Skip to main content

Some Problems with Correspondence

  • Chapter
Motion Understanding

Part of the book series: The Kluwer International Series in Engineering and Computer Science ((SECS,volume 44))

Abstract

The notion of correspondence underlies many current theories of human and machine visual information processing. Algorithms for both the correspondence process and solutions to the correspondence problem have appeared regularly in the computer vision literature. Algorithms for stereopsis (Marr and Poggio, 1977; Barnard and Thompson, 1980; Mayhew and Frisby, 1980) and for tracking objects through time (Moravec, 1977; Ullman, 1979; Dreschler and Nagel, 1981; Webb, 1981; Jain and Sethi, 1984) have been presented which assume that token matching of separated or successive views is the underlying visual process. This paper will address the notion of token matching as a primitive operation in vision. We will argue that correspondence seems ill suited to the task of accounting for how an object is positioned in time or space, and that some other mechanism may provide a more apt account.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Barnard, S. and Thompson, W., (1980) ‘Disparity analysis of images,’ IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-2, no. 4.

    Google Scholar 

  • Cohen, M.A., and Grossberg, S., (1984) ‘Some global properties of binocular resonances: Disparity matching, filling-in, and figure-ground synthesis,’ Figural Synthesis, P. Dodwell and T. Caelli (eds. ), Lawrence Erlbaum Associates.

    Google Scholar 

  • Dreschler, L., and Nagel, H.-H., (1981) ‘On the frame-to-frame correspondence between greyvalue characteristics in the images of moving objects,’ Proc. Int. Joint Conf. on Artificial Intelligence, Vancouver, Canada.

    Google Scholar 

  • Exner, S., (1875) ‘Ueber das sehen von bewegungen und die theorie des zusammengesetzen auges,’ Sitzungsberichte Akademie Wissenchaft, vol. 72, pp. 156–190.

    Google Scholar 

  • Gescheider, G.A., (1984) Psychophysics: Method, Theory, and Application, Erlbaum, Hillsdale, NJ.

    Google Scholar 

  • Hoffman, D., and Flinchbaugh, B., (1980) ‘The interpretation of biological motion,’ AI Memo no. 608, MIT.

    Google Scholar 

  • Jain, R., and Sethi, I., (1984) ‘Establishing correspondence of non-rigid objects using smoothness of motion,’ Proc. 2nd IEEE Workshop on Computer Vision: Representation and Control, Annapolis, MD, pp. 83–37.

    Google Scholar 

  • Jenkin, M., (1983) ‘Tracking three-dimensional moving light displays,’ ACM Interdisciplinary Workshop on Motion: Representation and Perception, Toronto, Canada.

    Google Scholar 

  • Julesz, B., (1971) Foundations of Cyclopean Perception, Bell Labs. Inc.

    Google Scholar 

  • Kolers, P.A., (1968) ‘Some psychological aspects of pattern recognition,’ in Recognizing Patterns, P.A. Kolers, and M. Eden (eds.), MIT Press, Cambridge, MA.

    Google Scholar 

  • Kolers, P.A., (1972) Aspects of Motion Perception, Pergamon Press Ltd., Headington Hill Hall, Oxford.

    Google Scholar 

  • Kolers, P.A., (1976) ‘Buswell’s discoveries,’ in Eye Movements and Psychological Processes, R.A. Monty, and J.W. Senders (eds.), Erlbaum, Hillsdale, NJ.

    Google Scholar 

  • Kolers, P.A., (1983) ‘Some features of visual form,’ Computer Vision,Graphics,and Image Processing, vol. 23, pp. 15–41.

    Article  Google Scholar 

  • Kolers, P.A., and Brewster, J.M., (1985) ‘Rhythms and responses,’ J. of Experimental Psychology: Human Perception and Performance, vol. 11, pp. 150–167.

    Article  Google Scholar 

  • Kolers, P.A., and Pomerantz, J.R., (1971) ‘Figural change in apparent motion,’ J. of Experimental Psychology, vol. 87, pp. 99–108.

    Article  Google Scholar 

  • Marr, D, (1982) Vision, Freeman Press.

    Google Scholar 

  • Marr, D., and Poggio, T., (1976) ‘Co-operative computation of stereo disparity,’ Science, vol. 194, pp. 283–287.

    Article  Google Scholar 

  • Marr, D., and Poggio, T., (1977) ‘A theory of human stereo vision,’ AI Memo, no. 451, MIT.

    Google Scholar 

  • Mayhew, J., (1983) ‘Models of stereopsis,’ Preliminary Proc. Workshop on Vision,Brain and Cooperative Computation, University of Massachusetts.

    Google Scholar 

  • Mayhew, J., and Frisby, J., (1980) ‘The computation of binocular edges,’ Perception, vol. 9, pp. 69–86.

    Article  Google Scholar 

  • Moravec, H., (1977) ‘Towards automatic visual obstacle avoidance,’ Proc. Intl. Joint Conf. on Artificial Intelligence, Cambridge, MA, p. 54.

    Google Scholar 

  • Nagel, H.-H., (1982) ‘On change detection and displacement estimation in image sequences,’ Pattern Recognition Letters, vol. 1, pp. 55–59.

    Article  MATH  Google Scholar 

  • Poggio, G., and Poggio, T., (1984) ‘The analysis of stereopsis,’ Annual Rev. Neuroscience, pp. 379–412.

    Google Scholar 

  • Ramachandran, V.S., and Anstis, S.M., (1983) ‘Extrapolation of motion path in human visual perception,’ Vision Research, vol. 23, pp. 83–85.

    Article  Google Scholar 

  • Rashid, R., (1980) ‘Towards a system for the interpretation of moving light displays,’ IEEE Pattern Analysis and Machine Intelligence, PAMI-2, pp. 574–581.

    Google Scholar 

  • Terzopoulos, D., (1982) ‘Multi-level reconstruction of visual surfaces: Variational principles and Finite element representations,’ AI Memo, no. 671, MIT.

    Google Scholar 

  • Thorpe, C.E., (1984) ‘An analysis of interest operators for FIDO,’ Proc. 2nd IEEE Workshop on Computer Vision: Representation and Control, Annapolis, MD.

    Google Scholar 

  • Ullman, S., (1979) The Interpretation of Visual Motion, MIT Press, Cambridge, MA.

    Google Scholar 

  • Webb, J., (1981) ‘Structure from motion of rigid and jointed objects,’ Proc. Intl. Joint Conf. on Artificial Intelligence, Vancouver, Canada.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Kluwer Academic Publishers

About this chapter

Cite this chapter

Jenkin, M., Kolers, P.A. (1988). Some Problems with Correspondence. In: Martin, W.N., Aggarwal, J.K. (eds) Motion Understanding. The Kluwer International Series in Engineering and Computer Science, vol 44. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1071-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1071-6_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8413-0

  • Online ISBN: 978-1-4613-1071-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics