Skip to main content

Lesion Assessment

  • Chapter
  • 62 Accesses

Abstract

Although coronary angiography remains the principal method for imaging the coronary arteries, it has several limitations [1–3]. As a silhouette image of the vessel lumen, coronary angiography cannot readily image noncircular vessel lumens nor can it image the vessel wall. Noncircular lumens are seen after plaque rupture or percutaneous coronary intervention (PCI) when there are ulcers, dissections, and intraluminal thrombus (often termed hazy appearance). Contrast streaming, ostial lesions, heavy calcification, and bifurcations with overlapping segments further complicate the coronary angiographic assessment of the vessel lumen. An early stage of plaque development results in outward growth, or positive remodeling, and plaque progression occurs without causing an angiographic stenosis. Even when the vessel lumen is well projected and imaged, the physiologic significance of a coronary stenosis cannot always be determined by the angiogram itself, especially for intermediate stenoses of 50% to 70% diameter. The physiologic importance of a coronary stenosis depends in part on the myocardial territory subtended by the coronary stenosis.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arnett EN, Isner JM, Redwood DR, et al.: Coronary artery narrowing in coronary heart disease: comparison by cineangiographic and necropsy findings. Ann Intern Med 1979, 91:350–356.

    Article  CAS  PubMed  Google Scholar 

  2. Grondin CM, Dyrda I, Pasternac A, et al.: Discrepancies between cineangiographic and postmorten findings in patients with coronary artery disease and recent myocardial revascularization. Circulation 1974, 49:703–708.

    Article  CAS  PubMed  Google Scholar 

  3. Schwartz JN, Kong Y, Hackel DB, et al.: Comparison of angiographic and postmortem findings in patients with coronary artery disease. Am J Cardiol 1975, 36:174–178.

    Article  CAS  PubMed  Google Scholar 

  4. Kern MJ, Meier B: Evaluation of the culprit plaque and the physiological significance of coronary atherosclerotic narrowings. Circulation 2001, 103:3142–3149.

    Article  CAS  PubMed  Google Scholar 

  5. Cieszynski T: Intracardiac method for the investigation of structure of the heart with the aid of ultrasonics. Arch Immun Ter Down 1960, 8:551–557.

    CAS  Google Scholar 

  6. Bom N, Lancee CT, vanEgmond FC: An ultrasonic intracardiac scanner. Ultrasonics 1972, 10:72–76.

    Article  CAS  PubMed  Google Scholar 

  7. Nissen SE, Gurley JC, Grines CL, et al.: Intravascular ultrasound assessment of lumen size and wall morphology in normal subjects and patients with coronary artery disease. Circulation 1991, 84:1087–1099.

    Article  CAS  PubMed  Google Scholar 

  8. Nishimura RA, Edwards WD, Warnes CA, et al.: Intravascular ultrasound imaging: in vitro validation and pathologic correlation. J Am Coll Cardiol 1990, 16:145–154.

    Article  CAS  PubMed  Google Scholar 

  9. Fitzgerald PJ, St Goar FG, Connolly AJ, et al.: Intravascular ultrasound imaging of coronary arteries. Are three layers the norm? Circulation 1992, 86:154–158.

    Article  CAS  PubMed  Google Scholar 

  10. Nishimura RA, Kennedy KD, Warnes CA, et al.: Intravascular ultrasonography: image interpretation and limitations. Echocardiography 1990, 7:469–474.

    Article  CAS  PubMed  Google Scholar 

  11. Mintz GS, Nissen SE, Anderson WD, et al.: American College of Cardiology clinical expert consensus document on standards for acquisition, measurement and reporting of intravascular ultrasound studies (IVUS). A report of the American College of Cardiology Task Force on Clinical Expert Consensus Documents. J Am Coll Cardiol 2001, 37:1478–1492.

    Article  CAS  PubMed  Google Scholar 

  12. Wenguang L, Gussenhoven WJ, Zhong Y, et al.: Validation of quantitative analysis of intravascular ultrasound images. Int J Card Imag 1991, 6:247–253.

    Article  CAS  Google Scholar 

  13. Potkin BN, Bartorelli AL, Gessert JM, et al.: Coronary artery imaging with intravascular high-frequency ultrasound. Circulation 1990, 31:1575–1585.

    Article  Google Scholar 

  14. Pandian NG, Kreis A, O’Donnell T: Intravascular ultrasound estimation of arterial stenosis. J Am Soc Echocardiogr 1989, 2:390–397.

    CAS  PubMed  Google Scholar 

  15. Hodgson J, Graham SP, Savakus AD, et al.: Clinical percutaneous imaging of coronary anatomy using an over-the-wire ultrasound catheter system. Int J Card Imag 1989, 4:187–193.

    Article  CAS  Google Scholar 

  16. St. Goar FG, Pinto FJ, Alderman EL, et al.: Intravascular ultrasound imaging of angiographically normal coronary arteries: an in vivo comparison with quantitative angiography. J Am Coll Cardiol 1991, 18:952–958.

    Article  Google Scholar 

  17. Abizaid A, Mintz GS, Pichard AD, et al.: Clinical, intravascular ultrasound, and quantitative angiographic determinants of the coronary flow reserve before and after percutaneous transluminal coronary angioplasty. Am J Cardiol 1998, 82(4):423–428.

    Article  CAS  PubMed  Google Scholar 

  18. Briguori C, Anzuini A, Airoldi F, et al.: Intravascular ultrasound criteria for the assessment of the functional significance of intermediate coronary artery stenoses and comparison with fractional flow reserve. Am J Cardiol 2001, 87(2):136–141.

    Article  CAS  PubMed  Google Scholar 

  19. Takagi A, Tsurumi Y, Ishii Y, et al.: Clinical potential of intravascular ultrasound for physiological assessment of coronary stenosis: relationship between quantitative ultrasound tomography and pressure-derived fractional flow reserve. Circulation 1999, 100(3):250–255.

    Article  CAS  PubMed  Google Scholar 

  20. Mintz GS, Popma JJ, Pichard AD, et al.: Limitations of angiography in the assessment of plaque distribution in coronary artery disease: a systematic study of target lesion eccentricity in 1446 lesions. Circulation 1996, 93(5):924–931.

    Article  CAS  PubMed  Google Scholar 

  21. Pandian NG, Kreis A, Brockway B: Detection of intra-arterial thrombus by intravascular high-frequency two-dimensional ultrasound imaging: in vitro and in vivo studies. Am J Cardiol 1990, 65:1280–1283.

    Article  CAS  PubMed  Google Scholar 

  22. Jain A, Ramee SR, Mesa J, et al.: Intracoronary thrombus: chronic urokinase infusion and evaluation with intravascular ultrasound. Cath Cardiovasc Diag 1992, 26:212–214.

    Article  CAS  Google Scholar 

  23. Castagna MT, Mintz GS, Weissman N, et al.: “Black hole”: echolucent restenotic tissue after brachytherapy. Circulation 2001, 103(5):778.

    Article  CAS  PubMed  Google Scholar 

  24. Schoenhagen P, Ziada KM, Kapadia SR, et al.: Extent and direction of arterial remodeling in stable versus unstable coronary syndromes: an intravascular ultrasound study. Circulation 2000, 101(6)598–603.

    Article  CAS  PubMed  Google Scholar 

  25. Rasheed Q, Nair R, Sheehan H, Hodgson JM: Correlation of intracoronary ultrasound plaque characteristics in atherosclerotic coronary artery disease patients with clinical variables. Am J Cardiol 1994, 73(11):753–758.

    Article  CAS  PubMed  Google Scholar 

  26. von Birgelen C, Klinkhart W, Mintz GS, et al.: Plaque distribution and vascular remodeling of ruptured and nonruptured coronary plaques in the same vessel: an intravascular ultrasound study in vivo. J Am Coll Cardiol 2001, 37(7):1864–1870.

    Article  Google Scholar 

  27. von Birgelen C, Klinkhart W, Mintz GS, et al.: Size of emptied plaque cavity following spontaneous rupture is related to coronary dimensions, not to the degree of lumen narrowing. A study with intravascular ultrasound in vivo. Heart 2000, 84(5):483–488.

    Article  Google Scholar 

  28. Maehara A, Mintz GS, Ahmed JM, et al.: An intravascular ultrasound classification of angiographic coronary artery aneurysms. Am J Cardiol 2001, 88(4):365–370.

    Article  CAS  PubMed  Google Scholar 

  29. Nissen SE, Yock P: Intravascular ultrasound: novel pathophysiological insights and current clinical applications. Circulation 2001, 103:604–616.

    Article  CAS  PubMed  Google Scholar 

  30. Nishimura RA, Higano ST, Holmes DR Jr: Utility of intracoronary ultrasound in determining the severity of lesions in the left main coronary artery. Mayo Clin Proc 1993, 68:134–140.

    Article  CAS  PubMed  Google Scholar 

  31. von Birgelen C, Airiian SG, Mintz GS, et al.: Variations of remodeling in response to left main atherosclerosis assessed with intravascular ultrasound in vivo. Am J Cardiol 1997, 80(11):1408–1413.

    Article  Google Scholar 

  32. Abizaid AS, Mintz GS, Abizaid A, et al.: One-year follow-up after intravascular ultrasound assessment of moderate left main coronary artery disease in patients with ambiguous angiograms. J Am Coll Cardiol 1999, 34(3):707–715.

    Article  CAS  PubMed  Google Scholar 

  33. Abizaid AS, Mintz GS, Mehran R, et al.: Long-term follow-up after percutaneous transluminal coronary angioplasty was not performed based on intravascular ultrasound findings: importance of lumen dimensions. Circulation 1999, 100(3):256–261.

    Article  CAS  PubMed  Google Scholar 

  34. Mintz GS, Pichard AD, Kovach JA, et al.: Impact of preintervention intravascular ultrasound imaging on transcatheter treatment strategies in coronary artery disease. Am J Cardiol 1994, 73(7):423–430.

    Article  CAS  PubMed  Google Scholar 

  35. Tobis JM, Mallery JA, Gessert J, et al.: Intravascular ultrasound cross-sectional arterial imaging before and after balloon angioplasty in vitro. Circulation 1989, 80:873–882.

    Article  CAS  PubMed  Google Scholar 

  36. Waller BF, Orr CM, Pinkerton CM, et al.: Coronary balloon angioplasty dissections: “the good, the bad, and the ugly.” J Am Coll Cardiol 1992, 20:701–706.

    Article  CAS  PubMed  Google Scholar 

  37. Fitzgerald PJ, Ports TA, Yock PG: Contribution of localized calcium deposits to dissection after angioplasty. Circulation 1992, 86:64–70.

    Article  CAS  PubMed  Google Scholar 

  38. Potkin BN, Keren G, Mintz GS, et al.: Arterial responses to balloon coronary angioplasty: an intravascular ultrasound study. J Am Coll Cardiol 1992, 20:942–951.

    Article  CAS  PubMed  Google Scholar 

  39. Stone GW, Hodgson JM, St Goar FG, et al.: Improved procedural results of coronary angioplasty with intravascular ultrasound-guided balloon sizing: the CLOUT Pilot Trial. Circulation 1997, 95(8):2044–2052.

    Article  CAS  PubMed  Google Scholar 

  40. Frey AW, Hodgson JM, Muller C, et al.: Ultrasound-guided strategy for provisional stenting with focal balloon combination catheter: results from the randomized Strategy for Intracoronary Ultrasound-guided PTCA and Stenting (SIPS) trial. Circulation 2000, 102(20):2497–2502.

    Article  CAS  PubMed  Google Scholar 

  41. Honye J, Mahon DJ, Jain A, et al.: Morphological effects of coronary balloon angioplasty in vivo assessed by intravascular ultrasound imaging. Circulation 1992, 85:1012–1025.

    Article  CAS  PubMed  Google Scholar 

  42. Gerber TC, Erbel R, Gorge G, et al.: Classification of morphologic effects of percutaneous transluminal coronary angioplasty assessed by intravascular ultrasound. Am J Cardiol 1992, 70(20):1546–1545.

    Article  CAS  PubMed  Google Scholar 

  43. Fitzgerald PJ, Yock PG: Mechanisms and outcomes of angioplasty and atherectomy assessed by intravascular ultrasound imaging. J Clin Ultrasound 1993, 21(9)579–588.

    Article  CAS  PubMed  Google Scholar 

  44. Nakamura S, Colombo A, Gaglione A, et al.: Intracoronary ultrasound observations during stent implantation. Circulation 1994, 89(5):2026–2034.

    Article  CAS  PubMed  Google Scholar 

  45. Colombo A, Hall P, Nakamura S, et al.: Intracoronary stenting without anticoagulation accomplished with intravascular ultrasound guidance. Circulation 1995, 91(6):1676–1688.

    Article  CAS  PubMed  Google Scholar 

  46. de Jaegere P, Mudra H, Figulla H, et al.: Preliminary results of the MUSIC study. J Invasive Cardiol 1996, 8 (suppl E):12E–15E.

    Google Scholar 

  47. Stone GW, St Goar FG, Hodgson JM, et al.: Analysis of the relation between stent implantation pressure and expansion. Am J Cardiol 1999, 83(9):1397–1400.

    Article  CAS  PubMed  Google Scholar 

  48. Fitzgerald PJ, Oshima A, Hayase M, et al.: Final results of the Can Routine Ultrasound Influence Stent Expansion (CRUISE) study. Circulation 2000, 102(5)523–530.

    Article  CAS  PubMed  Google Scholar 

  49. Hur SH, Kitamura K, Morino Y, et al.: Efficacy of postdeployment balloon dilatation for current generation stents as assessed by intravascular ultrasound. Am J Cardiol 2001, 88(10):1114–1119.

    Article  CAS  PubMed  Google Scholar 

  50. Hanekamp CE, Koolen JJ, Pijls NH, et al.: Comparison of quantitative coronary angiography, intravascular ultrasound, and coronary pressure measurement to assess optimum stent deployment. Circulation 1999, 99(8):1015–1021.

    Article  CAS  PubMed  Google Scholar 

  51. Ahmed JM, Mintz GS, Weissman NJ, et al.: Mechanism of lumen enlargement during intracoronary stent implantation: an intravascular ultrasound study. Circulation 2000, 102(1):7–10.

    Article  CAS  PubMed  Google Scholar 

  52. Abizaid A, Pichard AD, Mintz GS, et al.: Acute and long-term results of an intravascular ultrasound-guided percutaneous transluminal coronary angioplasty/provisional stent implantation strategy. Am J Cardiol 1999, 84(11):1298–1303.

    Article  CAS  PubMed  Google Scholar 

  53. Mudra H, di Mario C, de Jaegere P, et al.: Randomized comparison of coronary stent implantation under ultrasound or angiographic guidance to reduce stent restenosis (OPTICUS Study). Circulation 2001, 104(12):1343–1349.

    Article  CAS  PubMed  Google Scholar 

  54. Moussa I, Moses J, di Mario C, et al.: Does the specific intravascular ultrasound criteria have an impact on the probability of stent restenosis? Am J Cardiol 1999, 83:1012–1017.

    Article  CAS  PubMed  Google Scholar 

  55. Albiero R, Rau T, Schluter M, et al.: Comparison of immediate and intermediate-term results of intravascular ultrasound versus angiography-guided Palmaz-Schatz stent implantation in matched lesions. Circulation 1997, 96:2997–3005.

    Article  CAS  PubMed  Google Scholar 

  56. Leon MB, Bairn DS, Popma JJ, et al.: A clinical trial comparing three anti-thrombotic drug regimens after coronary artery stenting. The Stent Anticoagulation Restenosis Study Investigators. N Engl J Med 1998, 339:1665–1671.

    Article  CAS  PubMed  Google Scholar 

  57. Oemrawsingh PV, Mintz GS, Schalij MJ, et al.: Intravascular ultrasound guidance improves angiographic and clinical outcome of stent implantation for long coronary artery stenoses: final results of a randomized comparison with angiographic guidance (TULIP Study). Circulation 2003, 107:62–67.

    Article  PubMed  Google Scholar 

  58. McLeod AL, Northridge DB, Uren NG: Ultrasound guided stenting. Heart 2001, 85:605–606.

    Article  CAS  PubMed  Google Scholar 

  59. Gould KL, Kirkeeide RL, Buchi M: Coronary flow reserve as a physiologic measure of stenosis severity. J Am Coll Cardiol 1990, 15(2):459–474.

    Article  CAS  PubMed  Google Scholar 

  60. Gould KL, Lipscomb K, Hamilton G: Physiologic basis for assessing critical coronary stenosis. Instantaneous flow response and regional distribution during coronary hyperemia as measures of coronary flow reserve. Am J Cardiol 1974, 33(l):87–94.

    Article  CAS  PubMed  Google Scholar 

  61. Klocke FJ: Measurements of coronary flow reserve: defining pathophysiology versus making decisions about patient care. Circulation 1987, 76(6):1183–1189.

    Article  CAS  PubMed  Google Scholar 

  62. Pijls NH, Van Gelder B, Van der Voort P: Fractional flow reserve. A useful index to evaluate the influence of an epicardial coronary stenosis on myocardial blood flow. Circulation 1995, 92(11):3183–3193.

    Article  CAS  PubMed  Google Scholar 

  63. Kemp HG Jr, Van Gelder B, Van der Voort P: Left ventricular function in patients with the anginal syndrome and normal coronary arteriograms. Am J Cardiol 1973, 32(3):375–376.

    Article  PubMed  Google Scholar 

  64. Epstein SE, Cannon RO 3d: Site of increased resistance to coronary flow in patients with angina pectoris and normal epicardial coronary arteries. J Am Coll Cardiol 1986, 8(2):459–461.

    Article  CAS  PubMed  Google Scholar 

  65. Brush JE Jr, Cannon RO 3rd, Schenke WH, et al.: Angina due to coronary microvascular disease in hypertensive patients without left ventricular hypertrophy N Engl J Med 1988, 319(20):1302–1307.

    Article  PubMed  Google Scholar 

  66. Hamasaki S, Al Suwaidi J, Higano ST, et al.: Attenuated coronary flow reserve and vascular remodeling in patients with hypertension and left ventricular hypertrophy. J Am Coll Cardiol 2000, 35(6):1654–1660.

    Article  CAS  PubMed  Google Scholar 

  67. Doucette JW, Corl PD, Payne HM, et al.: Validation of a Doppler guide wire for intravascular measurement of coronary artery flow velocity. Circulation 1992, 85(5):1899–1911.

    Article  CAS  PubMed  Google Scholar 

  68. Segal J, Kern MJ, Scott NA, et al.: Alterations of phasic coronary artery flow velocity in humans during percutaneous coronary angioplasty. J Am Coll Cardiol 1992, 20(2):276–286.

    Article  CAS  PubMed  Google Scholar 

  69. Wilson RF, Wyche K, Christensen BV, et al.: Effects of adenosine on human coronary arterial circulation [see comments]. Circulation 1990, 82(5):1595–1606.

    Article  CAS  PubMed  Google Scholar 

  70. Jeremías A, Whitbourn RJ, Filardo SD, et al.: Adequacy of intracoronary versus intravenous adenosine-induced maximal coronary hyperemia for fractional flow reserve measurements. Am Heart J 2000, 140(4):651–657.

    Article  PubMed  Google Scholar 

  71. Wilson RF, White CW: Serious ventricular dysrhythmias after intracoronary papaverine. Am J Cardiol 1988, 62(17):1301–1302.

    Article  CAS  PubMed  Google Scholar 

  72. Kern MJ, Deligonul U, Serota H, et al.: Ventricular arrhythmia due to intracoronary papaverine: analysis of QT intervals and coronary vasodilatory reserve. Cathet Cardiovasc Diagn 1990, 19(4):229–236.

    Article  CAS  PubMed  Google Scholar 

  73. Jeremias A, Filardo SD, Whitbourn RJ, et al.: Effects of intravenous and intracoronary adenosine 5′-triphosphate as compared with adenosine on coronary flow and pressure dynamics. Circulation 2000, 101(3):318–323.

    Article  CAS  PubMed  Google Scholar 

  74. Kern MJ, Bach RG, Mechem CJ, et al.: Variations in normal coronary vasodilatory reserve stratified by artery, gender, heart transplantation and coronary artery disease. J Am Coll Cardiol 1996, 28(5):1154–1160.

    Article  CAS  PubMed  Google Scholar 

  75. Baumgart D, Haude M, Goerge G, et al.: Improved assessment of coronary stenosis seventy using the relative flow velocity reserve. Circulation 1998, 98(1):40–46.

    Article  CAS  PubMed  Google Scholar 

  76. Kern MJ, Puri S, Bach RG, et al.: Abnormal coronary flow velocity reserve after coronary artery stenting in patients: role of relative coronary reserve to assess potential mechanisms. Circulation 1999, 100(25):2491–2498.

    Article  CAS  PubMed  Google Scholar 

  77. Wieneke H, Haude M, Ge J, et al.: Corrected coronary flow velocity reserve: a new concept for assessing coronary perfusion. J Am Coll Cardiol 2000, 35(7):1713–1720.

    Article  CAS  PubMed  Google Scholar 

  78. Kern MJ, de Bruyne B, Pijls NH: From research to clinical practice: current role of intracoronary physiologically based decision making in the cardiac catheterization laboratory. J Am Coll Cardiol 1997, 30(3):613–620.

    Article  CAS  PubMed  Google Scholar 

  79. Miller DD, Donohue TJ, Younis LT, et al.: Correlation of pharmacological 99mTc-sestamibi myocardial perfusion imaging with poststenotic coronary flow reserve in patients with angiographically intermediate coronary artery stenoses. Circulation 1994, 89(5):2150–2160.

    Article  CAS  PubMed  Google Scholar 

  80. Joye JD, Schulman DS, Lasorda D, et al.: Intracoronary Doppler guide wire versus stress single-photon emission computed tomographic thallium-201 imaging in assessment of intermediate coronary stenoses. J Am Coll Cardiol 1994, 24(4):940–947.

    Article  CAS  PubMed  Google Scholar 

  81. Deychak YA, Segal J, Reiner JS, et al.: Doppler guide wire flow-velocity indexes measured distal to coronary stenoses associated with reversible thallium perfusion defects. Am Heart J 1995, 129(2):219–227.

    Article  CAS  PubMed  Google Scholar 

  82. Heller LI, Cates C, Popma J, et al.: Intracoronary Doppler assessment of moderate coronary artery disease: comparison with 201T1 imaging and coronary angiography. Circulation 1997, 96(2):484–490.

    Article  CAS  PubMed  Google Scholar 

  83. Danzi GB, Pirelli S, Mauri L, et al.: Which variable of stenosis severity best describes the significance of an isolated left anterior descending coronary artery lesion? Correlation between quantitative coronary angiography, intracoronary Doppler measurements and high dose dipyridamole echocardiography. J Am Coll Cardiol 1998, 31(3):526–533.

    Article  CAS  PubMed  Google Scholar 

  84. Schulman DS, Lasorda D, Farah T, et al.: Correlations between coronary flow reserve measured with a Doppler guide wire and treadmill exercise testing. Am Heart J 1997, 134(1):99–104.

    Article  CAS  PubMed  Google Scholar 

  85. Kern MJ, Donohue TJ, Aguirre FV, et al.: Clinical outcome of deferring angioplasty in patients with normal translesional pressure-flow velocity measurements. J Am Coll Cardiol 1995, 25(1):178–187.

    Article  CAS  PubMed  Google Scholar 

  86. Ferrari M, Schnell B, Werner GS, Figulla HR: Safety of deferring angioplasty in patients with normal coronary flow velocity reserve. J Am Coll Cardiol 1999, 33(1):82–87.

    Article  CAS  PubMed  Google Scholar 

  87. Serruys PW, di Mario C, Piek J, et al.: Prognostic value of intracoronary flow velocity and diameter stenosis in assessing the short- and long-term outcomes of coronary balloon angioplasty: the DEBATE Study (Doppler Endpoints Balloon Angioplasty Trial Europe). Circulation 1997, 96(10):3369–3377.

    Article  CAS  PubMed  Google Scholar 

  88. Anderson HV, Roubin GS, Leimgruber PP, et al.: Measurement of transstenotic pressure gradient during percutaneous transluminal coronary angioplasty Circulation 1986, 73(6):1223–1230.

    Article  CAS  PubMed  Google Scholar 

  89. Wijns W, Serruys PW, Reiber JH, et al.: Quantitative angiography of the left anterior descending coronary artery: correlations with pressure gradient and results of exercise thallium scintigraphy Circulation 1985, 71(2):273–279.

    Article  CAS  PubMed  Google Scholar 

  90. Peterson RJ, King SB 3rd, Fajman WA, et al.: Relation of coronary artery stenosis and pressure gradient to exercise-induced ischemia before and after coronary angioplasty. J Am Coll Cardiol 1987, 10(2):253–260.

    Article  CAS  PubMed  Google Scholar 

  91. Pijls NH, Bech GJ, el Gamal MI, et al.: Quantification of recruitable coronary collateral blood flow in conscious humans and its potential to predict future ischemic events. J Am Coll Cardiol 1995, 25(7):1522–1528.

    Article  CAS  PubMed  Google Scholar 

  92. Pijls NH, De Bruyne B, Peels K, et al.: Measurement of fractional flow reserve to assess the functional severity of coronary-artery stenoses. N Engl J Med 1996, 334(26):1703–1708.

    Article  CAS  PubMed  Google Scholar 

  93. De Bruyne B, Bartunek J, Sys SU, Heyndrickx GR: Relation between myocardial fractional flow reserve calculated from coronary pressure measurements and exercise-induced myocardial ischemia. Circulation 1995, 92(1):39–46.

    Article  PubMed  Google Scholar 

  94. Bartunek J, Van Schuerbeeck E, de Bruyne B: Comparison of exercise electrocardiography and dobutamine echocardiography with invasively assessed myocardial fractional flow reserve in evaluation of severity of coronary arterial narrowing. Am J Cardiol 1997, 79(4):478–481.

    Article  CAS  PubMed  Google Scholar 

  95. Abe M, Tomiyama H, Yoshida H, Doba N: Diastolic fractional flow reserve to assess the functional severity of moderate coronary artery stenoses: comparison with fractional flow reserve and coronary flow velocity reserve. Circulation 2000, 102(19):2365–2370.

    Article  CAS  PubMed  Google Scholar 

  96. Chamuleau SA, Meuwissen M, van Eck-Smit BL, et al.: Fractional flow reserve, absolute and relative coronary blood flow velocity reserve in relation to the results of technetium-99m sestamibi single-photon emission computed tomography in patients with two-vessel coronary artery disease. J Am Coll Cardiol 2001, 37(5):1316–1322.

    Article  CAS  PubMed  Google Scholar 

  97. Bech GJ, De Bruyne B, Bonnier HJ, et al.: Long-term follow-up after deferral of percutaneous transluminal coronary angioplasty of intermediate stenosis on the basis of coronary pressure measurement. J Am Coll Cardiol 1998, 31(4):841–847.

    Article  CAS  PubMed  Google Scholar 

  98. Bech GJ, Pijls NH, De Bruyne B, et al.: Usefulness of fractional flow reserve to predict clinical outcome after balloon angioplasty. Circulation 1999, 99(7):883–888.

    Article  CAS  PubMed  Google Scholar 

  99. Pijls NH, Klauss V, Siebert U, et al.: Coronary pressure measurement after stenting predicts adverse events at follow-up: a multicenter registry. Circulation 2002, 105:2950–2954.

    Article  PubMed  Google Scholar 

  100. Fearon WF, Luna J, Samady H, et al.: Fractional flow reserve compared with intravascular ultrasound guidance for optimizing stent deployment. Circulation 2001, 104:1917–1922.

    Article  CAS  PubMed  Google Scholar 

  101. Pijls NH, Kern MJ, Yock PG, De Bruyne B: Practice and potential pitfalls of coronary pressure measuremen. Catheter Cardiovasc Interv 2000, 49(1):1–16.

    Article  CAS  PubMed  Google Scholar 

  102. De Bruyne B, Pijls NH, Heyndrickx GR, et al.: Pressure-derived fractional flow reserve to assess serial epicardial stenoses: theoretical basis and animal validation. Circulation 2000, 101(15):1840–1847.

    Article  PubMed  Google Scholar 

  103. Pijls NH, De Bruyne B, Bech GJ, et al.: Coronary pressure measurement to assess the hemodynamic significance of serial stenoses within one coronary artery: validation in humans. Circulation 2000, 102(19):2371–2377.

    Article  CAS  PubMed  Google Scholar 

  104. Gould KL, Nakagawa Y, Nakagawa K, et al.: Frequency and clinical implications of fluid dynamically significant diffuse coronary artery disease manifest as graded, longitudinal, base-to-apex myocardial perfusion abnormalities by noninvasive positron emission tomography. Circulation 2000, 101(16):1931–1939.

    Article  CAS  PubMed  Google Scholar 

  105. De Bruyne B, Hersbach F, Pijls NH, et al.: Abnormal epicardial coronary resistance in patients with diffuse atherosclerosis but “normal” coronary angiography. Circulation 2001, 104(20):2401–2406.

    Article  PubMed  Google Scholar 

  106. De Bruyne B, Pijls NH, Bartunek J, et al.: Fractional flow reserve in patients with prior myocardial infarction. Circulation 2001, 104(2):157–162.

    Article  PubMed  Google Scholar 

  107. De Bruyne B, Bartunek J, Sys SU, et al.: Simultaneous coronary pressure and flow velocity measurements in humans. Feasibility, reproducibility, and hemodynamic dependence of coronary flow velocity reserve, hyperemic flow versus pressure slope index, and fractional flow reserve. Circulation 1996, 94(8):1842–1849.

    Article  PubMed  Google Scholar 

  108. Di Mario C, Gil R, de Feyter PJ, et al.: Utilization of translesional hemodynamics: comparison of pressure and flow methods in stenosis assessment in patients with coronary artery disease. Cathet Cardiovasc Diagn 1996, 38(2):189–201.

    Article  PubMed  Google Scholar 

  109. De Bruyne B, Pijls NH, Smith L, et al.: Coronary thermodilution to assess flow reserve: experimental validation. Circulation 2001, 104(17):2003–2006.

    Article  PubMed  Google Scholar 

  110. Pijls NH, De Bruyne B, Smith L, et al.: Coronary thermodilution to assess flow reserve: validation in humans. Circulation 2002, 105:2482–2486.

    Article  PubMed  Google Scholar 

  111. Meuwissen M, Siebes M, Chamuleau AJ, et al.: Hyperemic stenosis resistance index for evaluation of functional coronary lesion severity. Circulation 2002, 106:441–446.

    Article  PubMed  Google Scholar 

  112. Di Mario C, Krams R, Gil R, et al.: Slope of the instantaneous hyperemic diastolic coronary flow velocity-pressure relation: a new index for assessment of the physiological significance of coronary stenosis in humans. Circulation 1994, 90:1215–1224.

    Article  PubMed  Google Scholar 

  113. De Bruyne B, Bartunek J, Sys SK, et al.: Simultaneous coronary pressure and flow velocity measurements in humans. Circulation 1996, 94:1842–1849.

    Article  PubMed  Google Scholar 

  114. Meuwissen M, Chamuleau SA, Siebes M, et al.: Role of variability in microvascular resistance on fractional flow reserve and coronary blood flow velocity reserve in intermediate coronary lesions. Circulation 2001, 103(2):184–187.

    Article  CAS  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Higano, S.T., Lerman, A. (2003). Lesion Assessment. In: Holmes, D.R., Mathew, V. (eds) Atlas of Interventional Cardiology. Current Medicine Group, London. https://doi.org/10.1007/978-1-4613-1091-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1091-4_2

  • Publisher Name: Current Medicine Group, London

  • Print ISBN: 978-1-4757-0808-0

  • Online ISBN: 978-1-4613-1091-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics