Skip to main content

Structure—activity relationships in diphtheria toxin and Pseudomonas aeruginosa exotoxin A

  • Chapter
Immunotoxins

Part of the book series: Cancer Treatment and Research ((CTAR,volume 37))

Abstract

Although there is no reason in principle why any of several cytocidal bacterial toxins might be used for immuntoxin construction, only two such toxins have been employed extensively to date for this purpose, namely, diphtheria toxin (DT) and Pseudomonas aeruginosa exotoxin A (PE). Diphtheria toxin was an early focus of workers in this area because of the detailed information available at that time on the structure and activity of this particular toxin. Recently PE has been favored over DT by some because of the fact that there has been no vaccine against it. Here the structure and activity of these two toxins is reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Collier R.J. (1975) Diphtheria toxin: Mode of action and structure. Bacteriol. Rev. 39, 54–85.

    PubMed  CAS  Google Scholar 

  2. Pappenheimer, A.M., Jr. (1977) Diphtheria toxin. Ann. Rev. Biochem., 46, 69–94.

    Article  PubMed  CAS  Google Scholar 

  3. Greenfield, L., Bjorn, M.J., Horn, G., Fong, Fong, D., Buck, G.A., Collier, R.J., and Kaplan, D.A. (1983) Nucleotide sequence of the structural gene for diphtheria toxin carried by corynebacteriophase beta. Proc. Natl. Acad. Sci. USA, 80, 6853–6857.

    Article  PubMed  CAS  Google Scholar 

  4. Ratti, G., Rappuoli, R., and Giannini, G. (1983) The complete nucleotide sequence of the gene coding for diphtheria toxin in the corynephase omega (tox+) genome. Nucl. Acids Res., 11, 6589–6595.

    Article  PubMed  CAS  Google Scholar 

  5. Drazin, R., Kandel, J., and Collier, R.J. (1971) Structure and activity of diphtheria toxin. II. Attack by tryspin at a specific site within the intact toxin molecule. J. Biol. Chem., 246, 1504–1510.

    PubMed  CAS  Google Scholar 

  6. Gill, D.M., and Pappenheimer, A.M. Jr. (1971) Structure-activity relationships in diphtheria toxin. J. Biol. Chem., 246, 1492–1495.

    PubMed  CAS  Google Scholar 

  7. Collier, R.J., and Kandel, J. (1971) Structure and activity of diphtheria toxin. I. Thioldependent dissociation of a fraction of toxin into enzymically active and inactive fragments. J. Biol. Chem., 246, 1496–1503.

    PubMed  CAS  Google Scholar 

  8. Gill, D.M., and Dinius, L.L. (1971) Observations on the structure of diphtheria toxin. J. Biol. Chem. 246, 1485–1491.

    PubMed  CAS  Google Scholar 

  9. Collier, R.J., and Pappenheimer, A.M., Jr. (1964) Studies on the mode of action of diphtheria toxin. II. Effect of toxin on amino acid incorporation in cell-free systems. J. Exp. Med., 120, 1019–1039.

    Article  PubMed  CAS  Google Scholar 

  10. Collier, R.J. (1967) Effect of diphtheria toxin on protein synthesis: Inactivation of one of the transfer factors. J. Mol. Biol., 25, 83–98.

    Article  PubMed  CAS  Google Scholar 

  11. Honjo, T., Nishizuka, Y. Hayaishi, O., and Kato, I. (1968) Diphtheria toxin-dependent adenosine diphosphate ribosylation of aminoacyl transferase II and inhibition of protein synthesis. J. Biol. Chem. 243, 3553–3555.

    PubMed  CAS  Google Scholar 

  12. Gill, D.M., and Pappenheimer, A.M., Jr., Brown, R., and Kurnick, J.J. (1969) Studies on the mode of action of diphtheria toxin. VII. Toxin-stimulated hydrolysis of nicotinamide adenine dinucleotide in mammalian cell extracts. J. Exp. Med., 129, 1–21.

    Article  PubMed  CAS  Google Scholar 

  13. Van Ness, B.G., Howard, J.B., and Bodley, J.W. (1980) ADP-ribosylation of elongation factor 2 by diphtheria toxin. NMR spectra and proposed structures of ribosyl-diphthamide and its hydrolysis products. J. Biol. Chem., 255, 10710–10716.

    PubMed  Google Scholar 

  14. Sandvig, K., and Olsnes, S. (1981) Rapid entry of nicked diphtheria toxin into cells at low pH. Characterization of the entry process and effects of low pH on the toxin molecule. J. Biol. Chem., 256, 9068–9076.

    PubMed  CAS  Google Scholar 

  15. Kandel, J., Collier, R.J., and Chung, D.W. (1974) Interaction of fragment A from diphtheria toxin with nicotinamide adenine dinucleotide. J. Biol. Chem., 249, 2088–2097.

    PubMed  CAS  Google Scholar 

  16. Carroll, S.F., and Collier, R.J. (1984) NAD binding site of diphtheria toxin: Identification of a residue within the nicotinamide subsite by photochemical modification with NAD. Proc. Natl. Acad. Sci. USA, 81, 3307–3311.

    Article  PubMed  CAS  Google Scholar 

  17. Carroll, S.F., McCloskey, J.A., Crain, P.F., Oppenheimer, N.J., Marschner, T.M., and Collier, R.J. (1985) Photoaffinity labeling of diphtheria toxin fragment A with NAD: Structure of the photoproduct at position 148. Proc. Natl. Acad. Sci. USA, 83, 7237–7241.

    Article  Google Scholar 

  18. Tweten, R.K., Barbieri, J.T., and Collier, R.J. (1985) Diphtheria toxin. Effect of substituting aspartic acid for glutamic acid 148 on ADP-ribosyltransferase activity. J. Biol. Chem., 260, 10392–10394.

    PubMed  CAS  Google Scholar 

  19. Yamaizumi, M. Mekada, E., Uchida, T., and Okada, Y. (1978) One molecule of diphtheria toxin fragment A introduced into a cell can kill the cell. Cell, 15, 245–250

    Article  PubMed  CAS  Google Scholar 

  20. Uchida, T., Pappenheimer, A.M., Jr., and Harper, A.A. (1972) Reconstitution of diphtheria toxin from two nontoxic cross-reacting mutant proteins. Science, 175, 901–903.

    Article  PubMed  CAS  Google Scholar 

  21. Uchida, T., Gill, D.M., and Pappenheimer, A.M., Jr. (1971) Mutation in the structural gene for diphtheria toxin carried by temperate phase. Nature New Biol., 233, 8–11.

    Article  PubMed  CAS  Google Scholar 

  22. Proia, R.L., Eidels, L., and Hart, D.A. (1979) Diphtheria toxin-binding glycoproteins on hamster cells: Candidates for diphtheria toxin receptors. Infect. Immun., 25, 786–891.

    PubMed  CAS  Google Scholar 

  23. Eidels, L. Proia, R.L., and Hart, D.T. (1983) Membrane receptors for bacterial toxins. Microbiol. Rev., 47, 596–620.

    PubMed  CAS  Google Scholar 

  24. Olsnes, S., and Sandvig, K. (1986) Interactions between diphtheria toxin entry and anion transport in Vero cells. I. Anion antiport in Vero cells. J. Biol. Chem., 261, 1542–1552.

    PubMed  CAS  Google Scholar 

  25. Olsnes, S., and Sandvig, K. (1986) Interactions between diphtheria toxin entry and anion transport in Vero Cells. II. Inhibition of anion antiport by diphtheria toxin. J. Biol. Chem., 261, 1553–1561.

    PubMed  CAS  Google Scholar 

  26. Olsnes, S., Carvajal, E., and Sandvig, K. (1986) Interactions between diphtheria toxin entry and anion transport in vero cells. III. Effect on toxin binding and anion transport of tumor-promoting phorbol esters, vanadate, fluoride, and salicylate. J. Biol. Chem., 261, 1562–1569.

    PubMed  CAS  Google Scholar 

  27. Sandvig, K., and Olsnes, S. (1986) Interactions between diphtheria toxin entry and anion transport in Vero cells. IV. Evidence that entry of diphtheria toxin is dependent on efficient anion transport. J. Biol. Chem., 261, 1570–1575.

    PubMed  CAS  Google Scholar 

  28. Middlebrook, J.L., Dorland, R.B. (1979) Protection of mammalian cells from diphtheria toxin by exogenous nucleotides. Can. J. Microbiol., 25, 285–290.

    Article  PubMed  CAS  Google Scholar 

  29. Eidels, L., and Hart, D.A. (1982) Effect of polymers of L-lysine on the cytotoxic action of diphtheria toxin. Infect. Immun., 37, 1054–1058.

    PubMed  CAS  Google Scholar 

  30. Sandvig, K., and Olsnes, S. (1980) Diphtheria toxin entry into cells is facilitated by low pH. J. Cell Biol., 87, 828–832.

    Article  PubMed  CAS  Google Scholar 

  31. Blewitt, M.G., Chung, L.A., and London, E. (1985) Effect of pH on the conformation of diphtheria toxin and its implications for membrane penetration. Biochemistry, 24, 5458–5464.

    Article  PubMed  CAS  Google Scholar 

  32. Kagan, B.L., Finkelstein, A., and Colombini, M. (1981) Diphtheria toxin fragment forms large pores in phospholipid bilayer membranes. Proc. Natl. Acad. Sci. USA, 78, 4950–4954.

    Article  PubMed  CAS  Google Scholar 

  33. Donovan, J.J., Simon, M.I., Draper, R.K., and Montai, M. (1981) Diphtheria toxin forms transmembrane channels in planar lipid bilayers. Proc. Natl. Acad. Sci. USA, 78, 172–176.

    Article  PubMed  CAS  Google Scholar 

  34. Hu, V., and Holmes, R.K. (1984) Evidence for direct insertion of fragments A and B of diphtheria toxin into model membranes. J. Biol. Chem., 259, 12226–12233.

    PubMed  CAS  Google Scholar 

  35. Zalman, L.S., and Wisnieski, B.J. (1984) Mechanism of insertion of diphtheria toxin: Peptide entry and pore size determinations. Proc. Natl. Acad. Sci. USA, 81, 3341–3345.

    Article  PubMed  CAS  Google Scholar 

  36. Montecucco, C., Schiavo, G., and Tomasi, M. (1985) pH-dependence of the phospholipid interaction of diphtheria-toxin fragments. Biochem J., 231, 123–128.

    PubMed  CAS  Google Scholar 

  37. Coillier, R.J., Westbrook, E.M., McKay, D.B., and Eisenberg, D. (1982) X-ray grade crystals of diphtheria toxin. J. Biol. Chem., 257, 5283–5285.

    Google Scholar 

  38. McKeever, B., and Sarma, R. (1982) Preliminary crystallographic investigation of the protein toxin from corynebacterium diphtheriae. J. Bio. Chem., 257, 6923–6925.

    CAS  Google Scholar 

  39. Carroll, S.F., Barbieri, J.T., and Collier, R.J. (1986) Dimeric form of diphtheria toxin: Purification and characterization. Biochemistry, 25, 2425–2430.

    Article  PubMed  CAS  Google Scholar 

  40. Iglewski, B.H., and Kabat, D. (1975) NAD-dependent inhibition of protein synthesis by Pseudomonas aeruginosa toxin. Proc. Natl. Acad. Sci. USA 72, 2284–2288.

    Article  PubMed  CAS  Google Scholar 

  41. Lory, S., and Collier, R.J. (1980) Expression of enzymic activity by exotoxin A from Pseudomonas aeruginosa. Infect Immun., 28, 494–501.

    CAS  Google Scholar 

  42. Leppla, S.H., Martin, O.C., and Muehl, L.A. (1978) The exotoxin P. aeruginosa: A proenzyme having an unusual mode of activation. Biochem. Biophys. Res. Commun., 81, 532–538.

    Article  PubMed  CAS  Google Scholar 

  43. Allured, V.S., Collier, R.J., Carroll, S.F., and McKay, D.B. (1986) Structure of exotoxin A of Pseudomonas aeruginosa at 3.0 A resolution. Proc. Natl. Acad. Sci. USA, 83, 1320–1324.

    Article  PubMed  CAS  Google Scholar 

  44. Hwang, J., Fitzgerald, D.J., Adhya, S., and Pastan, I. (1987) Functional domains of Pseudomonas exotoxin identified by deletion analysis of the gene expressed in E. coli. Cell, 48, 129–136.

    CAS  Google Scholar 

  45. Guidi-Rontani, C., and Collier, R.J. (1987) Exotoxin A of Pseudomonas aeruginosa: evidence that domain I functions in receptor binding. Molec. Microbiol., 1, 67–72.

    Article  CAS  Google Scholar 

  46. Carroll, S.F., and Collier, R.J. (1987) Molec. Microbiol., in press.

    Google Scholar 

  47. Douglas, C., and Collier, R.J. (1987) Unpublished results.

    Google Scholar 

  48. Fitzgerald, D., Morris, R.E., and Saelinger, C.B. (1980) Receptor-mediated internalization of Pseudomonas toxin by mouse fibroblasts. Cell, 21, 867–873.

    Article  PubMed  CAS  Google Scholar 

  49. Morris, R.E., Manhart, M.D., and Saelinger, C.B. (1983) Receptor-mediated entry of Pseudomonas toxin: Methylamine blocks clustering step. Infect. Immun., 40, 806–811.

    PubMed  CAS  Google Scholar 

  50. Zalman, L.S., and Wisnieski, B.J. (1985) Characterization of the insertion of Pseudomonas exotoxin A into membranes. Infect. Immun., 50, 630–635.

    PubMed  CAS  Google Scholar 

  51. Farahbakhsh, Z.T., Baldwin, R.L., and Wisnieski, B.J. (1985) Pseudomonas extoxin A. Membrane binding, insertion, and traversal. J. Biol. Chem., 261, 11404–11408.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Kluwer Academic Publishers

About this chapter

Cite this chapter

Collier, R.J. (1988). Structure—activity relationships in diphtheria toxin and Pseudomonas aeruginosa exotoxin A. In: Frankel, A.E. (eds) Immunotoxins. Cancer Treatment and Research, vol 37. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1083-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1083-9_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8419-2

  • Online ISBN: 978-1-4613-1083-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics