Skip to main content

Genetic engineering of immunotoxins

  • Chapter
Immunotoxins

Part of the book series: Cancer Treatment and Research ((CTAR,volume 37))

Abstract

Genetic engineering offers many advantages for the 1) production of immunotoxins (ITs) and 2) design of more effective reagents. In Chapter 9, J.R. Murphy discusses the use of genetic engineering to link genes together resulting in chimeric proteins. This review covers the first applications of genetic engineering technology to improve ITs by studying and altering toxin B chains and broadening the therapeutic index between target and nontarget cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Olsnes, S., Sandvig, K., Refnes, K., and Pihl, A. (1976) Rates of different steps involved in the inhibition of protein synthesis by the toxic lectins abrin and ricin. J. Biol. Chem., 251, 3985–3992.

    PubMed  CAS  Google Scholar 

  2. Youle, R.J., and Huang, A.H.C. (1976) Protein bodies from the endosperm of castor bean: subfractionation, protein components, lectins, and changes during germination. Plant Physiol., 58, 703–709.

    Article  PubMed  CAS  Google Scholar 

  3. Tully, R.E., and Beevers, H. (1976) Protein bodies of castor bean endosperm isolation fractionation and the characterization of protein components. Plant Physiol., 58, 710–716.

    Article  PubMed  CAS  Google Scholar 

  4. Hailing, K.C., Hailing, A.C., Murray, E.E., Ladin, B.F., Houston, L.L., and Weaver, R.F. (1985) Genomic cloning and characterization of a ricin gene from Ricinus communis. Nucl. Acids Res., 13, 8019–8033.

    Article  Google Scholar 

  5. Lamb, F.I., Roberts, L.M., and Lord, J.M. (1985) Nucleotide sequence of cloned cDNA coding for preproricin. Eur. J. Biochem., 148, 265–270.

    Article  PubMed  CAS  Google Scholar 

  6. Yoshitake, S., Funatsu, G., and Funatsu, M. (1978) Isolation and sequences of peptic peptides and the complete sequence of isoleucine chain of ricin D. Agic. Biol. Chem., 42, 1267–1274.

    Article  CAS  Google Scholar 

  7. Funatsu, G., Kimura, M., and Funatsu, M. (1979) Primary structure of alanine chain of ricin D. Agric. Biol. Chem., 42, 2221–2224.

    Article  Google Scholar 

  8. Lord, J.M. (1985) Precursors of ricin and Ricinus communis agglutinin. Glycosylation and processing during synthesis and intracellular transport. Eur. J. Biochem., 146, 411–416.

    Article  PubMed  CAS  Google Scholar 

  9. Nanno, S., Ishiguro, M., Funatsa, G., and Funatsu, M. (1975) The mode of binding of carbohydrate in ricin D. Agric. Biol. Chem., 39, 1651–1654.

    Article  CAS  Google Scholar 

  10. Thorpe, P.E., Detre, S.I., Foxwell, B.M., Brown, A.N. F., Skilleter, D.N., Wilson, G., Forrester, J.A., and Stirpe, F. (1985) Modification of the carbohydrate in ricin with metaperiodate-cyanoborohydride mixtures. Effects on toxicity and in vivo distribution. Eur. J. Biochem., 147, 197–206.

    Article  PubMed  CAS  Google Scholar 

  11. Araki, T., and Funatsu, G. (1987) The complete amino acid sequence of the B-chain of ricin E isolated from small-grain castor bean seeds. Ricin E is a gene recombination product of ricin D and Ricinus communis agglutinin. Biochim. Biophys. Acta, 911, 191–200.

    Article  PubMed  CAS  Google Scholar 

  12. Colombatti, M., Johnson, V.G., Skopicki, H.A., Fendley, B., Lewis, M.S, and Youle, R.J. (1987) J. Immunol., 138, 3339–3344.

    PubMed  CAS  Google Scholar 

  13. Nicolson, G.L., and Blaustein, J. (1972) The interaction of Ricinus communis agglutinin with normal and tumor cell surfaces. Biochim. Biophys. Acta, 266, 543–547.

    Article  PubMed  CAS  Google Scholar 

  14. Roberts, L.M., Lamb, F.I., Pappin, D.J., and Lord, J.M. (1985) The primary sequence of Ricinus communis agglutinin. Comparison with ricin. J. Biol. Chem., 260, 15682–15686.

    PubMed  CAS  Google Scholar 

  15. Piatak, M. et al. (1986) Patent Cooperation Treaty, W085–03508.

    Google Scholar 

  16. Robertus, J.D., Piatak, M., Ferris, R., and Houston, L.L. (1987) Crystallization of ricin A chain obtained from a cloned gene expressed in Escherichia coll. J. Biol. Chem., 262, 19–20.

    PubMed  CAS  Google Scholar 

  17. FitzGerald, D.J., Bjorn, M.J., Ferris, R.J., Winkelhake, J.L., Frankel, A.E., Hamilton, T.C., Ozols, R.F., Willingham, M.C., and Pastan, I. (1987) Antitumor activity of an immunotoxin in a nude mouse model of human ovarian cancer. Cancer Res., 47, 1407–1410.

    PubMed  CAS  Google Scholar 

  18. Gregg, R.O., Bridges, S.A., Youle, R.J., Longo, D.L., Houston, L.L., Glennie, M.J., Stevenson, F.D., and Green, I. (1987) Whole ricin and recombinant ricin A chain idiotypespecific immunotoxins for therapy of the guinea pig L2C B cell leukemia. J. Immunol., 138, 4502–4508.

    PubMed  CAS  Google Scholar 

  19. Youle, R.J., and Neville, D.M., Jr. (1982) Kinetics of protein synthesis inactivation by ricin-anti-Thy 1.1 monoclonal antibody hybrids. Role of the ricin B subunit demonstrated by reconstitution. J. Biol. Chem., 257, 1598–1601.

    PubMed  CAS  Google Scholar 

  20. McIntosh, D.P., Edwards, D.C., Cumber, A.J., Parnell, G.D., Dean, C.J., Ross, W.C., and Forrester, J.A. (1983) Ricin B chain converts a non-cytotoxic antibody-ricin A chain conjugate into a potent and specific cytotoxic agent. FEBS Lett., 164, 17–20.

    Article  PubMed  CAS  Google Scholar 

  21. Vitetta, E.S., Fulton, R.J., and Uhr, J.W. (1984) Cytotoxicity of a cell-reactive immunotoxin containing ricin A chain is potentiated by an anti-immunotoxin containing ricin B chain. J. Exp. Med., 160, 341–346.

    Article  PubMed  CAS  Google Scholar 

  22. Youle, R.J., and Colombatti, M. In: Monoclonal Antibodies and Cancer, J. Roth, ed. Futura Publishing Company, pp 173–213.

    Google Scholar 

  23. Youle, R.J., Murray, G.J., and Neville, D.M., Jr. (1981) Studies on the galactose-binding site of ricin and the hybrid toxin Man6P-ricin. Cell, 23, 551–559.

    Article  PubMed  CAS  Google Scholar 

  24. Vitetta, E.S. (1986) Synergy between immunotoxins prepared with native ricin A chains and chemically-modified ricin B chains. J. Immunol., 136, 1880–1887.

    PubMed  CAS  Google Scholar 

  25. Goldmacher, V.S., Anderson, J., Schulz, M.L., Blattler, W. A., and Lambert, J.M. (1987) Somatic cell mutants resistant to ricin, diphtheria toxin, and to immunotoxins. J. Biol. Chem., 262, 3205–3209.

    PubMed  CAS  Google Scholar 

  26. Youle, R.J., and Colombatti, M. (1987) Hybridoma cells containing intracellular anti-ricin antibodies show ricin meets secretory antibody before entering the cytosol. J. Biol. Chem., 262, 4676–4682.

    PubMed  CAS  Google Scholar 

  27. Neufeld, E. and Ashwell, G. In: Biochemistry of Glycoproteins and Proteoglycans. W. Lennarz, ed. Plenum Press, New York, pp 241.

    Google Scholar 

  28. Hubbard, A.L., Wilson, G., Ashwell, G., and Stukenbrok, H. (1979) An electron microscope autoradiographic study of the carbohydrate recognition systems in rat liver. I. Distribution of 125I-ligands among the liver cell types. J. Cell. Biol., 83, 47.

    Article  PubMed  CAS  Google Scholar 

  29. Stahl, P.D., Rodman, J.S., Miller, M.J., and Schlesinger, P.H. (1978) Evidence for receptor-mediated binding of glyco-proteins, glycoconjugates, and lysosomal glycosidases by alveolar macrophages. Proc. Natl. Acad. Sci. USA, 75, 1399–1403.

    Article  PubMed  CAS  Google Scholar 

  30. Colombatti, M., Greenfield, L., and Youle, R.J. (1986) Cloned fragment of diphtheria toxin linked to T cell-specific antibody identifies regions of B chain active in cell entry. J. Biol. Chem., 261, 3030–3035.

    PubMed  CAS  Google Scholar 

  31. Greenfield, L., Johnson, V.G., and Youle, R.J. (1987) Science, 238, 536–539.

    Article  PubMed  CAS  Google Scholar 

  32. Eisenberg, D., Schwartz, E., Komaromy, M., and Wall, R. (1984) Analysis of membrane and surface protein sequences with the hydrophobic moment plot. J. Mol. Biol., 179, 125–142.

    Article  PubMed  CAS  Google Scholar 

  33. Boquet, P., Silverman, M.S., Pappenheimer, A.M., Jr., and Vernon, W. (1976) Binding of triton X-100 to diphtheria toxin, crossreacting material 45, and their fragments. Proc. Natl. Acad. Sci. USA, 73, 4449–4453.

    Article  PubMed  CAS  Google Scholar 

  34. Sandvig, K., and Olsnes, S. (1986) Rapid entry of nicked diphtheria toxin into cells at low pH. Characterization of the entry process and effects of low pH on the toxin molecule. J. Biol. Chem., 256, 9068–9076.

    Google Scholar 

  35. Donovan, J.J., Simon, M.T., Draper, R.K., and Montal, M. (1981) Diphtheria toxin forms transmembrane channels in planar lipid bilayers. Proc. Natl. Acad. Sci. USA, 78, 172–176.

    Article  PubMed  CAS  Google Scholar 

  36. Kim, K., and Groman, N.B. (1965) Mode of inhibition of diphtheria toxin by ammonium chloride. J. Bacteriol., 90, 1557–1562.

    PubMed  CAS  Google Scholar 

  37. Draper, R.K., and Simon, M.I. (1980) The entry of diphtheria toxin into the mammalian cell cytoplasm: Evidence for lysosomal involvement. J. Cell. Biol., 87, 849–854.

    Article  PubMed  CAS  Google Scholar 

  38. Sandvig, K., and Olsnes, S. (1980) Diphtheria toxin entry into cells is facilitated by low pH. J. Cell. Biol., 87, 828–832.

    Article  PubMed  CAS  Google Scholar 

  39. Olsnes, S., and Sandvig, K. (1986) Interactions between diphtheria toxin entry and anion transport in Vero cells. II. Inhibition of anion antiport by diphtheria toxin. J. Biol. Chem., 261, 1553–1561.

    PubMed  CAS  Google Scholar 

  40. Middlebrook, J.L., and Dorland, R.B. (1979) Protection of mammalian cells from diphtheria toxin by exogenous nucleotides. Can. J. Microbiol., 25, 285–290.

    Article  PubMed  CAS  Google Scholar 

  41. Proia, R.L., Wray, S.K., Hart, D.A., and Eidels, L. (1980) Characterization and affinity labeling of the cationic phosphate-binding (nucleotide-binding) peptide located in the receptor-binding region of the B-fragment of diphtheria toxin. J. Biol Chem., 255, 12025–12033.

    PubMed  CAS  Google Scholar 

  42. Oda, T., Aizona, Y., and Funatsu, G. (1976) Binding and cytotoxicity of Ricinus communis lectins to HeLa cells, Sarcoma 180 ascites tumor cells and erythrocytes. J. Biochem., 96, 377.

    Google Scholar 

  43. Montesamo, L., Cawley, D., and Hershman, H.R. (1982) Disuccini-midyl suberate cross-linked ricin does not inhibit cell-free protein synthesis. Biochem. Biophys, Res. Comm., 109, 7–13.

    Article  Google Scholar 

  44. Mashuo, Y., Kishida, K., Saito, M., Umemoto, N., and Hara, T. (1982) Importance of the antigen-binding valency and the nature of the cross-linking bond in ricin A-chain conjugates with antibody. J. Biochem., 91, 1583–1591.

    Google Scholar 

  45. Letvin, N.L., Goldmacher, V.S., Ritz, J., Yetz, J.M., Schlossman, S.F., and Lambert, J.M. (1986) In vivo administration of lymphocyte-specific monoclonal antibodies in nonhuman primates. In vivo stability of disulfide-linked immunotoxin conjugates. J. Clin. Invest., 77, 977–984.

    Google Scholar 

  46. Youle, R.J., and Neville, D.M., Jr. (1980) Anti-Thy 1.2 monoclonal antibody linked to ricin is a potent cell-type-specific toxin. Proc. Natl. Acad. Sci. USA, 77, 5483–5486.

    Article  PubMed  CAS  Google Scholar 

  47. Stong, R.C., Youle, R.J., and Vallera, D.A. (1984) Elimination of clonogenic T-leukemic cells from human bone marrow using anti-M, 65,000 protein immunotoxins. Cancer Res., 44, 3000–3006.

    PubMed  CAS  Google Scholar 

  48. Lewis, M.W., and Youle, R.J. (1986) Ricin subunit association. Thermodynamics and the role of the disulfide bond in toxicity. J. Biol. Chem., 261, 11571–11577.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Kluwer Academic Publishers

About this chapter

Cite this chapter

Youle, R.J., Greenfield, L., Johnson, V.G. (1988). Genetic engineering of immunotoxins. In: Frankel, A.E. (eds) Immunotoxins. Cancer Treatment and Research, vol 37. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1083-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1083-9_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8419-2

  • Online ISBN: 978-1-4613-1083-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics