Skip to main content

A Computational Approach to the Fusion of Stereopsis and Kineopsis

  • Chapter
Motion Understanding

Part of the book series: The Kluwer International Series in Engineering and Computer Science ((SECS,volume 44))

Abstract

Vision research in fields as diverse as computer science, psychology, and neurophysiology, has led to the emergence of stereopsis and kineopsis as the two principal views which explain some of the mechanisms of space perception.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aggarwal, J.K., Davis, L.S., and Martin, W.N., (1982) ‘Correspondence processes in dynamic scene analysis,’ Proc. IEEE, vol. 69, no. 5, pp. 562–572.

    Article  Google Scholar 

  • Ballard, D.H., and Kimball, O.A., (1983) ‘Rigid body motion from optical flow and depth,’ Computer Vision, Graphics, and Image Processing, vol. 22, pp. 95–115.

    Article  Google Scholar 

  • Barlow, H.B., Blakemore, C., and Pettigrew, J.D., (1967) ‘The neural mechanism of binocular perception,’ J. Physiology, vol. 193, pp. 327342.

    Google Scholar 

  • Barnard, S.T., and Thompson, W.B., (1980) ‘Disparity analysis in images,’ IEEE Trans. Pattern Analysis and Machine Intelligence, vol. PAMI-2, pp. 333–340.

    Google Scholar 

  • Bruss, A.R., and Horn, B.K.P., (1983) ‘Passive navigation,’ Computer Vision, Graphics and Image Processing, vol. 21, pp. 3–20.

    Article  Google Scholar 

  • Duda, R.O., and Hart, P.E., (1973), Pattern Classification and Scene Analysis, Wiley-Interscience.

    Google Scholar 

  • Fennema C.L., and Thompson, W.B., (1979) ‘Velocity determination in scenes containing several moving objects,’ Computer Graphics and Image Processing, vol. 9, pp. 301–315.

    Article  Google Scholar 

  • Gibson, E.J., Gibson J.J., Smith O.W., and Flock, H., (1959) ‘Motion parallax as a determinant of perceived depth,’ J. of Experimental Psychology, vol. 58, pp. 40–51.

    Google Scholar 

  • Horn, B.K.P., and Schunck, B.G., (1981) ‘Determining optical flow,’ Artificial Intelligence, vol. 17, pp. 185–203.

    Article  Google Scholar 

  • Gibson, E.J., Gibson J.J., Smith O.W., and Flock, H., (1959) ‘Motion parallax as a determinant of perceived depth,’ J. of Experimental Psychology, vol. 58, pp. 40–51.

    Article  Google Scholar 

  • Horn, B.K.P., and Schunck, B.G., (1981) ‘Determining optical flow,’ Artificial Intelligence, vol. 17, pp. 185–203.

    Article  Google Scholar 

  • Horn, B.K.P., and Schunck, B.G., (1981) ‘Determining optical flow,’ Artificial Intelligence, vol. 17, pp. 185–203.

    Article  Google Scholar 

  • Julesz, B., (1971), Foundations of Cyclopean Perception, University of Chicago Press, Chicago.

    Google Scholar 

  • Lawton, D.T., and Rieger, J.H., (1983) ‘The use of difference fields in processing sensor motion,’ Proc. Image Understanding Workshop, Washington, D.C., pp. 77–83.

    Google Scholar 

  • Lelong-Ferrand, J., and Amaudiès, J.M., (1974) Cours de Mathématiques - Tome 3, Géométrie et Cinématique, Dunod, Paris.

    MATH  Google Scholar 

  • Longuet-Higgins, H.C., and Prazdny, K., (1980) ‘The interpretation of a moving retinal image,’ Proc. Royal Society London, vol. B 208, pp. 385–397.

    Article  Google Scholar 

  • Marr, D., and Poggio, T., (1979) ‘A computational theory of human stereo vision,’ Proc. Royal Society London, vol. B 204, pp. 301–328.

    Article  Google Scholar 

  • Mitiche, A., (1984) ‘Computation of optical flow and rigid motion,’ Proc. 2nd IEEE Workshop on Computer Vision: Representation and Control, Annapolis, MD.

    Google Scholar 

  • Mitiche, A., (1984), ‘On combining stereopsis and kineopsis for space perception,’ Proc. IEEE First Conference on Artificial Intelligence Applications, Denver, CO, pp. 156–160.

    Google Scholar 

  • Nagel, H.-H., (1982) ‘On change detection and displacement estimation in image sequences,’ Pattern Recognition Letters, vol. 1, pp. 55–59.

    Article  MATH  Google Scholar 

  • Nagel, H.-H., (1983) ‘Displacement vectors derived from second-order intensity variation in image sequences,’ Computer Vision, Graphics and Image Processing, vol. 21, pp. 85–117.

    Article  Google Scholar 

  • Nakayama, K., and Loomis, J.M., (1974) ‘Optical velocity patterns, velocity-sensitive neurons, and space perception: A hypothesis, Perception, vol. 3, pp. 63–80.

    Google Scholar 

  • Paquin, R., and Dubois, E. (1983) ‘A spatio-temporal gradient method for estimating the displacement field in time-varying imagery,’ Computer Vision, Graphics and Image Processing, pp. 205–221.

    Google Scholar 

  • Potter, J.L., (1972) ‘Scene segmentation using motion information,’ Computer Graphics and Image Processing, vol. 6, pp. 558–581.

    Article  Google Scholar 

  • Prazdny, K., (1983) ‘On the information in optical flows,’ Computer Vision, Graphics and Image Processing, vol. 22, pp. 239–259.

    Article  Google Scholar 

  • Thompson, W.B., (1980) ‘Combining motion and contrast for segmentation,’ IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 2, pp. 543–549, 1980.

    Google Scholar 

  • Thompson, W.B., and Barnard, S.T., (1981) ‘Lower-level estimation and interpretation of visual motion,’ Computer, vol. 14, pp. 20–28.

    Article  Google Scholar 

  • Waxman, A.M., (1983) ‘Kinematics of image flow,’ Proc. Image Understanding Workshop, Washington D.C., pp. 175–181.

    Google Scholar 

  • Wohn, K., Davis, L.S. and Thrift, P., (1983) ‘Motion estimation based on multiple local constraints and nonlinear smoothing,’ Pattern Recognition, vol. 16, no. 6, pp. 563–570.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Kluwer Academic Publishers

About this chapter

Cite this chapter

Mitiche, A. (1988). A Computational Approach to the Fusion of Stereopsis and Kineopsis. In: Martin, W.N., Aggarwal, J.K. (eds) Motion Understanding. The Kluwer International Series in Engineering and Computer Science, vol 44. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1071-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1071-6_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8413-0

  • Online ISBN: 978-1-4613-1071-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics