Vaccination Strategies to Induce T-Cell Immunity Against Tumours

  • M. E. Ressing
  • R. E. M. Toes
  • R. M. P. Brandt
  • E. I. H. van der Voort
  • J. H. de Jong
  • W. M. Kast
  • R. Offringa
  • C. J. M. Melief
Part of the Developments in Hematology and Immunology book series (DIHI, volume 32)


Effector T cells recognize immunogenic peptides that are presented on the cell membrane in the context of major histocompatibility complex (MHC) molecules. The vast majority of T cells consists of either CD8+ cytotoxic T lymphocytes (CTL) or CD4+ T helper cells. By and large, MHC class I molecules present antigenic peptides to CTL, whereas T helper cells recognize antigenic peptides in the context of MHC class II molecules. These proteins are mainly found on the cells of the immune system with a specialized antigen presenting function. In general, CD4+ lymphocytes secrete cytokines upon triggering that controles the activation of B cells, macrophages and CD8+ cells. MHC class I molecules are expressed on the cell surface of virtually all nucleated cells and present peptides derived from endogenously synthesized proteins to CTL. This enables the CTL to screen almost all cells of the body for antigenic peptides that may be presented as a consequence of viral infection or malignant transformation. Therefore, the CD8+ CTL represent a major effector subset of tumour-specific T cells responsible for rejection of tumours.


Major Histocompatibility Complex Class Tumour Antigen Cervical Carcinoma Peptide Vaccination Allogeneic Tumour Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    F.I.G.O. Carcinoma of the cervix. In: Petterson F (ed). Annual report on the results of treatment in gynaecological cancer. Stockholm, Sweden 1994;22:51–64.Google Scholar
  2. 2.
    Toes REM, Offringa R, Feltkamp MCW, et al. Tumour rejection antigens and tumour specific cytotoxic T lymphocytes. Behring Inst Mitt 1994;94:72–86.PubMedGoogle Scholar
  3. 3.
    Van Pel A, Van der Bruggen P, Coulie PG, et al. Genes coding for tumour antigens recognized by cytolytic T lymphocytes. Immunol Rev 1995;145:229–50.PubMedCrossRefGoogle Scholar
  4. 4.
    Cheever MA, Disis ML, Bernhard H, et al. Immunity to oncogenic proteins. Immunol Rev, 1995;145:33–59.PubMedCrossRefGoogle Scholar
  5. 5.
    Toes REM, Feltkamp MCW, Ressing ME, et al. Cellular immunity against DNA tumour viruses: Possibilities for peptide-based vaccines and immune escape. Biochem Soc Trans 1995;23:692–96.PubMedGoogle Scholar
  6. 6.
    Feltkamp MCW, Melief CJM, Kast WM. Peptide-specific cytotoxic T lymphocytes directed against viral oncogene products. In: Dalgleish, Browning (eds). Cambridge Cancer Studies, Tumour Immunology 1996:126–52.Google Scholar
  7. 7.
    Boon T, Van der Bruggen P. Human tumour antigens recognized by T lymphocytes. J Exp Med 1996;183:725–29.PubMedCrossRefGoogle Scholar
  8. 8.
    Zur Hausen H. Viruses in human cancer. Science 1991;254:1167–72.PubMedCrossRefGoogle Scholar
  9. 9.
    Masucci MG. Viral immunopathology of human tumors. Curr Opin Immunol, 1993;5: 693–700.PubMedCrossRefGoogle Scholar
  10. 10.
    Zur Hausen H. Human papillomavirus in the pathogenesis of anogenital cancer. Virology 1991;184:9–13.PubMedCrossRefGoogle Scholar
  11. 11.
    Seedorf K, Oltersdorf T, Krämmer G, Röwekamp W. Identification of early proteins of the human papillomaviruses type 16 (HPV16) and type 18 (HPV18) in cervical carcinoma cells. EMBO J 1987;6:139–44.PubMedGoogle Scholar
  12. 12.
    Von Knebel Doeberitz M, Bauknecht T, Bartsch D, Zur Hausen H. Influence of chromosomal integration on glucocorticoid-regulated transcription of growth-stimulating papillomavirus genes E6 and E7 in cervical carcinoma cells. Proc Natl Acad Sci USA 1991;88:1411–15.CrossRefGoogle Scholar
  13. 13.
    Kast WM, Feltkamp MCW, Ressing ME, Vierboom MPM, Brandt RMP, Melief CJM. Cellular immunity against human papillomavirus associated cervical cancer. Semin Virol 1996;7:117–23.CrossRefGoogle Scholar
  14. 14.
    Van den Eynde B, Lethé B, van Pel A, de Plaen E, Boon T. The gene coding for a major tumour rejection antigen of tumour P815 is identical to the normal gene of syngeneic DBA/2 mice. J Exp Med 1991;173:1373–84.PubMedCrossRefGoogle Scholar
  15. 15.
    Skipper J, Stauss H J. Identification of two cytotoxic T lymphocyte- recognized epitopes in the Ras protein. J Exp Med 1993;177:1493–98.PubMedCrossRefGoogle Scholar
  16. 16.
    Abrams SI, Stanziale SF, Lunin SD, Zaremba S, Schlom J. Identification of overlapping epitopes in mutant Ras oncogene peptides that activate CD4+ and CD8+ T cell responses. Eur J Immunol 1996;26:435–43.PubMedCrossRefGoogle Scholar
  17. 17.
    Noguchi Y, Richards EC, Chen Y-T, Old LJ. Influence of interleukin 12 on p53 peptide vaccination against established Meth A sarcoma. Proc Natl Acad Sci USA 1995;92: 2219–23.PubMedCrossRefGoogle Scholar
  18. 18.
    Boon T, Cerottini J-C, Van den Eynde B, Van der Bruggen P, Van Pel A. Tumor antigens recognized by T lymphocytes. Ann Rev Immunol, 1994;12:337–65.CrossRefGoogle Scholar
  19. 19.
    Greenberg PD. Adoptive T cell therapy of tumors: mechanisms operative in the recognition and elimination of tumour cells. Adv Immunol 1991;49:281–355.PubMedCrossRefGoogle Scholar
  20. 20.
    Melief CJM. Tumour eradication by adoptive transfer of cytotoxic T lymphocytes. Adv Cancer Res, 1992;58:143–75.PubMedCrossRefGoogle Scholar
  21. 21.
    Rosenberg SA, Yannelli JR, Yang J-C, et al. Treatment of patients with metastatic melanoma with autologous tumor-infiltrating lymphocytes and interleukin-2. J Natl Cancer Inst 1994;15:1159–66.Google Scholar
  22. 22.
    Benton C, Shahidullah H, Hunter JAA. Human papillomavirus in the immuno-suppressed. Papillomavirus Report 1992;3:23–6.Google Scholar
  23. 23.
    Apple RJ, Erlich HA, Klitz W, Manos MM, Becker TM Wheeler CM. HLA DR-DQ associations with cervical carcinoma show papillomavirus type-specificity. Nat Genet 1994;6:157–62.PubMedCrossRefGoogle Scholar
  24. 24.
    Bouwes Bavinck JN, Gissman L, Claas FHJ, et al. Relation between skin cancer, humoral responses to human papillomaviruses, and MHC class II molecules in renal transplant patients. J Immunol 1993;151:1579–86.Google Scholar
  25. 25.
    Apple RJ, Becker TM, Wheeler CM, Erlich HA. Comparison of human leukocyte antigen DR-DQ disease associations found with cervical dysplasia and invasive cervical carcinoma. J Natl Cancer Inst 1995:87:427–36.PubMedCrossRefGoogle Scholar
  26. 26.
    Ellis JRM., Keating PJ, Baird J, et al. The association of an HPV 16 oncogene variant with HLA-B7 has implications for vaccine design in cervical cancer. Nature Med 1995; 1:464–70.PubMedCrossRefGoogle Scholar
  27. 27.
    Glew SS, Stern PL, Davidson JA, Dyer PA. HLA antigens and cervical carcinoma. Nature 1992;356:22.PubMedGoogle Scholar
  28. 28.
    Connor ME, Stern PL, Loss of MHC class I expression in cervical carcinomas. Int J Cancer 1990;46:1029–34.PubMedCrossRefGoogle Scholar
  29. 29.
    Cromme FV, Airey J, Heemels MT, et al. Loss of transporter protein, encoded by the TAP-1 gene, is highly correlated with loss of HLA expression in cervical carcinomas. J Exp Med 1994;179:335–40.PubMedCrossRefGoogle Scholar
  30. 30.
    Honma S, Tsukada S, Honda S, et al. Biological-clinical significance of selective loss of HLA class I allelic product expression in squamous cell carcinoma of the uterine cervix. Int J Cancer 1994;57:650–55.PubMedCrossRefGoogle Scholar
  31. 31.
    Ferenzy A, Mitoa M, Nagai N, Silverstein SJ, Crum CP. Latent papillomavirus and recurring genital warts. N Engl J Med 1985:313:784–88.CrossRefGoogle Scholar
  32. 32.
    Rogozinsky TT, Jablonska S, Jarzabek-Chorzelska M. Role of cell-mediated immunity in spontaneous regression of planar warts. Int J Dermat 1988;27:322–26.CrossRefGoogle Scholar
  33. 33.
    Kast WM, Roux L, Curren J, et al. Protection against lethal Sendai virus infection by in vivo priming of virus-specific cytotoxic T lymphocytes with an unbound peptide. Proc Natl Acad Sci USA 1991;88:223–87.CrossRefGoogle Scholar
  34. 34.
    Schulz M, Zinkernagel RM, Hengartner H. Peptide-induced antiviral protection by cytotoxic T cells. Proc Natl Acad Sci USA 1991;88:991–93.PubMedCrossRefGoogle Scholar
  35. 35.
    Schild H, Norda M, Deres K, et al. Fine specificity of cytotoxic T lymphocytes primed in vivo either with virus or synthetic lipopeptide vaccine or primed in vitro with peptide. J Exp Med 1991;174:1665–68.PubMedCrossRefGoogle Scholar
  36. 36.
    Reinholdsson-Ljunggren G, Ramqvist T, Åhrlund-Richter L, Dalianis T. Immunization against polyoma tumours with synthetic peptides derived from the sequences of middle-and large-T antigens. Int J Cancer 1992;50:142–46.PubMedCrossRefGoogle Scholar
  37. 37.
    Minev BR, McFarland BJ, Spiess PJ, Rosenberg SA, Restifo NP. Insertion signal sequence fused to minimal peptides elicits specific CD8+ T-cell responses and prolongs survival of thymoma-bearing mice. Cancer Res 1994;54:4155–61.PubMedGoogle Scholar
  38. 38.
    Vitiello A, Ishioka G, Grey HM, et al. Development of a lipopeptide-based therapeutic vaccine to treat chronic HBV infection. I. Induction of a primary cytotoxic T lymphocyte response in humans. J Cin Invest 1995;95:341–49.CrossRefGoogle Scholar
  39. 39.
    Mayordomo JI, Zitvogel L, Tjandrawan T, Lotze MT, Storkus WJ. Dendritic cells presenting tumour peptide epitopes stimulate effective anti-tumour CTL in vitro and in vivo. In: Maio (ed). Immunology of human melanoma. Series Biomedical and Health Research 1996;12:153–63.Google Scholar
  40. 40.
    Feltkamp MCW, Smits HL, Vierboom MPM, et al. Vaccination with a cytotoxic T lymphocyte epitope-containing peptide protects against a tumour induced by human papillomavirus type 16-transformed cells. Eur J Immunol 1993;23:2242–49.PubMedCrossRefGoogle Scholar
  41. 41.
    Feltkamp MCW, Vreugdenhil GR, Vierboom MPM, et al. CTL raised against a sub-dominant epitope offered as a synthetic peptide eradicate human papillomavirus type 16-induced tumours. Eur J Immunol 1995;25:2638–42.PubMedCrossRefGoogle Scholar
  42. 42.
    Mayordomo JI, Zorina T, Storkus WJ, et al. Bone marrow-derived dendritic cells pulsed with synthetic tumour peptides elicit protective and therapeutic antitumour immunity. Nature Med 1995;1:1297–1302.PubMedCrossRefGoogle Scholar
  43. 43.
    Mayordomo JI, Loftus DJ, Sakamoto H, et al. Therapy of murine tumours with p53 wild-type and mutant sequence peptide-based vaccines. J Exp Med 1996;183:1357–65.PubMedCrossRefGoogle Scholar
  44. 44.
    Mandelboim O, Vadai E, Fridkin M. et al. Regression of established murine carcinoma metastases following vaccination with tumour-associated antigen peptides. Nature Med 1995:1:1179–83.PubMedCrossRefGoogle Scholar
  45. 45.
    Aichele P, Kyburz D, Ohashi PS. et al. Peptide-induced T-cell tolerance to prevent autoimmune diabetes in a transgenic mouse model. Proc Natl Acad Sci USA 1994; 91:444–48.PubMedCrossRefGoogle Scholar
  46. 46.
    Aichele P, Brduscha-Riem K, Zinkernagel RM, Hengartner H, Pircher H. T cell priming versus T cell tolerance induced by synthetic peptides. J Exp Med 1995; 182: 261–66.PubMedCrossRefGoogle Scholar
  47. 47.
    Kast WM, Offringa R, Peters PJ, et al. Eradication of Adenovirus El-induced tumours by ElA-specific cytotoxic T lymphocytes. Cell 1989:59:603–14.PubMedCrossRefGoogle Scholar
  48. 48.
    Toes REM, Offringa R, Blom HJJ, et al. An adenovirus type 5 early region 1 B-encoded CTL epitope-mediating tumour eradication by CTL clones is down-modulated by an activated ras oncogene. J Immunol 1995;154:3396–405.PubMedGoogle Scholar
  49. 49.
    Toes REM, Offringa R, Blom RJJ, Melief CJM, Kast WM. Peptide vaccination can lead to enhanced tumour growth through specific T-cell tolerance induction. Proc Natl Acad Sci USA 1996;93:7855–60.PubMedCrossRefGoogle Scholar
  50. 50.
    Toes REM, Blom RJJ, Offringa R, Kast WM. Melief CJM. Enhanced tumour outgrowth after peptide vaccination. Functional deletion of tumour-specific CTL induced by peptide vaccination can lead to the inability to reject tumours. J Immunol 1996; 156: 3911–18.PubMedGoogle Scholar
  51. 51.
    Bevan MJ. Antigen presentation to cytotoxic T lymphocytes in vivo. J Exp Med 1995: 182:639–41.PubMedCrossRefGoogle Scholar
  52. 52.
    Flamand V, Sornasse T, Thielemans K. Murine dendritic cells pulsed in vitro with tumour antigen induce tumour resistance in vivo. Eur J Immunol 1994;24:605–10.PubMedCrossRefGoogle Scholar
  53. 53.
    Paglia P, Chiodoni C, Rodolfo M, Colombo MP. Murine dendritic cells loaded in vitro with soluble protein prime cytotoxic T lymphocytes against tumour antigen in vivo. J Exp Med 1996;183:317–22.PubMedCrossRefGoogle Scholar
  54. 54.
    Zitvogel L, Mayordomo JI, Tjandrawan T, et al. Therapy of murine tumours with tumour peptide-pulsed dendritic cells: dependence of T cells, B7 costimulation, and T helper cell 1-associated cytokines. J Exp Med 1996;183:87–97.PubMedCrossRefGoogle Scholar
  55. 55.
    Pardoll DM. New strategies for enhancing the immunogenicity of tumours. Curr Opin Immunol 1993;5:719–25.PubMedCrossRefGoogle Scholar
  56. 56.
    Pardoll DM. Paracrine cytokine adjuvants in cancer immunotherapy. Ann Rev Immunol 1995;13:399–415.CrossRefGoogle Scholar
  57. 57.
    Seung S, Urban JL, Schreiber HA. Tumour escape variant that has lost one major histocompatibility complex class I restriction element induces specific CD8+ T cells to an antigen that no longer serves as a target. J Exp Med 1993;178:933–40.PubMedCrossRefGoogle Scholar
  58. 58.
    Huang AYC, Golumbek P, Ahmadzadeh M, Jaffee E, Pardoll D, Levitsky H. Role of bone marrow-derived cells in presenting MHC class I-restricted tumour antigens. Science 1994;264:961–65.PubMedCrossRefGoogle Scholar
  59. 59.
    Toes REM, Blom RJJ, Van der Voort EIH, Offringa R, Melief CJM, Kast WM. Protective anti-tumour immunity induced by immunization with completely allogeneic tumour cells. Cancer Res 1996;56:3782–87.PubMedGoogle Scholar
  60. 60.
    Le A-XT, Bernhard EJ, Holterman MJ, et al. Cytotoxic T cell responses in HLA-A2.1 transgenic mice: recognition of HLA alloantigens and utilization of HLA-A2.1 as a restriction element. J Immunol 1989;142:1366–71.PubMedGoogle Scholar
  61. 61.
    Vitiello A, Marchesini D, Furze JSSL, Chesnut RW. Analysis of the HLA-restricted influenza-specific cytotoxic T lymphocyte response in transgenic mice carrying a chimeric human-mouse class I major histocompatibility complex. J Exp Med 1991; 173: 1007–15.PubMedCrossRefGoogle Scholar
  62. 62.
    Engelhard VH, Lacy E, Ridge JP. Influenza A-specific, HLA-A2.1- restricted cytotoxic T lymphocytes from HLA-A2.1 transgenic mice recognize fragments of the M1 protein. J Immunol 1991;146:1226–32.PubMedGoogle Scholar
  63. 63.
    Newberg MH, Ridge JP, Vining DR, Salter RD, Engelhard VH. Species specificity in the interaction of CD8 with the alpha 3 domain of MHC class I molecules. J Immunol 1992;149:136–42.PubMedGoogle Scholar
  64. 64.
    Man S, Ridge JP, Engelhard VH. Diversity and dominance among TCR recognizing HLA-A2.1 + influenza matrix peptide in human MHC class I transgenic mice. J Immunol 1994;153:4458–67.PubMedGoogle Scholar
  65. 65.
    Lehner PJ, Wang ECY, Moss PAH, et al. Human HLA-A*0201-restricted cytotoxic T lymphocyte recognition of influenza A is dominated by T cells bearing the V beta 17 gene segment. J Exp Med 1995;181:79–91.PubMedCrossRefGoogle Scholar
  66. 66.
    Shirai M, Arichi T, Nishioka M, et al. CTL responses of HLA-A2.1-transgenic mice specific for hepatitis C viral peptides predict epitopes for CTL of humans carrying HLA-2.1. J Immunol 1995;154:2733–42.PubMedGoogle Scholar
  67. 67.
    Sette A, Vitiello A, Reherman B, et al. The relationship between class I binding affinity and immunogenicity of potential cytotoxic T cell epitopes. J Immunol 1994; 153:5586–92.PubMedGoogle Scholar
  68. 68.
    Ressing ME, Sette A, Brandt RMP, et al. Human CTL epitopes encoded human papillomavirus type 16 E6 and E7 identified through in vivo and in vitro immunogenicity studies of HLA-A*0201-binding peptides. J Immunol 1995;154:5934–43.PubMedGoogle Scholar
  69. 69.
    Theobald M, Biggs J, Dittmer D, Levine AJ, Sherman LA. Targeting p53 as a general tumour antigen. Proc Natl Acad Sci USA 1995;92:11993–97.PubMedCrossRefGoogle Scholar
  70. 70.
    Wentworth PA, Vitiello A, Sidney J, et al. Differences and similarities in the A2.1-restricted cytotoxic T cell repertoire in humans and human leukocyte antigen-transgenic mice. Eur J Immunol 1996;26:97–101.PubMedCrossRefGoogle Scholar
  71. 71.
    Kast WM, Brandt RMP, Drijfhout JW, Melief CJM. Human leukocyte antigen-A2.1 restricted candidate cytotoxic T lymphocyte epitopes of human papillomavirus type 16 E6 and E7 proteins identified by using the processing-defective human cell line T2. J Immunother 1993;14:115–20.CrossRefGoogle Scholar
  72. 72.
    Kast WM, Brandt RMP, Sidney J, et al. Role of HLA-A motifs in identification of potential CTL epitopes in human papillomavirus type 16 E6 and E7 proteins. J Immunol 1994;152:3904–12.PubMedGoogle Scholar
  73. 73.
    Ressing ME, van Driel WJ, Celis E, et al. Occasional memory cytotoxic T-cell responses of patients with human papillomavirus type 16-positive cervical lesions against a human leukocyte antigen-A*0201-restricted E7-encoded epitope. Cancer Res 1996; 56:582–88.PubMedGoogle Scholar
  74. 74.
    Merchand M, Weynants P, Rankin E, et al. Tumour regression responses in melanoma patients treated with a peptide encoded by gene MAGE-3. Int J Cancer 1995;63:883–85.CrossRefGoogle Scholar
  75. 75.
    Mukherji B, Chakraborty NG, Yamasaki S, et al. Induction of antigen-specific cytolytic T cells in situ in human melanoma by immunization with synthetic peptide-pulsed autologous antigen presenting cells. Proc Natl Acad Sci USA 1995;92:8078–82.PubMedCrossRefGoogle Scholar
  76. 76.
    Hsu F J, Benike C, Fagnoni F, et al. Vaccination of patients with B-cell lymphoma using autologous antigen-pulsed dendritic cells. Nature Med 1996;2:52–82.PubMedCrossRefGoogle Scholar
  77. 77.
    Borysiewicz LK, Fiander A, Nimako M, et al. A recombinant vaccinia virus encoding human papillomavirus types 16 and 18, E6 and E7 proteins as immunotherapy for cervical cancer. Lancet 1996;347:1523–27.PubMedCrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1997

Authors and Affiliations

  • M. E. Ressing
  • R. E. M. Toes
  • R. M. P. Brandt
  • E. I. H. van der Voort
  • J. H. de Jong
  • W. M. Kast
    • 1
  • R. Offringa
  • C. J. M. Melief
  1. 1.Cancer Immunology ProgramLoyola University Cancer CenterMaywoodUSA

Personalised recommendations