Skip to main content

How protein toxins enter and kill cells

  • Chapter
Immunotoxins

Part of the book series: Cancer Treatment and Research ((CTAR,volume 37))

Abstract

The toxins described in this chapter (Table 1) are produced by certain pathogenic bacteria and certain poisonous plants. So far our knowledge is very limited as to the reason why these organisms produce toxins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Pappenheimer, A.M., Jr. (1977) Diphtheria toxin. Ann. Rev. Biochem., 46, 69–94.

    Article  PubMed  CAS  Google Scholar 

  2. Pappenheimer, A.M., Jr. (1982) Diphtheria: Studies on the biology of an infectious disease. Harvey Lect. Series, 76, 45–73.

    Google Scholar 

  3. Pappenheimer, A.M., Jr., and Murphy, J.R. (1983) Studies on the molecular epidemiology of diphtheria. Lancet, II, 923–926.

    Article  Google Scholar 

  4. Saelinger, C.B., Morris, R.E., and Foertsch, G. (1985) Trafficking of Pseudomonas exotoxin A in mammalian cells. Eur. J. Clin. Microbiol., 4, 170–174.

    Article  PubMed  CAS  Google Scholar 

  5. Blackwood, L.L., Stone, R.M., Iglewski, B.H., and Pennington, J.E. (1983) Evaluation of Pseudomonas aeruginosa exotoxin A and elastase as virulence factors in acute lung infection. Infect. Immun., 39, 198–201.

    PubMed  CAS  Google Scholar 

  6. Keusch, G.T., and Jacewicz, M. (1975) The pathogenesis of Shigella diarrhea. V. Relationships of Shiga enterotoxin, neurotoxin, and cytotoxin. J. Infect. Dis., 131, (Suppl.), S33 - S39.

    Article  PubMed  Google Scholar 

  7. van Heyningen, W.E. (1971) The exotoxin of Shigella dysenteriae. In: Microbiological toxins, vol. II. A.S. Kadis, T.C. Montie, and S.J. Ajl, eds. Academic Press, New York, pp 255–269.

    Google Scholar 

  8. Rout, W.R., Formal, S.B., Giannella, R.A., and Dammin, G.J. (1975) Pathophysiology of shigella diarrhea in the rhesus monkey: Intestinal transport, morphological, and bacteriological studies. Gastroenterology, 68, 270–278.

    PubMed  CAS  Google Scholar 

  9. Eiklid, K., and Olsnes, S. (1983) Animal toxicity of Shigella dysenteriae cytotoxin. Evidence that the neurotoxic, enterotoxic and cytotoxic activities are due to one toxin. J. Immunol., 130, 380–384.

    PubMed  CAS  Google Scholar 

  10. Wiley, R.G., Donohue-Rolfe, A., and Keusch, G.T. (1985) Axonally transported shigella cytotoxin is neurotoxic. J. Neuropathol. Exp. Neurol., 44, 496–506.

    Article  PubMed  CAS  Google Scholar 

  11. Strockbine, N.A., Marques, L.R.M., Holmes, R.K., and O’Brien, A.D. (1985) Characterization of monoclonal antibodies against Shiga-like toxin from Escherichia coli. Infect. Immun., 50, 695–700.

    CAS  Google Scholar 

  12. Strockbine, N.A., Marques, L.R., Newland, J.W., Smith, H.W., Holmes, R.K., and O’Brien, A.D. (1986) Two toxin-converting phages from Escherichia coli 0157:H7 strain 933 encode antigenically distinct toxins with similar biologic activities. Infect. Immun., 53, 135–140.

    PubMed  CAS  Google Scholar 

  13. Karmali, M.A., Steele, B.T., Petric, M., and Lim, C. (1983) Sporadic cases of hemolyticuremic syndrome associated with faecal cytotoxin and cytotoxin-producing Escherichia coli in stools. Lancet, I, 619–620.

    Google Scholar 

  14. Rose, P.E., Armour, J.A., Williams, C.E., and Hill, F.G.H. (1985) Verotoxin and neuraminidase induced platelet aggregating activity in plasma: Their possible role in the pathogensis of the haemolytic uraemic syndrome. J. Clin. Pathol., 38, 438–441.

    Article  PubMed  CAS  Google Scholar 

  15. Olsnes, S., and Pihl, A. (1976) Abrin, ricin and their associated agglutinins. In: Receptors and Recognition. Series B: The Specificity and Action of Animal, Bacterial and Plant toxins. P. Cuatrecases, ed. Chapman and Hall, London, pp 129–173.

    Google Scholar 

  16. Olsnes, S., and Sandvig, K. (1983) Entry of toxic proteins into cells. In: Receptor-mediated Endocytosis, Receptor and Recognition, series B, Vol. 15. P. Cuatrecasas, and T.F. Roth, eds. Chapman and Hall, London, pp 187–236.

    Google Scholar 

  17. Rauber, A., and Heard, J. (1985) Castor bean toxicity reexamined: A new perspective. Vet. Hum. Toxicol, 27, 498-

    PubMed  CAS  Google Scholar 

  18. Foxwell, B.M., Detre, S.I., Donovan, T.A., and Thorpe, P.E. (1985) The use of anti-ricin antibodies to protect mice intoxicated with ricin. Toxicology, 34, 79–88.

    Article  PubMed  CAS  Google Scholar 

  19. Godai, A., Fodstad, O., Ingebrigtsen, K., and Pihl, A. (1984) Pharmacological studies of ricin in mice and humans. Can. Chem. Pharm., 13, 157–163.

    Article  Google Scholar 

  20. Refsnes, K., Haylett, T., Sandvig, K., and Olsnes, S. (1977) Modeccin — a plant toxin inhibiting protein synthesis. Biochem. Biophys. Res. Commun., 79, 1176–1183.

    Article  PubMed  CAS  Google Scholar 

  21. Stirpe, F., Gasperi-Campani, A., Barbieri, L., Lorenzoni, E., Montanaro, L., Sperti, S., and Bonetti, E. (1978) Inhibition of protein synthesis by modeccin, the toxin from Modecca digitata. FEBS Lett., 85, 65–67.

    Article  CAS  Google Scholar 

  22. Barbieri, L, Falasca, A.I., and Stirpe, F. (1984) Volkensin, the toxin of Adenia volkensii (kilyambiti plant). FEBS Lett., 171, 277–279.

    Article  CAS  Google Scholar 

  23. Lord, J.M. (1985) Synthesis and intracellular transport of lectin and storage protein precursors in endosperm form castor bean. Eur. J. Biochem., 146, 403–409.

    Article  PubMed  CAS  Google Scholar 

  24. Ready, M., Wilson, K., Piatak, M., and Robertus, J.D. (1984) Ricin-like plant toxins and evolutionary related to single-chain ribosome-inhibiting proteins from Phytolacca. J. Biol. Chem., 259, 15252–15256.

    CAS  Google Scholar 

  25. Brown, J.C., and Hunt, R.C. (1978) Lectins. Int. Rev. Cytol., 52, 277–349.

    Article  PubMed  CAS  Google Scholar 

  26. Harley, S.M., and Lord, J.M. (1985) In vitro endoproteolytic cleavage of castor bean lectin precursors. Plant Science, 41, 111–116.

    Article  CAS  Google Scholar 

  27. Halting, K.C., Hailing, A., Murray, E.E., Ladin, B.F., Houston, L.L., and Weaver, R.F. (1985) Genomic cloning and characterization of a ricin gene from Ricinus communis. Nucl. Acids Res., 13, 8019–8033.

    Article  Google Scholar 

  28. Stirpe, F., and Barbieri, L. (1986) Ribosome-inactivating proteins up to date. FEBS Lett., 195, 1–7.

    Article  PubMed  CAS  Google Scholar 

  29. Jiménez, A., and Vazquez, D. (1985) Plant and fungal protein and glycoprotein toxins inhibiting eukaryote protein synthesis. Ann. Rev. Microbiol., 39, 649–672.

    Article  Google Scholar 

  30. Ready, M.P., Brown, D.T., and Robertus, J.D. (1986) Extra-cellular localization of pokeweed antiviral protein. Proc. Natl. Acad. Sci., USA, 83, 5053–5056.

    Article  PubMed  CAS  Google Scholar 

  31. Xuejun, Z., and Jiahuai, W. (1986) Homology of trichosanthin and ricin A chain. Nature, 321, 477–478.

    Article  CAS  Google Scholar 

  32. Ussery, M.A., Irvin, J.D., and Hardesty, B. (1977) Inhibition of poliovirus replication by a plant antiviral peptide. Ann. N.Y. Acad. Sci., 284, 431–440.

    Article  PubMed  CAS  Google Scholar 

  33. Stevens, W.A., Spurdon, C., Onyon, L.J., and Stirpe, F., (1981) Effect of inhibitors of protein synthesis from plants on tobacco mosaic virus infection. Experientia, 37, 257–258.

    Article  CAS  Google Scholar 

  34. Stirpe, F., Williams, D.G., Onyon, L.J., and Legg, R.F., (1981) Dianthins, ribosome-damaging proteins with antiviral properties from Dianthus carophyllus L. Biochem. J., 195, 399–405.

    PubMed  CAS  Google Scholar 

  35. Collier, R.J., and Robertus, J. The preceding chapters in this volume.

    Google Scholar 

  36. Olsnes, S., and Sandvig, K. (1985) Entry of polypeptide toxins into animal cells. In: Receptor-mediated Endocytosis. I. Pastan and M.C. Willingham, eds. Plenum Publ. Corp., pp 195–234.

    Google Scholar 

  37. Olsnes, S., and Pihl, A. (1982) Toxic lectins and related proteins. In: Molecular Action of Toxins and Viruses. P. Cohen and S. van Heyningen, eds. Elsevier, Amsterdam, pp 51–105.

    Google Scholar 

  38. Uchida, T. (1982) Diphtheria toxin: Biological activity. In: Molecular Action of Toxins and Viruses. P. Cohen and S. van Heyningen, eds. Elsevier, Amsterdam, pp 1–31.

    Google Scholar 

  39. Donohue-Rolfe, A., Keusch, G.T., Edson, C., Thorley-Lawson, D., and Jacewicz, M. (1984) Pathogenesis of shigella diarrhea. IX. Simplified high yield purification of shigella toxin and characterization of subunit composition and function by the use of subunit-specific monoclonal and polyclonal antibodies. J. Exp. Med., 160, 1767–1781.

    Article  PubMed  CAS  Google Scholar 

  40. Boguet, P., Silverman, M.S., Pappenheimer, A.M., Jr., and Vernon, W.B. (1976) Binding of Triton X-100 to diphtheria toxin, crossreacting material 45, and their fragments. Proc. Natl. Acad. Sci. USA, 73, 4449–4453.

    Article  Google Scholar 

  41. Lambotte, P., Falmagne, P., Capiau, B., Zanen, J., Ruysschaert, J.-M., and Dirkx, J. (1980) Primary structure of diphtheria toxin fragment B: Structural similarities with lipid-binding domains. J. Cell Biol., 87, 837–840.

    Article  PubMed  CAS  Google Scholar 

  42. Sandvig, K., and Olsnes, S. (1981) Rapid entry of nicked diphtheria toxin into cells at low pH. Characterization of the entry process and effects of low pH on the toxin molecule. J. Biol. Chem., 256, 9068–9076.

    PubMed  CAS  Google Scholar 

  43. Utsumi, T., Aizono, Y., and Funatsu, G. (1984) Interaction of ricin and its constituent polypeptides with dipalmitoyl-phospatidylcholine vesicles. Biochim. Biophys. Acta, 772, 202–208.

    Article  PubMed  CAS  Google Scholar 

  44. Simmons, B.M., Stahl, P.D., and Russell, J.H. (1986) Mannose receptor-mediated uptake of ricin toxin and ricin A chain by macrophages. Multiple intracellular pathways for A chain translocation. J. Biol. Chem., 261, 7912–7920.

    PubMed  CAS  Google Scholar 

  45. Allured, V.S., Collier, R.J., Carrol, S.F., and McKay, D.B. (1986) Structure of exotoxin A of Pseudomonas aeruginosa at 3.0Å resolution. Proc. Natl. Acad. Sci., USA, 83, 1320–1324.

    Article  PubMed  CAS  Google Scholar 

  46. Sandvig, K., Olsnes, S., and Pihl, A. (1976) Kinetics of binding of the toxic lectins abrin and ricin to surface receptors on human cells. J. Biol. Chem., 251, 3977–3984.

    PubMed  CAS  Google Scholar 

  47. Olsnes, S., Sandvig, K., Eiklid, K., and Pihl, A. (1978) Properties and mechanism of action of the toxic lectin modeccin. Interaction with cell lines resistant to modeccin, abrin and ricin. J. Supramol. Struct., 9, 15–25.

    Article  PubMed  CAS  Google Scholar 

  48. Gleeson, P.A., and Hughes, R.C. (1985) Binding and uptake of the toxic lectin modeccin by baby hamster kidney (BHK) cells. Isolation of mutants defective in the internalization of modeccin. J. Cell. Sci., 76, 283–301.

    PubMed  CAS  Google Scholar 

  49. Rosen, S.W., and Hughes R.C. (1977) Effects of neuraminidase on lectin binding by wild-type and ricin-resistant strains of hamster fibroblasts. Biochemistry, 16, 4908–4915.

    Article  PubMed  CAS  Google Scholar 

  50. Sandvig, K., Olsnes, S., and Pihl, A. (1978) Binding, uptake and degradation of the toxic proteins abrin and ricin by toxin-resistant cells. Eur. J. Biochem., 82, 13–23.

    Article  PubMed  CAS  Google Scholar 

  51. Sandvig, K., Olsnes, S., and Pihl, A. (1978) Chemical modifications of the toxic lectins abrin and ricin. Eur. J. Biochem., 84, 323–331.

    Article  PubMed  CAS  Google Scholar 

  52. Shimoda, T., and Funatsu, G. (1985) Effects of iodination on cytoagglutination by and toxicity of Ricinus communis lectins. Agric. Biol. Chem., 49, 1175–1180.

    Article  CAS  Google Scholar 

  53. Mise, T., and Shimoda, T., and Funatsu, G. (1986) Indentification of a tyrosyl residue present in the high-affinity saccharide-binding site of ricin D. Agric. Biol. Chem., 50, 151–155.

    Article  CAS  Google Scholar 

  54. Patanjali, S.R., Swamy, M.J., Anantharam, V., Khan, M.I., and Surolia, A. (1984) Chemical modification studies on Abrus agglutinin. Biochem. J., 217, 773–781.

    PubMed  CAS  Google Scholar 

  55. Yamasaki, N., Absar, N., and Funatsu, G. (1985) Chemical modification of tryptophan residues in castor bean hemaglutinin. Agric. Biol. Chem., 49, 3301–3308.

    Article  CAS  Google Scholar 

  56. Robertus, J.D., and Ready, M.P. (1984) Ricin B chain and discoidin I share a common primitive protein fold. J. Biol. Chem., 259, 13953–13956.

    PubMed  CAS  Google Scholar 

  57. Youle, R.J., Murray, G.J., and Neville, D.M., Jr. (1981) Ricin linked to monophosphopentamannose binds to fibroblast lysosomal hydrolase receptors, resulting in a cell-typespecific toxin. Proc. Natl. Acad. Sci. USA, 76, 5559–5562.

    Article  Google Scholar 

  58. Thorpe, P.E., Detre, S.I., Foxwell, B.M., Brown, A.N.F., Skilleter, D.N., Wilson, G., Forrester, J.A., and Stirpe, F. (1985) Modification of the carbohydrate in ricin with metaperiodate-cyanoborohydride mixtures. Eur. J. Biochem., 147, 197–206.

    Article  PubMed  CAS  Google Scholar 

  59. Skilleter, D.N., Price, R.J., and Thorpe, P.E. (1985) Modification of the carbohydrate in ricin with metaperiodate and cyanoborohydride mixtures: Effect on binding, uptake and toxicity to parenchymal and non-parenchymal cells of rat liver. Biochim. Biophys. Acta, 842, 12–21.

    Article  PubMed  CAS  Google Scholar 

  60. Skilleter, D.N., and Foxwell, B.M. (1986) Selective uptake of ricin A-chain by hepatic non-parenchymal cells in vitro. FEBS Lett., 196, 344–348.

    Article  CAS  Google Scholar 

  61. Eiklid, K., and Olsnes, S. (1980) Interaction of Shigella shigae cytotoxin with receptors on sensitive and insensitive cells. J. Rec. Res., 1, 199–213.

    CAS  Google Scholar 

  62. Fuchs, G., Mobassaleh, M., Donohue-Rolfe A., Montgomery, R.K., Grand, R.J., and Keusch, G.T. (1986) Pathogenesis of shigella diarrhea: Rabbit intestinal cell microvillus membrane binding site for shigella toxin. Infect. Immun., 53, 372–377.

    PubMed  CAS  Google Scholar 

  63. Brown, J.E., Karlsson, K.A., Lindberg, A., Strömberg, N., and Thurin, J. (1983) Identification of the receptor glycolipid for the toxin of Shigella dysenteriae. Seventh Int. Symp. on Glycoconjugates, pp 678.

    Google Scholar 

  64. Jacewicz, M., Clausen, H., Nudelman, E., Donohue-Rolfe, A., and Keusch, G.T., Pathogenesis of shigella diarrhea. XI. Isolation of a Shigella toxin-binding glycolipid from rabbit jejunum and HeLa cells and its identification as globotri-aosylceramide. J. Exp. Med., 163, 1391–1404.

    Google Scholar 

  65. Keusch, G.T., Jacewicz, and Donohue-Rolfe, A. (1986) Pathogenesis of Shigella diarrhea: Evidence for an N-linked glycoprotein shigella toxin receptor and receptor modulation by β-galactosidase. J. Infect. Dis., 153, 238–248.

    Article  PubMed  CAS  Google Scholar 

  66. Olsnes, S., and Eiklid, K. (1980) Isolation and characterization of Shigella shigae toxin. J. Biol. Chem., 255, 284–289.

    PubMed  CAS  Google Scholar 

  67. Montecucco, C. (1986) How do tetanus and botulinum toxins bind to neuronal membranes? Trends in Biochem. Science, 11, 314–317.

    Article  CAS  Google Scholar 

  68. Manhart, M.D., Morris, R.E., Bonventre, P.F., Leppla, S., and Saelinger, C.B. (1984) Evidence for Pseudomonas exotoxin A receptors on plasma membrane of toxin-sensitive LM fibroblasts. Infect. Immun., 45, 596–603.

    PubMed  CAS  Google Scholar 

  69. Ittelson, T.R., and Gill, D.M. (1973) Diphtheria toxin: Specific competition for cell receptors. Nature, 242, 330–332.

    Article  PubMed  CAS  Google Scholar 

  70. Uchida, T., Pappenheimer, A.M., Jr., and Harper, A.A. (1972) Reconstitution of diphtheria toxin from two nontoxic crossreacting mutant proteins. Science, 175, 901–903.

    Article  PubMed  CAS  Google Scholar 

  71. Creagan, R.P., Chen, S., and Ruddle, F.H. (1975) Genetic analysis of the cell surface: Association of human chromosome 5 with sensitivity to diphtheria toxin in mouse-human somatic cell hybrids. Proc. Natl. Acad. Sci. USA, 72, 2237–2241.

    Article  PubMed  CAS  Google Scholar 

  72. Athwal, R.S., Searle, B.M., and Jansons, V.K. (1985) Diphtheria toxin sensitivity in a monochromosomal hybrid containing human chromosome 5. J. Hered., 76, 329–334.

    PubMed  CAS  Google Scholar 

  73. Chang, T.M., and Neville, D.M., Jr. (1978) Demonstration of diphtheria toxin receptors on surface membranes from both toxin sensitive and toxin resistant species. J. Biol. Chem., 253, 6866–6871.

    PubMed  CAS  Google Scholar 

  74. Boquet, P., and Pappenheimer, A.M., Jr. (1976) Interaction of diphtheria toxin with mammalian cell membranes. J. Biol. Chem., 251, 5770–5778.

    PubMed  CAS  Google Scholar 

  75. Middlebrook, J.L., Dorland, R.B., and Leppla, S.H. (1978) Association of diphtheria toxin with Vero cells. Demonstration of a receptor. J. Biol. Chem., 253, 7325–7330.

    PubMed  CAS  Google Scholar 

  76. Sandvig, K., and Olsnes, S. (1982) Entry of the toxic proteins abrin, modeccin, ricin and diphtheria toxin into cells. I. Requirement for calcium. J. Biol. Chem., 257, 7495–7503.

    PubMed  CAS  Google Scholar 

  77. Kushnyarov, V.M., MacDonald, H.S., Sedmak, J.J., and Grossberg, S.E. (1984) Diphtheria toxin receptor sites on membranes of cultured cells and erythrocytes demonstrated by fluorescence and electron microscopy. Cytobios, 41, 7–22.

    Google Scholar 

  78. Kaneda, Y., Uchida, T., Mekada, E., Nakanishi, M., and Okada, Y. (1984) Entry of diphtheria toxin into cells: Possible existence of cellular factor(s) for entry of diphtheria toxin into cells was studied in somatic cell hybrids and hybrid toxins. J. Cell. Biol., 98, 466–472.

    Article  PubMed  CAS  Google Scholar 

  79. Eidels, L., and Hart, D.A. (1982) Effect of polymers of L-lysine on the cytotoxic action of diphtheria toxin. Infect. Immun., 37, 1054–1058.

    PubMed  CAS  Google Scholar 

  80. Eidels, L., Ross, L.L., and Hart, D.A. (1982) Diphtheria toxin-receptor interaction: A polyphosphate-insensitive diphtheria toxin-binding domain. Biochem. Biophys. Res. Comm., 109, 493–499.

    Article  PubMed  CAS  Google Scholar 

  81. Proia, R.L., Hart, D.A., and Eidels, L. (1979) Interaction of diphtheria toxin with phosphorylated molecules. Infect. Immun., 26, 942–948.

    PubMed  CAS  Google Scholar 

  82. Proia, R.L., Eidels, L., and Hart, D.A. (1981) Diphtheria toxin: Receptor interaction. Characterization of the receptor interaction with the nucleotide-free toxin, the nucleotide-bound, and the B-fragment of the toxin. J. Biol. Chem., 256, 4991–4997.

    PubMed  CAS  Google Scholar 

  83. Proia, R.L., Wray, S.K., Hart, D.A., and Eidels, L. (1980) Characterization and affinity labeling of the cationic phosphate-binding (nucleotide-binding) peptide located in the receptor-binding region of the B-fragment of diphtheria toxin. J. Biol. Chem., 255, 12025–12033.

    PubMed  CAS  Google Scholar 

  84. Hranitzky, K.W., Durham, D.L., Hart, D.A., and Eidels, L. (1985) Role of glycosylation in expression of functional diphtheria toxin receptors. Infect. Immun., 49, 336–343.

    PubMed  CAS  Google Scholar 

  85. Eidels, L., Proia, R.L., and Hart, D.A. (1983) Membrane receptors for bacterial toxins. Microbiol. Rev., 47, 596–620.

    PubMed  CAS  Google Scholar 

  86. Mekada, E., Uchida, T., and Okada, Y. (1979) Modification of the cell surface with neuraminidase increases the sensitivities of cells to diphtheria toxin and Pseudomonas aeruginosa exotoxin. Exp. Cell. Res., 123, 137–146.

    Article  PubMed  CAS  Google Scholar 

  87. Leppla, S.H., Dorland, R.B., and Middlebrook, J.L., (1980) Inhibition of diphtheria toxin degradation and cytotoxic action by chloroquine. J. Biol. Chem., 255, 2247–2250.

    PubMed  CAS  Google Scholar 

  88. Lory, S., and Collier, R.J. (1980) Diphtheria toxin: Nucleotide binding and toxin heterogeneity. Proc. Natl. Acad. Sci. USA, 77, 267–271.

    Article  PubMed  CAS  Google Scholar 

  89. Lory, S., Carroll, S.F., and Collier, R.J. (1980) Ligand interactions of diphtheria toxin. II. Relationship between the NAD site and the P site. J. Biol. Chem., 255, 12016–12019.

    PubMed  CAS  Google Scholar 

  90. Barbieri, J.T., Carroll, S.F., Collier, R.J., and McCloskey, J.M. (1981) An endogenous dinucleotide bound to diphtheria toxin. Adenyl-(3’, 5’)-uridine 3’-monophosphate. J. Biol. Chem., 256, 12247–12251.

    PubMed  CAS  Google Scholar 

  91. Barbieri, J.T., Collins, C.M., and Collier, R.J. (1986) Diphtheria toxin can simultaneously bind to its receptor and adenylyl-(3’, 5’)-uridine 3’-monophosphate, Biochemistry, 25, 6608–6611.

    Article  PubMed  CAS  Google Scholar 

  92. Carroll, S.F., Barbieri, J.T., and Collier, R.J. (1986) Dimeric form of diphtheria toxin: Purification and characterization. Biochemistry, 25, 2425–2430.

    Article  PubMed  CAS  Google Scholar 

  93. Mekada, E., and Uchida, T. (1985) Binding properties of diphtheria toxin to cells are altered by mutation in the fragment A domain. J. Biol. Chem., 260, 12148–12153.

    PubMed  CAS  Google Scholar 

  94. Uchida, T., Pappenheimer, A.M., Jr., and Greany, R. (1973) Diphtheria toxin and related proteins. I. Isolation and properties of mutant proteins serologically related to diphtheria toxin. J. Biol. Chem., 248, 3838–3844.

    PubMed  CAS  Google Scholar 

  95. Colombatti, M., Greenfield, L, and Youle, R.J. (1986) Cloned fragment of diphtheria toxin linked to T cell-specific antibody indentifies regions of B chain active in cell entry. J. Biol. Chem., 261, 3030–3035.

    PubMed  CAS  Google Scholar 

  96. Wright, H.T., Marston, A.W., and Goldstein, D.J. (1984) A functional role for cysteine disulfides in the trans-membrane transport of diphtheria toxin. J. Biol. Chem., 259, 1649–1654.

    PubMed  CAS  Google Scholar 

  97. Rappuoli, R. Ratti, G., Giannini, G., Perugini, M., and Murphy, J.R. (1985) Mol. Biol. Microb. Pathog. Meet., Luleá. Abstract, in press.

    Google Scholar 

  98. O’Keefe, D.O., and Draper, R.K. (1985) Characterization of a transferrin-diphtheria toxin conjugate. J. Biol. Chem., 260, 932–937.

    PubMed  Google Scholar 

  99. Guillemot, J.C., Sundan, A., Olsnes, S., and Sandvig, K., (1985) Entry of diphtheria toxin linked to concanavalin A into primate and murine cells. J. Cell. Physiol., 122, 193–199.

    Article  PubMed  CAS  Google Scholar 

  100. Morris, R.E., Gerstein, A.S., Bonventre, P.F., and Saelinger, C.B., (1985) Receptor-mediated entry of diphtheria toxin into monkey kidney (Vero) cells: Electron microscopic evaluation. Infect. Immun., 50, 721–727.

    PubMed  CAS  Google Scholar 

  101. Olsnes, S., Sandvig, K., Madshus, LH., and Sundan, A., (1985) Entry mechanisms of protein toxins and picornaviruses. Biochem. Soc. Symp., 50, 171–192.

    PubMed  CAS  Google Scholar 

  102. Moehring, T.J., and Crispell, J.B. (1974) Enzyme treatment of KB cells: The altered effect of diphtheria toxin. Biochem. Biophys. Res. Commun., 60, 1446–1452.

    Article  PubMed  CAS  Google Scholar 

  103. Olsnes, S., Carvajal, E., and Sandvig, K. (1986) Interactions between diphtheria toxin entry and anion transport in Vero cells. III. Effect on toxin binding and anion transport of tumor-promoting phorbol esters, vanadate, fluoride and salicylate. J. Biol. Chem., 261, 1562–1569.

    PubMed  CAS  Google Scholar 

  104. Sandvig, K., and Olsnes, S. (1984) Anion requirements and effect of anion transport inhibitors on the response of Vero cells to diphtheria toxin and modeccin. J. Cell Physiol., 119, 7–14.

    Article  PubMed  CAS  Google Scholar 

  105. Olsnes, S., and Sandvig, K. (1986) Interactions between diphtheria toxin entry and anion transport in Vero cells. II. Inhibition of anion antiport by diphtheria toxin. J. Biol. Chem., 261, 1553–1561.

    PubMed  CAS  Google Scholar 

  106. Sandvig, K., Sundan, A., and Olsnes, S. (1985) Effect of potassium depletion of cells on the sensitivity to diphtheria toxin and Pseudomonas toxin. J. Cell. Physiol., 124, 54–60.

    Article  PubMed  CAS  Google Scholar 

  107. Shoyab, M., DeLarao, J.E., and Todaro, G.T. (1979) Biologically active phorbol esters specifically alter affinity of epidermal growth factor membrane receptors. Nature, 279, 387–391.

    Article  PubMed  CAS  Google Scholar 

  108. Sandvig, K., and Olsnes, S. (1986) Interactions between diphtheria toxin entry and anion transport in Vero cells, IV. Evidence that entry of diphtheria toxin is dependent on efficient anion transport. J. Biol. Chem., 261, 1570–1575.

    PubMed  CAS  Google Scholar 

  109. Cabantchik, Z.I., Knauf, P.A., and Rothstein, A. (1978) The anion transport system of the red blood cell. The role of membrane protein evaluated by the use of ‘probes’. Biochim. Biophys. Acta, 515, 239–302.

    PubMed  CAS  Google Scholar 

  110. Demuth, D.R., Showe, L.C., Ballantine, M., Palumbo, A., Fraser, P.J., Cioe, L., Rovera, G., and Curtis, P.J. (1983) Cloning and structural characterization of a human nonerythroid band 3-like protein. EMBO J., 5, 1205–1214.

    Google Scholar 

  111. Morris, R.E., Manhart, M.D., and Saelinger, C.B. (1983) Receptor-mediated entry of Pseudomonas toxin: Methylamine blocks clustering step. Infect. Immun., 40, 806–811.

    PubMed  CAS  Google Scholar 

  112. Morris, R.E., and Saelinger, C.B. (1986) Reduced temperature alters Pseudomonas exotoxin A entry into the mouse LM cell. Infect. Immun., 52, 445–453.

    PubMed  CAS  Google Scholar 

  113. FitzGerald, D., Morris, R.E., and Saelinger, C.B. (1983) Inhibition of activity of Pseudomonas toxin by methylamine. Rev. Infect. Dis., 5, S985 - S991.

    Article  PubMed  CAS  Google Scholar 

  114. Draper, R.K., O’Keefe, D.O., Stookey, M., and Gravaer, J. (1984) Identification of a cold-sensitive step in the mechanism of modeccin action. J. Biol. Chem., 259, 4083–4088.

    PubMed  CAS  Google Scholar 

  115. Sandvig, K., Sundan A., and Olsnes, S. (1984) Evidence that modeccin and diphtheria toxin enter the cytosol from different vesicular compartments. J. Cell. Biol., 98, 963–970.

    Article  PubMed  CAS  Google Scholar 

  116. FitzGerald, D., Morris, R.E., and Saelinger, C.B. (1982) Essential role of calcium in cellular internalization of Pseudomonas toxin. Infect. Immun., 35, 715–720.

    PubMed  CAS  Google Scholar 

  117. Kuratomi, Y., Akiyama, S. -I., Ono, M, Shiraishi, N., Shimada, T., Ohkuma, S., and Kuwano, M. (1986) Thioridazine enhances lysosomal accumulation of epidermal growth factor and toxicity of conjugates of epidermal growth factor with Pseudomonas exotoxin. Exp. Cell Res., 162, 436–448.

    Article  PubMed  CAS  Google Scholar 

  118. Akiyama, S. -I., Gottesman, M.M., Hanover, J.A., FitzGerald, D.J., Willingham, M.C., and Pastan, I. (1984) Verapamil enhances the toxicity of conjugates of epidermal growth factor with Pseudomonas exotoxin and antitransferrin receptor with Pseudomonas exotoxin. J. Cell. Physiol., 120, 271–279.

    Article  PubMed  CAS  Google Scholar 

  119. Moya, M., Dautry-Varsat, A., Goud, B., Louvard, D., and Boquet, P. (1985) Inhibition of coated pit formation in Hep2 cells blocks the cytotoxicity of diphtheria toxin but not that of ricin toxin. J. Cell Biol., 101, 548–559.

    Article  PubMed  CAS  Google Scholar 

  120. Gonates, J., Stieber, A., Olsnes, S., and Gonatas, N. (1980) Pathways involved in fluid phase and adsorptive endocytosis in neuroblastoma. J. Cell Biol., 87, 579–588.

    Article  Google Scholar 

  121. van Deurs, B., Pedersen, O.W., Olsnes, S., Sandvig, K., and Sundan, A. (1985) Receptor-mediated endocytosis of ricin: Intracellular routing to the vacuolar and tubulovesicular portions of endosomal system visualized by a ligand-gold conjugate. Exp. Cell Res., 159, 287–304.

    Article  PubMed  Google Scholar 

  122. Sandvig, K., Olsnes, S., Pedersen, O.W., and van Deurs, B. (1987) Acidification of the cytosol inhibits endocytosis from coated pits. Evidence for an alternative pathway of endocytosis. J. Cell. Biol., 105, 679–689.

    Article  PubMed  CAS  Google Scholar 

  123. van Deurs, B., Tonnessen, T.I., Pedersen, O.W., Sandvig, K., and Olsnes, S. (1986) Routing of internalized ricin and ricin-conjugates to the Golgi complex. J. Cell. Biol., 102, 37–47.

    Article  PubMed  Google Scholar 

  124. Sandvig, K., Tonnessen, T.I., and Olsnes, S. (1986) Ability of inhibitors of glycosylation and protein synthesis to sensitize cells to abrin, ricin, shigella toxin and Pseudomonas toxin. Cancer Res., 46, 6418–6422.

    PubMed  CAS  Google Scholar 

  125. Sandvig, K., Olsnes, S., and Pihl, A. (1979) Inhibitory effect of ammonium chloride and chloroquine on the entry of the toxic lectin modeccin into HeLa cells. Biochem. Biophys. Res. Commun., 90, 648–655.

    Article  PubMed  CAS  Google Scholar 

  126. Mecada, E., Uchida, T., and Okada, Y. (1981) Methylamine stimulates the action of ricin toxin, but inhibits that of diphtheria toxin. J. Biol. Chem., 256, 1225–1228.

    Google Scholar 

  127. Griffiths, G., and Simons, K. (1986) The trans-Golgi network: Sorting at the exit site of the Golgi complex. Science, 234, 438–443.

    Article  PubMed  CAS  Google Scholar 

  128. Sandvig, K., and Olsnes, S. (1979) Effect of temperature on the uptake, excretion and degradation of abrin and ricin by HeLa cells. Exp. Cell. Res., 121, 15–25.

    Article  PubMed  CAS  Google Scholar 

  129. Sandvig, K., and Olsnes, S. (1980) Diphtheria toxin entry into cells is facilitated by low pH. J. Cell. Biol., 87, 828–832.

    Article  PubMed  CAS  Google Scholar 

  130. Draper, R.K., and Simon, M.I. (1980) The entry of diphtheria toxin into the mammalian cell cytoplasm: Evidence for lysosomal involvement. J. Cell. Biol., 87, 849–854.

    Article  PubMed  CAS  Google Scholar 

  131. Blewitt, M.G., Zhao, F.-M., KcKeever, B., Raghupathy, S., and London, E. (1984) Fluorescence characterization of the low pH-induced change in diphtheria toxin conformation: Effect of salt. Biochem. Biophys. Res. Commun., 120, 286–290.

    Article  PubMed  CAS  Google Scholar 

  132. Blewitt, M.G., Chung, L.A., and London, E. (1984) Effect of pH on the conformation of diphtheria toxin and its implication for membrane penetration. Biochemistry, 24, 5458–5464.

    Article  Google Scholar 

  133. Zalman, L.S., and Wisnieski, B.J. (1984) Mechanism of insertion of diphtheria toxin: Peptide entry and pore size determinations. Proc. Natl. Acad. Sci. USA, 81, 3341–3345.

    Article  PubMed  CAS  Google Scholar 

  134. Hu, V.W., and Holmes, R.K., (1984) Evidence for direct insertion of fragments A and B of diphtheria toxin into model membranes. J. Biol. Chem., 259, 12226–12233.

    PubMed  CAS  Google Scholar 

  135. Montecucco, C., Shiavo, G., and Tomasi, M. (1985) pH-dependence of the phospholipid interaction of diphtheria-toxin fragments. Biochem. J., 231, 123–128.

    PubMed  CAS  Google Scholar 

  136. Kagan, B.L., Finkelstein, A., and Colombini, M. (1981) Diphtheria toxin fragment forms large pores in phospholipid bilayer membranes. Proc. Natl. Acad. Sci., 78, 4950–4954.

    Article  PubMed  CAS  Google Scholar 

  137. Donovan, J.J., Simon, M.I., Draper, R.K., and Montai, M., (1981) Diphtheria toxin forms transmembrane channels in planar lipid bilayers. Proc. Natl. Acad. Sci. USA, 78, 172–176.

    Article  PubMed  CAS  Google Scholar 

  138. Donovan, J.J., Simon, M.I., and Montai, M. (1982) Insertion of diphtheria toxin into and across membranes: Role of phosphoinositide asymmetry. Nature, 298, 669–672.

    Article  PubMed  CAS  Google Scholar 

  139. Deleers, M., Beugnier, N., Falmagne, P., Cabiaux, V., Ruysschaert, J.-M. (1983) Localization in diphtheria toxin fragment B of a region that induces pore formation in planar lipid bilayers at low pH. FEBS Lett., 160, 82–86.

    Article  PubMed  CAS  Google Scholar 

  140. Falmagne, P., Capiau, C., Lambotte, P., Zanen, J., Cabiaux, V., and Ruysschaert, J.-M. (1985) The complete amino acid sequence of diphtheria toxin fragment B. Correlation with its lipid-binding properties. Biochim. Biophys. Acta, 827, 45–50.

    Article  PubMed  CAS  Google Scholar 

  141. Brasseur, R., Cabiaux, V., Falmagne, P., and Ruysschaert, J.-M. (1986) pH dependent insertion of a diphtheria toxin B fragment peptide into the lipid membrane; a conformational analysis. Biochem. Biophys. Res. Commun., 136, 160–168.

    Google Scholar 

  142. Donovan, J.J., Simon, M.I., and Montai, M. (1985) Requirements for the translocation of diphtheria toxin fragment A across lipid membranes. J. Biol. Chem., 260, 8817–8823.

    PubMed  CAS  Google Scholar 

  143. Cabiaux, V., Vandenbranden, M., Falmagne, P., and Ruysschaert, J.-M. (1984) Diphtheria toxin induces fusion of small unilamellar vesicles at low pH. Biochim. Biophys. Acta, 775, 31–36.

    Article  PubMed  CAS  Google Scholar 

  144. Moehring, J.M., and Moehring, T.J. (1983) Strains of CHO-Kl cells resistant to Pseudomonas exotoxin A and cross-resistant to diphtheria toxin and viruses. Infect. Immun., 41, 998–1009.

    PubMed  CAS  Google Scholar 

  145. Robbins, A.R., Peng, S.S., and Marshall, J.L. (1983) Mutant Chinese hamster ovary cells pleiotropically defective in receptor-mediated endocytosis. J. Cell. Biol., 96, 1064–1071.

    Article  PubMed  CAS  Google Scholar 

  146. Marnell, M.H., Shia, S. -P., Stookey, M., and Draper, R.K. (1984) Evidence for penetration of diphtheria toxin to the cytosol through a prelysosomal membrane. Infect. Immun., 44, 145–150.

    PubMed  CAS  Google Scholar 

  147. Marnell, M.H., Mathis, L.S., Stookey, M., Shia, S.-P., Stone, D.K., and Draper, R.K. (1984) A Chinese hamster ovary cell mutant with a heat-sensitive, conditional-lethal defect in vacuolar function. J. Cell. Biol., 99, 1907–1916.

    Article  PubMed  CAS  Google Scholar 

  148. Robbins, A.R., Oliver, C., Bateman, J.L, Krag, S.S., Galloway, C.J., and Mellman, I. (1984) A single mutation in Chinese hamster ovary cells impairs both Golgi and endosomal functions. J. Cell. Biol., 99, 1296–1308.

    Article  PubMed  CAS  Google Scholar 

  149. Sandvig, K., Tønnessen, T.I., Sand, O., and Olsnes, S., (1986) Diphtheria toxin entry into cells is inhibited by acidification of the cytosol. J. Biol. Chem., 261, 11639–11644.

    PubMed  CAS  Google Scholar 

  150. Tønnessen, T.I., Ludt, J., Sandvig, K., and Olsnes, S. (1987) Bicarbonate/chloride antiport in Vero cells. I. Evidence for both sodium linked and sodium independent exchange. J. Cell. Physiol. 132, 183–191.

    Article  PubMed  Google Scholar 

  151. Olsnes, S., Ludt, J., Tonnessen, T.I., and Sandvig, K. (1987) Bicarbonate/chloride antiport in Vero cells. II. Mechanism of bicarbonate/dependent regulation of intracellular pH. J. Cell. Physiol., 132, 192–202.

    Article  PubMed  CAS  Google Scholar 

  152. Cabantchik, Z.I., and Rothstein, A. (1974) Membrane proteins related to anion permeability of human red blood cell. I. Localization of disulfonic stilbene binding sites in protein involved in permeation. J. Membr. Biol., 15, 207–226.

    Article  PubMed  CAS  Google Scholar 

  153. Hoffman, E. (1986) Anion transport systems in the plasma membrane of vertebrate cells. Biochim. Biophys. Acta, 864, 1–31.

    Google Scholar 

  154. Madshus, LH., and Olsnes, S. (1987) Selective inhibition of sodium-linked and sodium-independent bicarbonate/choride antiport in Vero cells. J. Biol. Chem., 262, 7486–7491.

    PubMed  CAS  Google Scholar 

  155. Moskaug, J.O., Sandvig, K. and Olsnes, S. (1987) Cell-mediated reduction of the inter-fragment disulfide in nicked diphtheria toxin. A new method to study toxin entry at low pH. J. Biol. Chem., 262, 10339–10345.

    PubMed  CAS  Google Scholar 

  156. FitzGerald, D., Morris, R.E., and Saelinger, C.B. (1980) Receptor-mediated internalization of pseudomonas toxin by mouse fibroblasts. Cell, 21, 867–873.

    Article  PubMed  CAS  Google Scholar 

  157. Sundan, A., Sandvig, K., and Olsnes, S. (1984) Calmodulin antagonists sensitize cells to pseudomonas toxin. J. Cell. Physiol., 119, 15–22.

    Article  PubMed  CAS  Google Scholar 

  158. Didsbury, J.R., Moehring, J.M., and Moehring, T.J., (1983) Binding and uptake of diphtheria toxin by toxin-resistant Chinese hamster ovary and mouse cells. Mol. Cell. Biol., 3, 1283–1294.

    PubMed  CAS  Google Scholar 

  159. Sandvig, K., and Olsnes, S. (1982) Entry of the toxic proteins abrin, modeccin, ricin and diphtheria toxin into cells. II. Effect of pH, metabolic inhibitors and ionophores and evidence for penetration from endocytotic vesicles. J. Biol. Chem., 257, 7504–7513.

    PubMed  CAS  Google Scholar 

  160. Zalman, L.S., and Wisnieski, B.J. (1985) Characterization of the insertion of Pseudomonas exotoxin A into membranes. Infect. Immun., 50, 630–635.

    PubMed  CAS  Google Scholar 

  161. Sundan, A., Sandvig, K., and Olsnes, S. (1984) Effect of malignant transformation, retinoic acid, trifluoperazine and W7 on the sensitivity of cells of Pseudomonas toxin. Cancer Res., 44, 4919–4923.

    PubMed  CAS  Google Scholar 

  162. Brown, W.J., Goodhouse, J., and Farquahar, M.G. (1986) Mannose-6-phosphate receptor for lysosomal enzymes cycle between the Golgi complex and endosomes. J. Cell. Biol., 103, 1235–1247.

    Article  PubMed  CAS  Google Scholar 

  163. Ray, B., and Wu, H.C. (1981) Enhanced internalization of ricin in nigericin-pretreated Chinese hamster ovary cells. Mol. Cell. Biol., 1, 560–567.

    PubMed  CAS  Google Scholar 

  164. Ischida, B., Cawley, D.B., Relle, K., and Wisnieski, B.J., (1983) Lipid-protein interactions during ricin toxin insertion into membranes. Evidence for A and B chain penetration. J. Biol. Chem., 258, 5933–5937.

    Google Scholar 

  165. Sandvig, K., and Brown, J.E. (1987) Ionic requirements for entry of Shiga toxin from Shigella dysenteriae 1 into cells. Infect. Immun., 55, 298–303.

    PubMed  CAS  Google Scholar 

  166. Wellner, R.B., Ray, B., Ghosh, P.C., and Wu, H.C. (1984) Genetic and biochemical analysis of mutation(s) affecting ricin internalization in Chinese hamster ovary cells. J. Biol. Chem., 259, 12788–12793.

    PubMed  CAS  Google Scholar 

  167. Ghosh, P.C., Wellner, R.B., Cragoe, E.J., Jr., and Wu, H.C. (1985) Enhancement of ricin cytotoxicity in Chinese hamster ovary cells by depletion for intracellular K+: Evidence for an Na+/H+ exchange system in Chinese hamster ovary cells. J. Cell Biol., 101, 350–357.

    Article  PubMed  CAS  Google Scholar 

  168. Foddy, L., Feeney, J., and Hughes, R.C. (1986) Properties of baby-hamster kidney (BHK) cells treated with swainsonine, an inhibitor of glycoprotein processing. Comparison with ricin-resistant BHK-cell mutants. Biochem. J., 233, 697–706.

    PubMed  CAS  Google Scholar 

  169. Fulton, R.J. Blakey, D.C., Knowles, P.P., Uhr, J.W., Thorpe, P.E., and Vitetta, E.S. (1986) Purification of ricin A1, A2, and B chains and characterization of their toxicity. J. Biol. Chem., 261, 5314–5319.

    PubMed  CAS  Google Scholar 

  170. Avdonin, P.V., Tonevitsky, A.G., and Grigoryan, G.Y. (1985) Activation of Ca2+ entry into cells by ricin B-subunit. Biologicheskie Membrany, 2, 800–805.

    CAS  Google Scholar 

  171. Herschman, H.R. (1984) The role of binding ligand in toxic hybrid proteins: A comparison of EGF-ricin, EGF-ricin A-chain, and ricin. Biochem. Biophys. Res. Comm., 124, 551–557.

    Article  PubMed  CAS  Google Scholar 

  172. van Deurs, B., Petersen, O.W., Olsnes, S., and Sandvig, K. (1987) Delivery of internalized ricin from endosomes to cisternal Golgi elements is a discontinuous, temperature sensitive process. Exp. Cell. Res., 171, 137–152.

    Article  PubMed  Google Scholar 

  173. Hudson, T.H., and Neville, D.M., Jr. (1985) Quantal entry of diphtheria toxin to the cytosol. J. Biol. Chem., 260, 2675–2680.

    PubMed  CAS  Google Scholar 

  174. Neville, D.M., Jr., and Hudson, T.H. (1986) Transmembrane transport of diphtheria toxin, related toxins, and colicins. Ann. Rev. Biochem., 55, 195–224.

    Article  PubMed  CAS  Google Scholar 

  175. Middlebrook, J.L. and Dorland, R.B. (1984) Bacterial toxins: Cellular mechanisms of action. Microbiol. Rev., 48, 199–221.

    PubMed  CAS  Google Scholar 

  176. Nygard, O., and Nilsson, L. (1985) Reduced ribosomal binding of eukaryotic elongation factor 2 following ADP-ribosylation. Difference in binding selectivity between polyribosomes and reconstituted monoribosomes. Biochim. Biophys. Acta, 824, 152–162.

    PubMed  CAS  Google Scholar 

  177. Moynihan, M.R., and Pappenheimer, A.M., Jr. (1981) Kinetics of adenosinediphosphoribosylation of elongation factor 2 in cells exposed to diphtheria toxin. Infect. Immun., 32, 575–582.

    PubMed  CAS  Google Scholar 

  178. Yamaizumi, M., Mekada, E., Uchida, T., and Okada, Y. (1978) One molecule of diphtheria toxin fragment A introduced into a cell can kill the cell. Cell, 15, 245–250.

    Article  PubMed  CAS  Google Scholar 

  179. Chung, D.W., and Collier, R.J. (1977) The mechanism of ADP-ribosylation of elongation factor 2 catalyzed by fragment A from diphtheria toxin. Biochim. Biophys. Acta, 483, 248–257.

    PubMed  CAS  Google Scholar 

  180. van Ness, B.G., Howard, J.B., and Bodley, J.W. (1980) ADP-ribosylation of elongation factor 2 by diphtheria toxin. NMR spectra and proposed structures of ribosyl-diphthamide and its hydrolysis products. J. Biol. Chem., 255, 10710–10716.

    PubMed  Google Scholar 

  181. Bodley, J.W., Upham, R., Crow, F.W., Tomer, K.B., and Gross, M.L. (1984) Ribosyldiphthamide: Confirmation of structure by fast atom bombardment mass spectrometry. Arch. Biochem. Biophys., 230, 590–593.

    Article  PubMed  CAS  Google Scholar 

  182. Kessel, M. and Klink, F. (1980) Archaebacterial elongation factor is ADP-ribosylated by diphtheria toxin. Nature, 287, 250–251.

    Article  PubMed  CAS  Google Scholar 

  183. Chen, J.-Y. C., Bodley, J.W., and Livingston, D.M. (1985) Diphtheria toxin-resistant mutants of Saccharomyces cerevisiae. Mol. Cell Biol., 5, 3357–3360.

    CAS  Google Scholar 

  184. Gehrmann, R., Henschen, A., and Klink, F. (1985) Primary structure of elongation factor 2 around the site of ADP-ribosylation is highly conserved from archaebacteria to eukaryotes. FEBS Lett., 185, 37–42.

    Article  PubMed  CAS  Google Scholar 

  185. Moehring, T.J., Danley, D.E., and Moehring, J.M. (1984) In vitro biosynthesis of diphthamide, studied with mutant Chinese hamster ovary cells resistant to diphtheria toxin. Mol. Cell. Biol., 4, 642–650.

    PubMed  CAS  Google Scholar 

  186. Iglewski, W.J., and Lee, H. (1983) Purification and properties of an altered form of elongation factor 2 from mutant cells resistant to intoxication by diphtheria toxin. Eur. J. Biochem., 134, 237–240.

    Article  PubMed  CAS  Google Scholar 

  187. Lee, H., and Iglewski, W.J. (1984) Cellular ADP-ribosyl-transferase with the same mechanism of action as diphtheria toxin and Pseudomonas toxin A. Proc. Natl. Acad. Sci. USA, 81, 2703–2707.

    Article  PubMed  CAS  Google Scholar 

  188. Sitikov, A.S., Davydova, E.K., Bezlepkina, T.A., Ovchinnikov, L.P., and Spirin, A.S. (1984) Eukaryotic elongation factor 2 loses its non-specific affinity for RNA and leaves polyribosomes as a result of ADP-ribosylation FEBS Lett., 176, 406–410.

    Article  PubMed  CAS  Google Scholar 

  189. Sitikov, A.S., Davydova, E.K., and Ovchinnikov, L.P. (1984) Endogenous ADP-ribosylation of elongation factor 2 in polyribosome fraction of rabbit reticulocytes. FEBS Lett., 176, 261–263.

    Article  PubMed  CAS  Google Scholar 

  190. Carroll, S.F., and Collier, R.J. (1984) NAD binding site of diphtheria toxin: Identification of a residue within the nicotinamide subsite by photochemical modification with NAD. Proc. Natl. Acad. Sci. USA, 81, 3307–3311.

    Article  PubMed  CAS  Google Scholar 

  191. Carroll, S.F., McCloskey, J.A., Crain, P.F., Oppenheimer, N.J., Marschner, T.M., and Collier, R.J. (1985) Photoaffinity labeling of diphtheria toxin fragment A with NAD: Structure of the photoproduct at position 148. Proc. Nall. Acad. Sci. USA, 82, 7237–7241.

    Article  CAS  Google Scholar 

  192. Tweten, R.K., Barbieri, J.T., and Collier, R.J. (1985) Diphtheria toxin. Effect of substituting aspartic acid for glutamic acid 148 on ADP-ribosyltransferase activity. J. Biol. Chem., 260, 10392–10394.

    PubMed  CAS  Google Scholar 

  193. Sayhan, O., Ozdemirli, M., Nurten, R., and Bermek, E. (1986) On the nature of cellular ADP-ribosyltransferase from rat liver specific for elongation factor 2. Biochem. Biophys. Res. Commun., 139, 1210–1214.

    Article  PubMed  CAS  Google Scholar 

  194. Reisbig, R., Olsnes, S., and Eiklid, K. (1981) Mechanism of action of Shigella toxin. Evidence for catalytic inactivation of 60S ribosomal subunits by the toxin A-chain J. Biol. Chem., 256, 8781–8744.

    Google Scholar 

  195. Endo, Y., Mitsui, K., Motizuki, M., and Tsurugi, K. (1987) The mechanism of action of ricin and related toxic lectins on eucaryotic ribosomes. The site and the characteristics of the toxic lectin ricin on eucaryotic ribosomes. J. Biol. Chem., 262, 5908–5912.

    PubMed  CAS  Google Scholar 

  196. Endo, Y., and Tsurugi, K. (1987) RNA N-glycosidase activity of ricin A-chain. Mechanism of action of the toxic lectin ricin on eucaryotic ribosomes. J. Biol. Chem., 262, 8128–8130.

    PubMed  CAS  Google Scholar 

  197. Srinivasan, Y., Ramprasad, M.P., and Surolia, A. (1985) Chemical modification studies of gelonin. Involvement of arginine residues in biological activity. FEBS Leu., 192, 113–118.

    Article  CAS  Google Scholar 

  198. Watanabe, K., and Funatsu, G. (1986) Involvement of arginine residues in inhibition of protein synthesis by ricin A-chain FEBS Lett., 204, 219–222.

    Article  PubMed  CAS  Google Scholar 

  199. Fernandez-Puentes, C., Benson, S., Olsnes, S., and Pihl, A. (1976) Protective effect of elongation factor 2 on the inactivation of ribosomes by the toxic lectins abrins and ricin. Eur. J. Biochem., 64, 437–443.

    Article  PubMed  CAS  Google Scholar 

  200. Carrasco, L., Fernadez-Puentes, C., and Vasquez, D. (1975) Effects of ricin on the ribosomal site involved in the interaction of the elongation factors. Eur. J. Biochem., 54, 499–503.

    Article  PubMed  CAS  Google Scholar 

  201. Nolan, R.D., Grasmuk, H., and Drews, J. (1976) The binding of tritiated elongation factor 1 and 2 to ribosomes from Krebs II mouse ascites cells. The influence of various antibiotics and toxins. Eur. J. Biochem., 64, 69–75.

    Article  PubMed  CAS  Google Scholar 

  202. Montanaro, L., Sperti, S., and Stirpe, F. (1973) Inhibition by ricin of protein synthesis in vitro. Ribosomes as the target of the toxin. Biochem. J., 136, 677–683.

    PubMed  CAS  Google Scholar 

  203. Olsnes, S., and Abraham, A.K. (1979) Elongation factor 2 induced sensitization of ribosomes to modeccin. Evidence for specific binding of elongation factor 2 to ribosomes in the absence of nucleotides. Eur. J. Biochem., 93, 447–452.

    Article  PubMed  CAS  Google Scholar 

  204. Calderwood, S.B., Auclair, F., Donohue-Rolfe, A., Keusch, G.T., and Mekalanos, F.F. (1987) Nucleotide sequence of the Shiga-like toxin genes of Escherichia coli. Proc. Natl. Acad. Sci. USA 84, 4364–4368.

    Article  Google Scholar 

  205. Brown, J.E., Obrig, T.G., Ussery, M.A., and Moran, T.P. (1986) Shiga toxin from Shigella dysenteriae 1 inhibits protein synthesis in reticulocyte lysates by inactivation of aminoacyl-tRNA binding. Microbiol. Pathogen., 1, 325–334.

    Article  CAS  Google Scholar 

  206. Olsnes, S., and Pihl, A. (1986) Construction and properties of chimeric toxins — target-specific cytotoxic agents. In: Internatl. Encycl. Pharm. Ther. Section 119: ‘Pharmacology of bacterial toxins’. ( F. Dorner and J. Drews, eds.) Pergamon Press, Oxford, pp 709–739.

    Google Scholar 

  207. Casellas, P., Bourrie, B.J., Gros, P. and Jansen, F.K. (1984) Kinetics of cytotoxicity induced by immunotoxins. J. Biol. Chem., 259, 9359–9364.

    PubMed  CAS  Google Scholar 

  208. Raso, V., and Lawrence, J. (1984) Carboxylic ionophores enhance the cytotoxic potency of ligand-and antibody-delivered ricin A chain. J. Exp. Med., 160, 1234–1240.

    Article  PubMed  CAS  Google Scholar 

  209. Tartakoff, A.M. (1983) Perturbation of vesicular traffic with the carboxylic ionophore monensin. Cell, 32, 1026–1028.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Kluwer Academic Publishers

About this chapter

Cite this chapter

Olsnes, S., Sandvig, K. (1988). How protein toxins enter and kill cells. In: Frankel, A.E. (eds) Immunotoxins. Cancer Treatment and Research, vol 37. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1083-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1083-9_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8419-2

  • Online ISBN: 978-1-4613-1083-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics