentrates. Transfusion 1994;34:20–5.

    Article  PubMed  CAS  Google Scholar 

  27. Heddle NM, Klama L, Singer J, et al. The role of the plasma from platelet concentrates in transfusion reactions. N Engl J Med 1994:331:625–28.

    Article  PubMed  CAS  Google Scholar 

  28. Sekiguchi S. Donor apheresis: recent advances and future development. Vox Sang 1996;70(Suppl 3):126–34.

    Article  Google Scholar 

  29. Takahashi TA, Fujihara M, Ogiso C, Hosoda M, Sekiguchi S. Cytokine level determination in stored apheresis platelet concentrates. Transfusion 1995;35(Suppl): 44S.

    Article  Google Scholar 

  30. Yamamoto S, Nakase T, Sato N, Ikebuchi K, Sadayoshi S. Automatic pre-storage filtration system for platelet apheresis. Jpn J Med Instrument 1996;66:482–88.

    Google Scholar 

  31. Bubel S, Wilhelm D, Entelmann M, Kirchner H, Kluter H. Chemokines in stored platelet concentrates. Transfusion 1996;36:445–49.

    Article  PubMed  CAS  Google Scholar 

  32. Wadhwa M, Seghatchian MJ, Lubenko A, et al. Cytokine levels in platelet concentrates: quantitation by bioassays and immunoassays. Br J Haematol 1996;93:225–34.

    Article  PubMed  CAS  Google Scholar 

  33. Stack G, Cole S. Accumulation of the cytokines TGF-ß1 and RANTES in stored platelet concentrates. Transfusion 1995;35(Suppl):45S.

    Article  Google Scholar 

  34. Zuker MB, Katz IR. Platelet factor 4: Production, structure, and physiologic and immunologic action. Proc Soc Exp Biol Med 1991;198:693–702.

    Google Scholar 

  35. Bischoff SC, Krieger M, Brunner T, et al. RANTES and related chemokines activate human basophil granulocytes through different G protein-coupled receptors. Eur J Immunol 1993;23:761–67.

    Article  PubMed  CAS  Google Scholar 

  36. Giraddin E, Grau GE, Dayer JM, et al. Tumor necrosis factor and interleukin-1 in the serum of children with severe infectious purpura. N Engl J Med 1988;619:397–400.

    Article  Google Scholar 

  37. Hack CE, de Groot ER, Felt-Bersma RJF, et al. Increased plasma levels of interleukin-6 in sepsis. Blood 1989;74:1704–10.

    PubMed  CAS  Google Scholar 

  38. Debets JMH, Kampmeijer R, van der Linden MPMH, Buurman WA, van der Linden CJ. Plasma tumor necrosis factor and mortality in critically ill septic patients. Crit Care Med 1989;17:489–94.

    Article  PubMed  CAS  Google Scholar 

  39. Damas P, Reuter A, Gysen P, et al. Tumor necrosis factor and interleukin-1 serum levels during severe sepsis in humans. Crit Care Med 1989; 17:975–78.

    Article  PubMed  CAS  Google Scholar 

  40. Calandra T, Baumgartner J-D, Grau GE, et al. Prognostic value of tumor necrosis factor/cachectin, interleukin-1, interferon-α, and interferon-γ in the serum of patients with septic shock. J Infect Dis 1990;161:982–87.

    Article  PubMed  CAS  Google Scholar 

  41. Calandra T, Gerain J, Heumann D, et al. High circulating levels of interleukin-6 in patients with septic shock: evolution during sepsis, prognostic value, and interplay with other cytokines. Am J Med 1991;91:23–9.

    Article  PubMed  CAS  Google Scholar 

  42. Damas P, Ledoux D, Nys M, et al. Cytokine serum level during severe sepsis in human IL-6 as a marker of severity. Ann Surg 1991;215:356–62.

    Article  Google Scholar 

  43. Pinsky MR, Vincent J-L, Deviere J, et al. Serum cytokine levels in human septic shock. Relation to multiple-system organ failure and mortality. Chest 1993; 103:565–75.

    Article  PubMed  CAS  Google Scholar 

  44. Casey LC, Balk RA, Bone RC. Plasma cytokines and endotoxin levels correlate with survival in patients with the sepsis syndrome. Ann Intern Med 1993; 119:771–78.

    PubMed  CAS  Google Scholar 

  45. Marty C, Misset B, Tamion F, et al. Circulating interleukin-8 concentrations in patients with multiple organ failure of septic and nonseptic origin. Crit Care Med 1994;22: 673–79.

    Article  PubMed  CAS  Google Scholar 

  46. Dinarello C, Cannon JG. Cytokine measurements in septic shock. Ann Intern Med 1993;119:853–54.

    PubMed  CAS  Google Scholar 

  47. Remberger M, Ringden O, Markling L. TNFα levels are increased during bone marrow transplantation conditioning in patients who develop acute GvHD. Bone Marrow Transplant 1995;15:99–104.

    PubMed  CAS  Google Scholar 

  48. Miyamoto T, Akashi k, Hayashi S, et al. Serum concentration of the soluble inter-leukin-2 receptor for monitoring acute graft-versus-host disease. Bone Marrow Transplant 1996;17:185–90.

    PubMed  CAS  Google Scholar 

  49. Kutukculer N, Clark K, Rigg KM, et al. The value of posttransplant monitoring of interleukin (IL)-2, IL-3, IL-4, IL-6, IL-8, and soluble CD23 in the plasma of renal allograft recipients. Transplantation 1995;59:333–40.

    PubMed  CAS  Google Scholar 

  50. Deng MC, Erren M, Kammerling L, et al. The relation of interleukin-6, tumor necrosis factor-α, IL-2, and IL-2 receptor levels to cellular rejection, allograft dysfunction, and clinical events early after cardiac transplantation. Tranplantation 1995;60:1118–24.

    Article  CAS  Google Scholar 

  51. Kaminski ER, Kaminski A, Bending MR, et al. In vitro cytokine profiles and their relevance to rejection following renal transplantation. Transplantation 1995;60:703–6.

    Article  PubMed  CAS  Google Scholar 

  52. Umeshita K, Monden M, Tono T, et al. Determination of the presence of interleukin-6 in bile after orthotopic liver transplantation. Its role in the diagnosis of acute rejection. Ann Surg 1996;223:204–11.

    Article  PubMed  CAS  Google Scholar 

  53. Carre PC, Mortenson RL, King TE Jr, et al. Increased expression of the interleukin-8 gene by alveolar macrophages in idiopathic pulmonary fibrosis. A potential mechanism for the recruitment and activation of neutrophils in lung fibrosis. J Clin Invest 1991;88: 1802–10.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Kluwer Academic Publishers

About this chapter

Cite this chapter

Fujihara, M., Ikebuchi, K., Yamamoto, S., Nakase, T., Sekiguchi, S. (1997). Use and Application of Cytokines and Growth Factors in Laboratory Diagnostic Procedures. In: Sibinga, C.T.S., Das, P.C., Löwenberg, B. (eds) Cytokines and Growth Factors in Blood Transfusion. Developments in Hematology and Immunology, vol 32. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1137-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1137-9_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8435-2

  • Online ISBN: 978-1-4613-1137-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics